ENTIRE DOMINATION IN JUMP GRAPHS

N.pratap babu Rao ${ }^{1}$, Sweta. $\mathbf{N}^{\mathbf{2}}$
Department of Mathematics S.G. degree college KOPPAL(Karnataka)INDIA Department of Mathematics Veerasaiva college Ballari (Karnataka) INDIA

Abstract

: The vertices and edges of a graph $J(G)$ are called the element of $J(G)$. A set X of elements in $J(G)$ is an entire dominating set if every element not inX ix either adjacent or incident to at least one element in X The entire domination number $\mathfrak{E}(J(G))$ is the order of a smallest entire dominating set in $J(G)$ In this paper exact values of $\mathfrak{E}(J(G))$ for some standard graphs are obtained Also, bounds on $\mathfrak{E}(J(G))$ and Nordhaus- Gaddam type results are established.

INTRODUCTION;

The graph considered here are finite, connected, undirected without loops or multiple edges. We denote by $\sqrt{ }(\mathrm{J}(\mathrm{G}))$ and $\mathfrak{E}(J(G))$ the vertex set and the edge set of $\mathrm{J}(\mathrm{G})$ respectively. For any undefined term or notation in this paper see Harary[3]. The study of dominating sets in graph was begun by Ore[7] and Berge[5]. The entire domination number was defined by Kulli[4].

The open neighborhood $\mathrm{N}(\mathrm{v})(\mathrm{N}(\mathrm{e})$) of a vertex (an edge e) is the set of vertices (edges) adjacent to $\mathrm{v}(\mathrm{e})$. The closed neighborhood $N[v] 9 N[e]$) of a vertex 9 an edge $e 0$ is $N(v) \cup\{v\}(N(e) \cup\{e\}$). The open entire neighborhood $n(x)$ of an edge x is the set of elements either adjacent or incident to x. the closed entire neighborhood $n[x]$ of an element x is $n(x) \cup\{x\} . \Delta(J(G))$ denoes the maximum degree of J(G). The degree of an edge e=uv is defined as deg $u+\operatorname{deg} v-2$.The maximum edge degree of $\mathrm{J}(\mathrm{G})$ is denoted by $\Delta^{\prime}\left(\mathrm{J}(\mathrm{G})\right.$), we will employ the following notation $\left.\Gamma^{\mathrm{x}}\right\urcorner\left(\mathrm{L}_{\mathrm{x}}{ }^{\mathrm{J}}\right.$) to denote the smallest (largedst) integer greater(lesser) than equal tox

A set D of vertices in $J(G)$ is a dominating set if every vertex not in D is adjacent to atleast one vertexin $V(J(G))$ - D. The domination number $\sqrt{ }(\mathrm{J}(\mathrm{G})$) is the order of a smallest dominating set in $\mathrm{J}(\mathrm{G})$.

A set F of edges of $\mathrm{J}(\mathrm{G})$ is an edge dominating set if every edge not in F is adjacent to at least one edge in $\mathrm{E}(\mathrm{J}(\mathrm{G}))$ - F . The edge domination number $\sqrt{\prime}^{\prime}(J(G))$ of $J(G)$ is the smallest edge dominating set in $J(G)$..

We now obtained a relation between the domination, edge domination and entire domination number of a graph.
Theorem 1; For any graph $J(G)\left(\sqrt{ }(J(G))+\sqrt{ }{ }^{\prime}(J(G))\right) / 2 \leq \mathfrak{E}(J(G)) \leq \sqrt{ }(J(G))+\sqrt{\prime}(J(G))$.
Further the upper bound attains if there exists a minimum entire dominating set $\mathrm{X}=\mathrm{D} \cup \mathrm{f}$ satisfying.
i) $\quad \mathrm{N}[\mathrm{D}\}=\mathrm{V}(J(\mathrm{G})), \mathrm{N}[\mathrm{F}]=\mathrm{E}(\mathrm{J}(\mathrm{G}))$ and $\cap \mathrm{N}[\mathrm{v}]=\mathrm{n} \mathrm{N}[\mathrm{e}]=\varnothing$
ii) $\quad \operatorname{Deg} v=\Delta(J(G)), \operatorname{deg} e=\Delta^{\prime}(J(G))$ for all in D and e in F.

Proof; First we establish the lower bound. Let $X=D \cup F$ be a minimum entire dominating set of $J(G)$. for each edge $e=u v$ in F Choose a vertex u or v, not both and F^{\prime} be the collection of such vertices Clearly $D \cup F^{\prime}$ is a dominating set,

There fore

$$
\begin{aligned}
\sqrt{ }(J(G)) & \leq\left|E \cup F^{\prime}\right| \\
& =|D \cup F| \\
& =\mathscr{E}(J(G)) \ldots \ldots .(1)
\end{aligned}
$$

Now for each vertex u in D choose exactly one edge e incident with u and let D' be the collection of such edges. Clearly D' \cup F is an edge dominating set. Therefore

$$
\begin{align*}
\sqrt{\prime}^{\prime}(\mathrm{J}(\mathrm{G})) & \leq\left|\mathrm{D}^{\prime} \cup \mathrm{F}\right| \\
& =|\mathrm{D} \cup \mathrm{~F}| \\
& =\mathfrak{E}(\mathrm{J}(\mathrm{G})) \ldots . \tag{2}
\end{align*}
$$

From (1) and (2) follows
$\sqrt{(J(G))}+\sqrt{\prime}(J(G)) \leq 2 \mathfrak{E}(J(G))$.
Therefore
$\sqrt{ }(\mathrm{J}(\mathrm{G}))+\sqrt{ }{ }^{\prime}(\mathrm{J}(\mathrm{G})) / 2=\mathfrak{E}(\mathrm{J}(\mathrm{G}))$
Now for the upper bound, let D and f be the minimum dominating and edge dominating sets respectively.
Then DU F is an entire dominating set. Thus

$$
\begin{aligned}
\mathfrak{E}(J(G)) & \leq|D \cup F| \\
& =\sqrt{ }(\mathrm{J}(\mathrm{G}))+\sqrt{ } \cdot(\mathrm{J}(\mathrm{G})) .
\end{aligned}
$$

Theorem 2; For any connected jump graph J(G).
$\left.\mathbf{P}-\mathrm{q} \leq \mathfrak{E}(\mathrm{J}(\mathrm{G})) \leq \mathrm{p}-\Gamma \frac{\Delta(\boldsymbol{n})}{2}\right\rceil$
For the lower bound is attained if and only if $\mathrm{J}(\mathrm{G})$ is a star.
Proof; First we establish the upper bound. Let v be a vertex of degree $\Delta(J(G))$.Let F be the set of independent edges in $<\mathrm{N}(\mathrm{v})>$. Then $V(J(G)) \cup F-N(v)$ is an entire dominating set. Also $\left.|F| \leq L \frac{\Delta(n)}{2}\right\rfloor$ Therefore

$$
\begin{aligned}
\mathfrak{E}(\mathrm{J}(\mathrm{G})) & \leq|\mathrm{V}(\mathrm{~J}(\mathrm{G})) \mathrm{U} \mathrm{~F}-\mathrm{N}(\mathrm{v})| \\
& \left.\leq \mathrm{p}+\mathrm{L} \frac{\Delta(n)}{2}\right\lrcorner-\Delta(\mathrm{J}(\mathrm{G})) \\
& \left.\leq \mathrm{p}-\Gamma \frac{\Delta(n)}{2}\right\rceil
\end{aligned}
$$

Now for the lower bound, let X be a minimum entire dominating set of $J(G)$. Then

$$
\begin{aligned}
P+q-|X| & =|V(J(G)) \cup E(J(G))-X| \\
& \leq|V(J(G)) \cup E(J(G))|-1 \\
& \leq p+q-(p-q) \\
& \leq 2 q .
\end{aligned}
$$

Then $\mathfrak{E}(J(G)) \geq p-q$.
Suppose $\mathfrak{G}(J(G))=p-q$ Then $p-q \geq 1$ and from the above inequalities it follows that $p-q=1$ This shows that $J(G)$ is a star.
Conversely, suppose $J(G)$ is a star obliviously $\mathfrak{E}(J(G))=p-q$.
Theorem 3; For any jump graph J(G)
$\mathfrak{E}(J(G)) \geq \frac{(p+q)}{(2 \Delta J(G)+1)}$

Further equality holds if there excists a minimum entire dominating set X such that.
i) $\quad \mathrm{X}$ is an entire independent set
ii) For any elemrnt x in $(V \cup E)_{-} X$ there is anelement y in X such that
$n(x) \cap X=\{y\}$
iii) $\quad|\mathrm{n}(\mathrm{x})|=2, \Delta(\mathrm{~J}(\mathrm{G}))$ for every x in X

Proof; This follows from Theorem A and the notation of totalgraph if there exists a minimum entire dominating set satisfying (i) (ii) and (iii) the bound is attained.

Theorem 4; For any connected J(G) of order p

$$
\left.\mathfrak{E}(J(G)) \leq \Gamma \frac{p}{2}\right\rceil
$$

Proof; We prove the result by induction on p if $\mathrm{p} \leq 4$ then the result can be verified. Assume the result is true for all connected graphs $J(G)$ and $p-2$ vertices. Let $J(G)$ be a connected graph then p vertices. Let u and v denote either two adjacent vertices or two non adjacent vertices having a common neighbor w such that $J(G)=J\left(G^{\prime}\right)-\{u v\}$ is connected. Let X be the minimum entire dominating set of $J(G)$. Then either $X \cup\{w]$ or $X \cup\{u v\}$ is an entire dominating set of $J\left(G^{\prime}\right)$. Then,

$$
\begin{aligned}
\mathfrak{E}\left(J\left(G^{\prime}\right)\right) & \leq|X|+1 \\
& \left.\leq \Gamma \frac{p-2}{2}\right\rceil+1 \\
& =\left\lceil\frac{p}{2}\right\rceil
\end{aligned}
$$

Finally we establish Nordhaus-Gaddum type results.
Theorem 5 ; For any connected graph $J(G)$ with p vertices

$$
\begin{array}{r}
\left.\mathfrak{E}(\mathrm{J}(\mathrm{G}))+\mathfrak{E}(\mathrm{J}(\bar{G})) \leq \Gamma \frac{3 p}{2}\right\urcorner \\
\mathfrak{E}(\mathrm{J}(\mathrm{G}))+\mathfrak{E}(\mathrm{J}(\bar{G})) \leq \mathrm{p} \quad\left\ulcorner\frac{p}{2}\right\urcorner
\end{array}
$$

Proof; $\mathrm{J}(\mathrm{G})$ is complete, then $\mathrm{J}(\bar{G})$ is totally disconnected $\mathfrak{E}(\mathrm{J}(\bar{G}))=\mathrm{p}$
There fore

$$
\begin{aligned}
\mathfrak{E}(\mathrm{J}(\mathrm{G}))+\mathfrak{E}(\mathrm{J}(\bar{G})) & =\left\ulcorner\frac{p}{2}\right\rceil+\mathrm{p} \\
& =\left\ulcorner\frac{3 p}{2}\right\urcorner
\end{aligned}
$$

And $\left.\quad \mathfrak{E}(J(G)) . \mathfrak{E}(J(\bar{G}))=\mathrm{p} \quad \Gamma \frac{p}{2}\right\rceil$
Theorem6; Let $\mathrm{J}(\mathrm{G})$ and $\mathrm{J}(\bar{G})$ be connected complete graph then,

$$
\begin{array}{r}
\mathfrak{E}(\mathrm{J}(\mathrm{G}))+\mathfrak{E}(\mathrm{J}(\bar{G})) \leq \mathrm{p}+1 \\
\mathfrak{E}(\mathrm{~J}(\mathrm{G})) \cdot \mathfrak{E}(\mathrm{J}(\bar{G})) \leq(\mathrm{p}+1)^{2} / 4
\end{array}
$$

Proof; This follows from Theorem 4.

REFERENCES

[1] m.Behzad and G.Chartrand, Total graphs and traversability. Proc.Edinburgeh Math.Soc.(2) 15 (1966-67) 117-120.
[2] C.Berge, theory of Graphs and its Applications Methuen, London(1962).
[3] F. Harary, Graph Theory Addison Wesley reading Mass (1969)
[4] V.R. Kulli, On entire domination number, Second Conf.Ramanujan Math.Soc., Madras (1987).
[5] S.Mitchell and S.T. Hedetniemi, Edge domination in trees, In proc.Eight S.E. Conf.Combinotorics, Graph Theory and computing Utilitas Mathematica, Winnipeg (1997) 489-509.
[6] E.A. Nordhaus and J.W Gaddum, On complementary graphs Amer.Math.Monthly 63 (1956) 175-177.
[7] O.Ore Theory of Graphs.Amer.Math.Soc., Colloq.pul., 38 Providence (1962)
[8] $\mathrm{H}>\mathrm{B}>$ Walikar, B.D.Acharya and E.Sampthkumar, Recent DDevelopments in the Theory of Domination in Graphs.MRI Lecture Notes in Math. 1 (1979).
[9]V.R.Kulli, S.C.Sigarkanti and N.D>Sonar, Entire domination in Graphs, advances in Graph Theory,ed.V.R kulli (1991) vishwa International Publication

