

International Research Journal of Engineering and Technology (IRJET)Volume: 05 Issue: 06 | June-2018www.irjet.net

ENTIRE DOMINATION IN JUMP GRAPHS

N.pratap babu Rao¹, Sweta. N²

Department of Mathematics S.G. degree college KOPPAL(Karnataka)INDIA Department of Mathematics Veerasaiva college Ballari (Karnataka) INDIA

***_____

ABSTRACT:

The vertices and edges of a graph J(G) are called the element of J(G). A set X of elements in J(G) is an entire dominating set if every element not inX is either adjacent or incident to at least one element in X The entire domination number $\mathfrak{E}(J(G))$ is the order of a smallest entire dominating set in J(G) In this paper exact values of $\mathfrak{E}(J(G))$ for some standard graphs are obtained Also, bounds on $\mathfrak{E}(J(G))$ and Nordhaus- Gaddam type results are established.

INTRODUCTION;

The graph considered here are finite, connected, undirected without loops or multiple edges. We denote by $\sqrt{(J(G))}$ and $\mathfrak{E}(J(G))$ the vertex set and the edge set of J(G) respectively. For any undefined term or notation in this paper see Harary[3]. The study of dominating sets in graph was begun by Ore[7] and Berge[5]. The entire domination number was defined by Kulli[4].

The open neighborhood N(v) (N(e)) of a vertex (an edge e) is the set of vertices (edges) adjacent to v(e). The closed neighborhood N[v] 9 N[e]) of a vertex 9an edge e0 is N(v) \cup {v} (N(e) \cup {e}). The open entire neighborhood n(x) of an edge x is the set of elements either adjacent or incident to x. the closed entire neighborhood n[x] of an element x is n(x) \cup {x}. Δ (J(G)) denoes the maximum degree of J(G). The degree of an edge e=uv is defined as deg u +deg v -2. The maximum edge degree of J(G) is denoted by Δ' (J(G)), we will employ the following notation $\lceil x \rceil$ ($\lfloor x \rfloor$) to denote the smallest (largedst) integer greater(lesser) than equal tox

A set D of vertices in J(G) is a dominating set if every vertex not in D is adjacent to atleast one vertex V(J(G)) - D. The domination number $\sqrt{J(G)}$ is the order of a smallest dominating set in J(G).

A set F of edges of J(G) is an edge dominating set if every edge not in F is adjacent to at least one edge in E(J(G)) - F. The edge domination number $\sqrt{(J(G))}$ of J(G) is the smallest edge dominating set in J(G).

We now obtained a relation between the domination, edge domination and entire domination number of a graph.

Theorem 1; For any graph J(G) $(\sqrt{J(G)} + \sqrt{J(G)})/2 \le \mathfrak{E}(J(G)) \le \sqrt{J(G)} + \sqrt{J(G)}$.

Further the upper bound attains if there exists a minimum entire dominating set X= D ∪ f satisfying.

i) $N[D] = V(J(G)), N[F] = E(J(G)) \text{ and } \cap N[v] = \cap N[e] = \emptyset$

ii) Deg v = $\Delta(J(G))$, deg e = $\Delta'(J(G))$ for all in D and e in F.

Proof; First we establish the lower bound . Let $X = D \cup F$ be a minimum entire dominating set of J(G). for each edge e=uv in F Choose a vertex u or v, not both and F' be the collection of such vertices Clearly $D \cup F'$ is a dominating set ,

There fore

 $\sqrt{(J(G))} \le | E \cup F' |$

 $= | D \cup F |$

 $= \mathfrak{E}(J(G))....(1)$

Now for each vertex u in D choose exactly one edge e incident with u and let D' be the collection of such edges. Clearly $D' \cup F$ is an edge dominating set. Therefore

 $\sqrt{'}(J(G)) \le | D' \cup F |$

= |D ∪ F |

 $= \mathfrak{E}(J(G)) \dots (2)$

From (1) and (2) follows

 $\sqrt{(J(G))} + \sqrt{'(J(G))} \le 2 \mathfrak{E}(J(G)).$

Therefore

 $\sqrt{(J(G))} + \sqrt{'(J(G))} / 2 = \mathfrak{E}(J(G))$

Now for the upper bound, let D and f be the minimum dominating and edge dominating sets respectively.

Then $D \cup F$ is an entire dominating set. Thus

 $\mathfrak{E}(J(G)) \leq | D \cup F |$

$$= \sqrt{(J(G))} + \sqrt{(J(G))}.$$

Theorem 2; For any connected jump graph J(G).

 $\mathbf{P} - \mathbf{q} \leq \mathfrak{E}(\mathsf{J}(\mathsf{G})) \leq \mathsf{p} - \ \ \ \frac{\Delta(n)}{2} \mathsf{T}$

For the lower bound is attained if and only if J(G) is a star.

Proof; First we establish the upper bound. Let v be a vertex of degree $\Delta(J(G))$.Let F be the set of independent edges in $\langle N(v) \rangle$. Then $V(J(G)) \cup F - N(v)$ is an entire dominating set. Also $|F| \leq \lfloor \frac{\Delta(n)}{2} \rfloor$ Therefore

 $\mathfrak{E}(J(G)) \leq |V(J(G)) \cup F - N(v)|$

$$\leq p + \lfloor \frac{\Delta(n)}{2} \rfloor - \Delta(J(G))$$

$$\leq p - \lceil \frac{\Delta(n)}{2} \rceil$$

Now for the lower bound, let X be a minimum entire dominating set of J(G). Then

$$P + q - |X| = |V(J(G)) \cup E(J(G)) - X|$$

$$\leq |V(J(G)) \cup E(J(G))| - 1$$

$$\leq p + q - (p - q)$$

$$\leq 2q.$$

Then $\mathfrak{E}(J(G)) \ge p-q$.

Suppose $\mathfrak{E}(J(G)) = p-q$ Then $p-q \ge 1$ and from the above inequalities it follows that p-q=1 This shows that J(G) is a star.

Conversely, suppose J(G) is a star obliviously $\mathfrak{E}(J(G)) = p-q$.

Theorem 3; For any jump graph J(G)

 $\mathfrak{E}\big(\mathsf{J}\big(\mathsf{G}\big)\big) \geq \frac{(p\!+\!q)}{(2 \Delta(\mathsf{J}(\mathsf{G})\!+1)}$

Further equality holds if there excists a minimum entire dominating set X such that.

- i) X is an entire independent set
- ii) For any element x in $(V \cup E)_X$ there is an element y in X such that $n(x) \cap X = \{y\}$
- iii) $|n(x)| = 2, \Delta(J(G))$ for every x in X

Proof; This follows from Theorem A and the notation of totalgraph if there exists a minimum entire dominating set satisfying (i) (ii) and (iii) the bound is attained.

Theorem 4; For any connected J(G) of order p

 $\mathfrak{E}(J(G)) \leq \lceil \frac{p}{2} \rceil$

Proof; We prove the result by induction on p if $p \le 4$ then the result can be verified. Assume the result is true for all connected graphs J(G) and p-2 vertices. Let J(G) be a connected graph then p vertices. Let u and v denote either two adjacent vertices or two non adjacent vertices having a common neighbor w such that J(G) = J(G') – {u v} is connected. Let X be the minimum entire dominating set of J(G). Then either XU {w] or X U {u v} is an entire dominating set of J(G'). Then,

 $\mathfrak{E}(J(G')) \leq |X| + 1$

$$\leq \lceil \frac{p-2}{2} \rceil + 1$$
$$= \lceil \frac{p}{2} \rceil$$

Finally we establish Nordhaus-Gaddum type results.

Theorem 5; For any connected graph J(G) with p vertices

$$\mathfrak{E}(J(G)) + \mathfrak{E}(J(\overline{G})) \le \lceil \frac{3p}{2} \rceil$$
$$\mathfrak{E}(J(G)) + \mathfrak{E}(J(\overline{G})) \le p \rceil \lceil \frac{p}{2} \rceil$$

Proof; J(G) is complete, then J (\overline{G}) is totally disconnected $\mathfrak{E}(J(\overline{G})) = p$

There fore

$$\mathfrak{E}(\mathsf{J}(\mathsf{G})) + \mathfrak{E}(\mathsf{J}(\bar{\mathsf{G}})) = \lceil \frac{p}{2} \rceil + p$$
$$= \lceil \frac{3p}{2} \rceil$$

And $\mathfrak{E}(J(G)) \cdot \mathfrak{E}(J(\overline{G})) = p \vdash \frac{p}{2} \mathsf{T}$

Theorem6; Let J(G) and J(\overline{G}) be connected complete graph then,

$$\mathfrak{E}(\mathsf{J}(\mathsf{G})) + \mathfrak{E}(\mathsf{J}(\bar{G})) \leq \mathsf{p} + 1$$

$$\mathfrak{E}(\mathsf{J}(\mathsf{G})) \, . \, \mathfrak{E}(\mathsf{J}(\bar{G})) \, \leq (\mathsf{p}{+}1)^2 \, / \, 4$$

Proof; This follows from Theorem 4.

Т

REFERENCES

[1] m.Behzad and G.Chartrand, Total graphs and traversability. Proc.Edinburgeh Math.Soc.(2) 15 (1966-67) 117-120.

- [2] C.Berge, theory of Graphs and its Applications Methuen, London(1962).
- [3] F. Harary, Graph Theory Addison Wesley reading Mass (1969)
- [4] V.R. Kulli, On entire domination number, Second Conf.Ramanujan Math.Soc., Madras (1987).

[5] S.Mitchell and S.T. Hedetniemi, Edge domination in trees, In proc.Eight S.E. Conf.Combinotorics, Graph Theory and computing Utilitas Mathematica, Winnipeg (1997) 489-509.

[6] E.A. Nordhaus and J.W Gaddum, On complementary graphs Amer.Math.Monthly 63 (1956) 175-177.

[7] O.Ore Theory of Graphs.Amer.Math.Soc., Colloq.pul., 38 Providence (1962)

[8] H>B>Walikar, B.D.Acharya and E.Sampthkumar, Recent DDevelopments in the Theory of Domination in Graphs.MRI Lecture Notes in Math.1 (1979).

[9]V.R.Kulli, S.C.Sigarkanti and N.D>Sonar, Entire domination in Graphs, advances in Graph Theory,ed.V.R kulli (1991) vishwa International Publication