DEVELOPMENT OF RECTANGULAR FRONT LOAD BEAM FOR ENERGY ABSORPTION

Afroj Jahan¹, Shiv Kumar Tripathi², Ajay Srivastava³

¹M. Tech Student, Department of Mechanical Engineering, Goel Institute of Technology & Management, Lucknow ²Assistant Professor, Department of Mechanical Engineering, Goel Institute of Technology & Management, Lucknow ³Project Engineer, ETA INC, India/USA

_____***______

Abstract: Frontal impact is still a major concern for automotive OEMs. The energy absorption of the front rail plays an important role in frontal impact. The S-rails are used in the front load beam and mostly front portion of the load beams is a rectangular section. In this paper rectangular column (load beam) with different parameters i.e. different rib (inside) thickness and materials, are evaluated using Finite Element Analysis. The front load beam comes under direct load path in Full frontal and ODB (Offset deformable barrier) impact. The acceleration pulse at the passenger cabin is affected by the design of rails. Good design leads to a reduction of occupant injury. The intrusion of the opposite vehicle is more in case of ODB and the acceleration pulse is in case of full frontal impacts. The front load beam (rail) works as a source of energy absorber between the bumper and the engine in both the cases. It prevents engine to hit the cabin to reduce the occupant injury. In this paper is impact speed of 50 km/h under dynamic conditions used to evaluate the rectangular column (load beam), a new design is proposed, which will provide a direction to the designers.

Keywords: Finite Element Analysis, Energy Absorption, Dynamic crushing, Thin walled structure

1. INTRODUCTION

Frontal vehicle collisions are the major type of car crash in the world, resulting thousands of deaths every year. Consumers have become highly aware of the importance of vehicle safety which has made it a primary selling feature now-a-days. Moreover, the competitive nature in the automobile sector persuades manufacturers to develop safer vehicles. Safety is paramount importance in modern vehicle design. Crashworthiness is the most important safety analysis to be completed. Vehicle crashworthiness, defined as the degree of occupant safety, when vehicle is involved in the collisions. Continuous work is being done by the designers to make the front end of the vehicle to absorb more energy to reduce the amount of occupant's head accelerations and to reduce lower and upper dash intrusion. Front load beam of the passenger vehicle is the major energy absorbing component of the vehicle. The acceleration pulse near Sill region is affected by design and behavior of front rail and its energy absorption from 20 to 40 milliseconds.

The variation in section, thickness and material of rail affects the load path in case of frontal impact. The study is based on the FE analysis and helped to investigate the effect of change of rib thickness of a rectangular load beam.

2. APPROACHES

The amount of energy absorption at the front side of the vehicle is based on the Finite Element Analysis. At first the solid model of the a 300 mm long, 60*50*1.8 rectangular long column is created (Fig:1). This section is used as a base. The corner fillet of 5 mm is used in all the models.

Figure 1 Solid model

Some more sections, with ribs are also created for the study. The section details are as follows:

A 60*50*1.8 mm rectangle with a single rib at the mid as shown in Figure 2.

Figure 2.Section - Single Mid Rib

Т

Figure 3.Section - Cross Mid Rib

The calculation of force and energy is given below.

 $P_{E}=20.2 * R_{e}^{0.382} * t^{0.860}$ (1) $E = 0.158 * R_{m}^{0.506} * t^{1.498}$ (2) where P_{E} = peak load(KN) E=absorbed energy(KJ)

t =thickness(mm)

R_m =tensile strength(MPa)

In this paper, study of rectangular column without inside ribs, inside single middle rib, cross ribs, cross ribs with varying thickness and different rib fillets are investigated and Force-Displacement are determined with 4 different materials i.e. Grade Steel, HSLA, DP & HSLA (Cold Rolled).

3. SIMULATION RESULTS

The simulations are performed by using LS-Dyna explicit tool. All simulations are formed on the dynamic impact conditions with 50kmph initial velocity.

Figure 4. Result Comparison-with & without Rib – HSLA Material

Т

It is evident from the Figure 4, With HSLA material, Peak crush force on section with single internal rib is 150% more as compared with section without rib. By adding the cross rib with the same thickness, the peak force value is 247% more as compared with the section without rib. Using cross rib thickness of 2.5 mm the peak force is 315% more as compared with the section without rib. Using cross rib thickness of 3.0 mm the peak force value is 366% more as compared with the section without rib. There is slight variation in force behavior with 2.5 mm thick cross rib and 5 mm fillet radius results.

4. CONCLUSION

Presented paper is useful for the automotive engineers to optimize the weight by using most suitable combinations and for proliferation of strength to weight ratio. There is substantial amount of energy absorption if only using 3.0 mm rib thickness instead of increase the full front rail thickness. Several research and industrial work is going on for weight reduction. Energy absorption of HSLA is medium.

In future more efforts will be made for designing front rail to reduce weight using more materials and thickness options.

REFERENCES

[1] Muhammad EminErdin, CengizBaykasoglua, " MerveTunay Cetin, "Quasi-static Axial Crushing Behavior of Thin-walled Circular Aluminum Tubes with Functionally Graded Thickness", International Conference on Manufacturing Engineering and Materials, ICMEM 2016, 6-10 June 2016.

[2] N. Baaskaran, K. Ponappa, S. Shankar, "Quasi-Static Crushing and Energy Absorption Characteristics of Thin-Walled Cylinders with Geometric Discontinuities of Various Aspect Ratios", Lattin American Journal of Solids and Structures, July,2017

[3] Chein-Hsun Wu, " Improvement Design of Vehical's Front Rail for Dynamic Impact", 5th European LS-DYNA Users Confrence.

[4] Elmarakbi, Ahmed, Long, Y and MacIntyre, John (2013) "Crash Analysis and Energy Absorption Characteristics of Sshaped Longitudinal Members". Thin- Walled Structures, 68. pp. 65-74. ISSN 0263-8231, Volume 50 Issue 1 January 2012.

[5] J. Han &*K.* Yamazaki, " A study on the crashworthiness of S-shape square tubes", Transactions on the Built Environment vol 52,

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Page 2915

[6] Ramesh Koora, RamavathSuman, Syed Azam Pasha Quadri, "Design Optimization of Crush Beams of SUV Chassis for Crashworthiness", International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013)

[7] R. Fragoudakis and A. Saigal, "EFFECT OF ALUMINUM FOAM AND FOAM DENSITY ON THE ENERGY ABSORPTION CAPACITY OF 3D "S" SPACE FRAMES", Department of Mechanical Engineering Tufts University, Medford, MA 02155 United States of America

[8] Neil Sharpe, RobertVendrig, KeesHoutzager, " IMPROVED DESIGN FOR FRNTL PROTECTION", Alcoa – Reynolds Aluminium Holland B.V The Netherlands Paper No.329

[9] SABER VATANISAHLAN, K.VIJAYA KUMAR REDDY, " QUASI-STATIC CRUSH BEHAVIOUR OF ALUMINUM AND STEEL CIRCULAR TUBES WITH THROUGH-HOLE DISCONTINUITIES", International Journal of Mechanical and Production Engineering, ISSN: 2320-2092, Volume-1, Issue-1, July-2013

BIOGRAPHIES

Ms. Afroj Jahan is currently working as a lecturer in Mechanical department, Goel Institute of Technology & Management. She passed her B.Tech in 2013 with 77.3 percent from M.J.P ROHILKHAND UNIVERSITY, BARIELLY.

Mr. Shiv Kumar Tripathi is currently working as HOD of Mechanical Department in Goel Institute of Technology & Management, Lucknow, India. He had completed his M.Tech in CAD from GITM, Lucknow, UP, India in the year 2016.

Mr. Ajay Srivastava is currently working as Project Engineer in Vehicle Crash Analysis -Engineering Technology Associates in India /USA. He had worked for different Automotive OEMs i.e. Fiat-Chrysler Automobiles, Tata Motors, Jaguar & Land Rover etc.