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Abstract - The Short Wave Equations (SWE) is a system of 
hyperbolic/parabolic Partial Differential Equations (PDE) 
that governing fluid flow in the oceans, coastal regions, 
estuaries, rivers and channels. In shallow water, flows there 
would be a relatively smaller vertical flow compared to 
horizontal one and in order to get rid of the vertical 
parameter, we can average over the depth. The SWE can be 
used to predict tides, storm surge levels and coastline 
changes like hurricanes and ocean currents. SWE also arise 
in atmospheric flows and debris flows. The SWE are derived 
from the Navier-Stokes equations, which describe the motion 
of fluids. The Navier-Stokes equations are themselves 
derived from the equations for conservation of mass and 
linear momentum. 

Keywords: continuum mechanics, hydraulic jump, 
Navier-Stokes, Hydraulics. 

1. Introduction 

Continuum mechanics is a branch of mechanics in 
which we study and analyze the kinematics and 
mechanical behavior of materials [1]. Continuum 
mechanics are a continuous mass that deals with the 
physical properties of solids and liquids. This technique 
could be used in many fields such as simulation of 
corrosion of additively manufactured parts [2], simulation 
of precision finishing processes [3], vibration [4], heat 
transfer [5], or fluid mechanics [6]. Physical properties are 
independent of the coordinates they take place. In this 
paper we will focus conservation equations on fluids and 
the shallow water equations [7]. The shallow water 
equations explains the behavior of a thin layer of fluid with 
a constant density that has boundary conditions from 
below by the bed of the flow and from above by a free 
surface of water. There are so many different features 
inside of these flows due to the fact that their behavior is 
based on lots of conservation laws [7]. 

We consider this type of flow with a simple 
vertical structure and we assume that fluid system is the 
flow of a thin layer of water over terrain, which varies in 
elevation. Friction is ignored and the flow velocity is 

assumed to be uniform with elevation [7]. Besides, the 
slope of terrain is assumed much less than unity, like the 
slope of the fluid surface. These assumptions allow the 
vertical pressure profile of the fluid to be determined by 
the hydrostatic equation [8, 9]. Although the derived 
shallow water equations are idealized, there are still some 
common essential characteristics with more complex flows 
such as Tsunami, deep in ocean or near shore. Near shore, 
a more complicated model is required [8]. Fig. 1 illustrates 
a schematic view of shallow water flow [1]. 

 

Fig.1, schematic view of a shallow water flow [1]. 

Hydraulic jump occurs whenever we have a flow 
changes from supercritical to subcritical. In phenomenon 
the water surface rises suddenly and we have surface 
rollers while an intense mixing occurs and air is entrained 
followed by a large amount of energy dissipation [10]. In 
other words, a hydraulic jump happens when a 
supercritical upstream meets by a subcritical downstream 
flow [10]. There are also artificial hydraulic jumps, which 
are created by devices like sluice gates. Totally, a hydraulic 
jump can be used as an energy dissipater, chemical mixer 
or to act as an aeration device [11]. 

Since we have unknown loss of energy in 
hydraulic jumps, one should conservation of momentum to 
derive jump equations [10]. To develop this equation, they 
generally consider a situation with or without loss of 
energy between upstream and downstream. Besides, that 
situation may come with or without some obstacles which 
may cause a drag force of Pf [11].  Fig.2 shows a schematic 
hydraulic jump in a flow. 
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Fig.2, a schematic view of hydraulic jump [10]. 

2. Derivation of Navier-Stokes equations for shallow 
water equations 

To have the final equation for shallow water, there 
are four steps which are (a) deriving the Navier-Stokes 
equations using the conservation laws, (b) ensemble the 
Navier-Stokes equations to account for the turbulent 
nature of ocean flow, (c) applying Navier-Stokes equations 
boundary conditions and (d) integrate the Navier-Stokes 
equations over depth applying the boundary conditions [9, 
12-14]. In our derivation, we follow the procedure in [15]. 
Consider mass balance over a control volume Ω. Then:

 

  
∫    
 

 
  ∫ (  )     

 

  
 

 

Where ρ is the fluid density (kg/  ), v = (u, v, w) 
is the fluid velocity (m/s) and n is the outward unit normal 
vector to   . Applying Gauss’s theorem gives:
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Assuming that ρ is smooth, we can apply the 
Leibnitz integral rule: 

 

∫ *
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Since Ω is arbitrary, then: 
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Next, consider linear momentum balance over a 
control volume Ω, then: 
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Where b is the acting body force density on the 
fluid by unit mass (N/kg), and T is the Cauchy stress 
tensor (N/  ). Furthers details on existence proof are 

provided in appendix I [10, 11]. Then, applying Gauss’s 
Theorem and rearranging gives: 
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Time rate of change of total mass in Ω 
 

Net mass flux across boundary of Ω 

Time rate of change of 

total momentum in Ω 

Net momentum flux 

over boundary of Ω 

Body forces acting on Ω External contact forces acting 

on 𝜕  

(3.1) 

(3.2) 

  (3.3) 

  (3.4) 

     (3.5) 

  (3.6) 
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By assuming    as a smooth parameter and applying the Leibnitz integral rule again:  

∫ *
 

  
(  )    (   )        +     

 

 
 

As Ω is random,  

*
 

  
(  )    (   )        +    

 

Combining the conservation of mass and linear 
momentum equations in their differential forms, we have: 

  

  
   (  )    

 

  
(  )    (   )          

 

In order to derive the Navier-Stokes equations 
from equations 3.9 and 3.10, we need to have some 
simplification about the fluid density, body force and 
stress tensor, ρ, b and T, respectively. The density of water 
ρ is independent of the pressure P because the water is 
incompressible but it does not definitely imply that the 

density is constant. Although in ocean modeling ρ is a 
function of salinity and temperature, in this case we 
assumed that salinity and temperature are constant 
throughout the sample and we can use ρ as a fixed 
parameter [15]. Therefore, we can simplify the equations: 

 

      

 

  
(  )    (   )         

 

The form of T will be affected since sea water acts 
as a Newtonian fluid [15]. We know that gravity is one 
body force, so: 

               

 

Where g is gravitational acceleration (m/  ) and 
        are other body forces (N/kg) that we will neglect 
for now. For a Newtonian fluid: 

 

       ̅ 

 

Our final Navier-Stokes equations based on 
pressure P (Pa) and matrix of stress terms   ̅are as 3.15 
and 3.16: 

      

    (3.7) 

      (3.8) 

    (3.10) 
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   (3.12) 

     (3.11) 
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In addition, we have: 
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For boundary conditions in Fig.3, we can write: 

 

A)    (     ), the relative elevation (m) of the free 
surface from geoid. 

B)    (   ), the bathymetry (m), moves positive 
downward from geoid. 

C)    (     ), the total distance (m) of the water 
column from top to bottom. We know       [15]. 

 

Fig.3, boundary conditions in a shallow water model [15]. 

 

We describe the boundary conditions as below [1]: 

 

A) At the bottom of flow where     , there is no 
normal flow no while slipping happening that results 
in      . We will have: 

   (3.16) 

   (3.17) 

 (3.19) 

  (3.20) 

   (3.18) 
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Shear stress at the bottom in x and y directions 
would be: 

       
  

  
    

  

  
     

       
  

  
    

  

  
     

B) At the surface of flow as a free surface 
where    , we have P=0 with no normal flow that leads 
us to 1.24: 

  

  
  

  

  
  

  

  
     

Shear stress at the surface in x and y directions 
would be: 

        
  

  
    

  

  
     

        
  

  
    

  

  
     

First, we check the normal velocity related the 
momentum equation and then we integrate the previous 
equations throughout depth. With a good approximation, 

except pressure and gravity all of the other terms are very 
small and negligible which leads to a shorter z-momentum 
equation. The z-momentum could be derived as 3.27 [1]: 

  

  
    

3.27 means that: 

    (   ) 

 

Equation 3.28 is called hydrostatic distribution. 
Then in x and y directions we have: 

  

  
   

  

  
 

  

  
   

  

  
 

 

By integrating the continuity equation       
over the boundary conditions,      to    , and since 

both b and ξ are t, x and y dependent, we apply Leibnitz 
integral rule as 3.31 [1]: 
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  |      |      

 

Depth-averaged velocities in different directions 
are described as 3.32 and 3.33:  

 ̅  
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Combining depth-averaged velocities in different 
directions and using the boundary conditions to eliminate 
the boundary factors, we will derive depth-averaged 
continuity equation as 3.34: 
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(  ̅)    Integrating left hand side of both x and y 

momentum equations over depth, for both directions we 
will have: 
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Since the average of the product of two functions 
is not equal to the product of the averages, we use the 
differential advection terms and integrating over depth 
gives 3.37:  
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The 2D (nonlinear) conservative SWE in x and y 
directions can be derived by combining the left and right 
hand sides of the depth-integrated x and y momentum 
equations, 3.39 and 3.40, with the depth-integrated 
continuity equation, 3.34: 
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By a case study, determination of the surface 
stress, bottom friction,    and    have to be done [1]. 

3. Hydraulic Jumps 

Consider a flow in an open channel with a bump in 
its path, as in Fig.4. According to if the flow is supercritical 

or subcritical and how much is the height of the bump; the 
free surface acts completely different [10]. By continuity 
and momentum balance equations, sections 1 and 2 in 
Fig.4 for a flow can be related by: 

          

In addition: 

  
 

  
    

  
 

  
       

 

Solving 4.1, 4.2 for    and the depth of     over the 
bump gives a cubic polynomial equation: 

  
      

  
  
   
 

  
   Where:  

      (3.32) 

        (3.33) 

        (3.34) 

(3.35) 

        (3.36) 

        (3.37) 

        (3.38) 

        (3.39) 

  (3.40) 

   (4.1) 

(4.2) 

   (4.3) 
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Considering    is not too large, equation 4.4 
would have two positive and one negative solution. 
Located on the upper or the lower leg of the energy curve 
in Fig.5, occurrence of condition 1 can affect the behavior 
of the flow. The difference between    and   , the specific 
energy and the approach energy, is exactly equal to   . As 
it is shown in Fig.5, there will be a decrease and an 
increase in the water level over the bump for a subcritical 
regime with    < 1.0 and a supercritical regime with    > 
1.0, respectively [11]. 

The flow at the crest will be exactly in a critical 
mode if we considering             as the bump 
height but for a bump height as   >     , there are no 
solid solutions to equation (4.4). The reason is a very big 
bump will almost block the flow path and will cause some 
frictional effects which results in a discontinuous solution 
as a hydraulic jump [11]. 

 

Fig.4, Frictionless two-dimensional flow over a bump [10]. 

 

 

Fig.5, specific energy plots showing bump size and water 
depths [11]. 

Fluid behavior over bump will be reverse if we 
have a depression (    ) and it means that for a 
supercritical regime there would be a drop in water level 
while for a subcritical regime there would be a rise in the 
water level. In this case there is no critical flow because 
point 2 will be    to the right of point 1 [11]. 

Fig.6 shows there is a fast transition from 
supercritical to subcritical flow while the flow passes the 
hydraulic jump. The downstream flow is slow and deep, 
unlike the upstream flow which is fast and shallow [10]. 
The hydraulic jump can be used as a very effective energy 
dissipater and can be used in stilling-basin and spillway 
applications because it has an extremely turbulent and 
agitated nature.  Fig.7 shows hydraulic jump at the bed of a 
river [11]. 

 

Fig.6, flow under a sluice gate accelerates from subcritical 
to critical to supercritical flow and then jumps back to 

subcritical flow [10]. 

 

Fig.7, naturally occurring hydraulic jump formed at the 
bottom of a river [11, 16]. 

The upstream Froude number       √   
   is 

the primary affecting factor on hydraulic jump 
performance. The secondary effect is by Reynolds number 
and channel geometry for real flows. Fig.8 shows the 
outline ranges of operation [11]. 

 

 

       (4.4) 
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   < 1.0:   Violating second law of thermodynamics so jump is impossible, 

   = 1.0 to 1.7:  Undular jump about     long with less than 5% dissipation,  

   = 1.7 to 2.5:  Weak jump with a smooth rise in surface and 5% to 15% dissipation,  

   = 2.5 to 4.5:  Oscillating jump with a large wave created by irregular pulsation and 15% to 45% dissipation,  

   = 4.5 to 9.0:  Best design range because of well-balanced steady jump with 45% to 70% dissipation, 

   > 9.0:  Rough and strong jump with a good performance and 70% to 85% dissipation. 

 

Fig.8, classification of hydraulic jumps: (a)    = 1.0 to 1.7: undular jumps; (b)    = 1.7 to 2.5: weak jumps; (c)    = 2.5 
to 4.5: collating jumps; (d)    = 4.5 to 9.0: steady jumps; (e)    > 9.0: strong jump [11]. 

 

Water-weight components along the flow can 
affect the jump, which occurs on a steep channel slope. 
Regarding the classic theory we hypothesize that jump 
occurs on a horizontal bottom, due to the fact that this 
effect is small [11]. In Fig.9 the fixed wave area is where 
the change in depth,   , is not negligible and it is equal to 

the hydraulic jump. Using (1.3) and (1.4) and knowing    
and    we can calculate    and    by applying continuity 
and momentum across the wave. If we assume C and y in 
Fig.9 as upstream conditions    and    and put C−δV and 
y+δy as downstream conditions    and   , correct jump 
solution could be written as equation:  

  
  

 

 
    (   ) 

 
     (4.5) 
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Where       . Solving this quadratic equation 

for η and introducing the Froude number       √   
  , 

we obtain: 

 

   
  

    √(      
 ) 

 

Fig.9, (a) moving wave, non-steady frame; (b) fixed wave, inertial frame of reference [11]. 

 

Knowing           as continuity condition in a 
wide channel and applying steady flow energy equation, 
we can calculate the jump dissipation loss:  

 

         (   
  
 

  
) (   

  
 

  
) 

 

Using abovementioned relation for wide channels 
we have: 

   
(     )

 

     
 

 

Due to second law of thermodynamics it is 
obvious that if      , the dissipation loss is positive and 
to have a supercritical upstream flow we should 
meet     . On the other hand, to have a subcritical 
downstream flow it is needed to have      . 

4. Conclusion 

 Using continuum mechanics in different aspects of 
engineering leadsd to a better understanding of the 

problems and reveals a better and more thorough solution 
to those problems. An example could be this study on 
shallow water equations and hydraulic jump which has 
utilized the mass and momentum balance laws to solve the 
problem for shallow water equations and give an exact and 
applicable final equation. Whith assistance of the results, 
one can easily predict the flows and currents in the 
shallow part of ocean and even take care of tsunamis. 
Besides, using this procedure to predict and analayze the 
behavior of hydraulic jums leads to a deep understanding 
of how to deal with this phenamenon in the real time 
problems. 

     (4.6) 

     (4.7) 

     (4.8) 
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Appendix I 

 Measure of the amount of material in a body 
which causes wight under gravity is called mass. In 
continuum mechanics, it is considered that we have a 

continous distribution of mass in a specific volume of a 
body and it is the integral of a density field    ̅   

 , 
known as mass density. Motion   cannot affect the body 
mass M(B) but with a change in body volume in a motion 
the mass density ρ will change [10]. It can be written: 

 ( )  ∫     
 

  

 

 

Where dx is volume element in   body configuration. In 
Fig.10, assume that    and  ρψ represent mass densities in 

different paths. As total mass cannot be affected by 
motion:

 

 ( )  ∫      
 

 (  )

 ∫      
 

 (  )

 

This is the principle of conservation of mass which 
means the mass of a body B is constant although the 

weight of B, gM(B), is variable in different gravity fields 
where g is constant gravity field. 

 

Fig.10, Two motions ψ and φ [13].  

 

For local forms of the orinciple of conservation of 
mass, consider reference configurational mass density as 

     ( ) and mass density in    configuration as 
ρ=ρ(x,t). We will have: 

∫   ( )  
 

  

 ∫  ( )  
 

  

 

 

We know that dx = det F(X) dX. So we can write: 

∫ [  ( )   ( ( ))     ( )]  
 

  

   

 

Equalling the left hand side of the above equation 
to zero, we will have: 

  ( )   ( )     ( ) 
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This is the principle of conservation of mass in the 
Lagrangian formulation. For Eulerian formulation we 
express the invariance of total mass as following: 

 

  
∫  (   )
 

  

     

 

By changing the material coordinates: 
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   ∫ (     ̇   ̇     )   
 

  

 

 

And we  know that ( )̇   ( )   ⁄  and it is good to 

remember that     ̇            . Using these two 
remarks, we will have: 

  ∫     (        
  

  
⁄          )    

 

  

 

 

And finally we will have: 

  
  
⁄     (  )    

Appendix II 

 

Material body momentum is a property caused by 
combination of mass and velocity. About the origin of 

spatial coordinate system O, we can easily derive  the 
linear momentum I(B, t) and angular momentum H(B, t) by 
having motion φ, time t, mass density ρ for body mass B as 
follows [17]: 

 (   )  ∫   
 

  

    

 (   )  ∫   
 

  

      

Note that the volume element    (           ) 
is in    configuration. Rates of change for both momenta 
are very important and in order to calculate these rates we 
should consider that for any smooth field    (   ): 
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So, we will have the linear and angular 
momentums: 
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