

Cost Deviation Approach to Obtain Direct Construction Cost Escalation or Savings for Different Flexible Pavements at Traffic Volume 50-150msa and Various CBR Conditions

Harshavardhan N. Shinde¹

¹M Tech, Department of Civil, IIT Guwahati

*** Abstract - Effect on direct construction cost of a road due to change in flexible road crust type as a result of change in construction methodology or change in scope, can be obtained by comparing the cost deviation percentages. Cost deviation percentages are calculated in comparison with the minimal costing flexible pavement crust type for various combination of traffic volumes and subgrade CBRs. Cost savings or escalation can be easily calculated for any combination of flexible pavement crust type, subgrade CBR and Traffic volumes ranging from 50msa to 150 msa. By referring the cost deviation percentages presented in this paper, The construction cost baseline, construction planning and cost optimization for flexible pavements can be done easily.

Key Words: Material cost, Direct Construction cost, Cost deviation, percentage Cost escalation, Traffic, CBRs & Material, Crust Types.

1. INTRODUCTION

Road infrastructure and economic development is a continuous process and progress in development has to be preceded, accompanied, and followed by progress in infrastructure. Considering the fact the Government of India has given a massive push to the infrastructure sector by allocating Rs 5.97 lakh crore (US\$ 92.22 billion) in the Union Budget 2018-19. The majority of allocation is for power, roads and renewable sectors. Road construction in India contributes 3.64% of total GDP. Road project goes through various challenges throughout their project life cycle. However, one crucial challenge is to understand of cost deviation over-time at planning and actual construction phases. It is observed that the cost deviation mainly appear in the pre-construction phase [1]. Though the planning phase is the most critical phase, escalation could happen at any stage of the project [2]. Cost escalation is the aggregate effect of a number of different factors throughout the whole phases of the projects [3]. In developing countries cost overrun is a common problem worldwide, but it is a significant challenge and completing the projects on time and within budget has become the major concerns of the clients [4]. It is observed that the average of cost deviation in road construction is 16.73% [5]. A number studies observed that 9 out of 10 construction projects experienced cost overrun with an average budget overrun of 28% [6]. It is also observed that smaller road projects with less construction

period have higher cost deviation as compared with road construction with higher construction time and budget [7]. To minimize the direct construction cost, minimal direct construction cost approach can be used for various combinations of flexible pavement crusts at varying CBRs and varying traffic volumes [8][9]. With change in the road crust types during the ongoing construction has huge impact on the construction cost budgeting, so it is very important to obtain the data about the cost overrun at the primary stage before selecting the road crust type or construction methodology. IRC 37-2012 has included five types of flexible pavement road crusts [10]. This paper deals with the effect on direct construction cost due to change in flexible road crust type as a result of construction methodology or change in scope for any combination of subgrade CBRs ranging from 3-15% and traffic from 50-150 msa. Cost baseline can be formed or updated based on the cost deviation percentages included in this paper.

2. COST DEVIATION ANALYSIS

Structural cost, cross drains, office establishment, cutting, filling, embankment cost, manpower employed in office, road signs, road marking and other miscellaneous indirect costs are same in any combination of pavement crust, traffic and subgrade CBR. So the cost escalation due to change in crust type is mainly based on the direct construction cost of the road. This analysis considers the direct construction cost for different combinations of road crusts as cited in IRC 37-2012 and traffic varying from 50-150 msa for different subgrade CBRs.

Direct construction cost is obtained by using "DSR rates of government of Maharashtra PWD for year 2017-18" [11], along with "Basic approach and general conditions and assumption for the preparation of standard data book published by NHAI, confirming to the MORTH specifications and standards" [12]. Direct construction and material costs calculated for every combination of CBR, flexible pavement crust type and traffic volume ranging between 50 to 150 msa.

A sample road of 1km length, 3.75m width and depths confirming to the road crusts as per IRC 37-2012 is considered for calculation of material and construction cost deviation. Along with this the overhead charges and contractors profit is considered as 7.5%. Minimal

RJET Volume: 05 Issue: 07 | July 2018

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

construction costing combination is obtained. By using the reference of the minimal construction costing pavement crust, costs deviations for the different flexible pavement crusts are calculated. Comparing the cost deviation percentages presented in this paper, The cost escalations or savings at any point of construction can be obtained if in any case of crust type is to be changed. Cost deviation percentages can also be used for the tendering purposes and baseline cost formation.

2.1. EQUIPMENT'S CONSIDERED

Apart form Labours, Mate, Skilled mazdoors the equipments considered for the equipment cost analysis are as follows,

Types	Equipment's Required		interl
	Wet mix plant @ 75 tonne capacity per hour		(SAM
	Electric generator 125 KVA		
	Water tanker 6 KL capacity 5 km lead		
GSB	Front end loader 1 cum bucket capacity		Drime
	Tipper 10 tonne		Tack
	Motor Grader 110 HP		
	Vibratory roller 8-10 t		
	Excavator 0.90 cum bucket capacity		
	Tipper for carriage of soil		
Cement	Motor Grader 110 HP @ 50 cum per hour		Bitum
treated Soil	Vibratory roller 8 - 10 tonne		
Sub base	Tractor with Rotavator and blade @ 25 cum per hour		Conci Dense
	Water tanker 6 KL capacity		Maca
	Motor Grader 110 HP @ 50 cum per hr		(DBM
Cement treated	Vibratory roller 8 - 10 tonne		
crushed Rock or	Tractor with Rotavator and blade @ 25 cum per hour		
combination	Water tanker 6 KL capacity		
bub bube	Tipper		
	Wet mix plant of 75 tonne hourly capacity		
	Electric generator 125 KVA		
Wet Mix	Front end loader 1 cum capacity		Surfa
Macadam (WMM)- Premixed	Paver finisher or motor grader		dress
	Vibratory roller / Smooth 3 wheeled steel roller (8 - 10 tonne)		
	Water tanker 6 KL capacity		
	Tipper		
Aggregate	Wet mix plant of 75 tonne hourly capacity		

Types	Fauinment's Required			
interlaver or	Electric generator 125 KVA			
Crack relief	Front and loader 1 cum canacity			
layer.	Payor finisher			
	Vibratory rollor 9, 10 toppo			
	Water terkor 6 VL congeity			
	water tanker o KL capacity			
	Mechanical broom @ 1250 sqm per hour			
Stress	Air compressor 250 cfm capacity			
absorbing membrane	Bitumen pressure distributor @ 1750 sqm per hour			
(SAMI)	Hydraulic Chip spreader			
	Smooth wheeled road roller 8-10 tonne			
	Mechanical broom @ 1250 sqm per hour			
	Air compressor 250 cfm			
Prime coat & Tack coat	Bitumen pressure distributor @ 1750 sqm per hour			
	Water tanker 6 KL capacity @ 1 trip per hour			
	Batch mix HMP @ 75 tonne per hour			
	Paver finisher hydrostatic with sensor control @ 75 cum per hour			
	Generator 250 KVA			
Concrete and	Front end loader 1 cum bucket capacity			
Dense Graded	Tipper 10 tonne capacity			
Bituminous Macadam (DBM)	Smooth wheeled roller 8-10 tonnes for initial break down rolling.			
	Vibratory roller 8 tonnes for intermediate rolling.			
	Finish rolling with 6-8 tonnes smooth wheeled tandem roller.			
	Mechanical broom @ 1250 sqm per hr			
	Air compressor 250 cfm			
	Hydraulic self-propelled chip spreader @ 1500 sqm per hour			
Surface dressing	Tipper 10 tonne capacity for carriage of stone chips from stockpile on road side to chip spreader			
	Front end loader 1 cum bucket capacity			
	Bitumen pressure distributor			
	Smooth wheeled roller 8-10 tonne wt.			

ISO 9001:2008 Certified Journal | Page 2295

Based on working capacity and efficiently, The direct equipment cost analysis is calculated as per the equipment requirement of the pavement layers preparation.

2.2. MATERIAL COST DEVIATION

Cost deviation percentages in road construction for various combinations of flexible pavements crust types, traffic from 50 to 150 Msa. along with various subgrade CBRs conditions are as below,

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	56%	11%	0%	20%	18%
100	64%	13%	0%	19%	24%
150	69%	14%	0%	19%	28%

Table. 1. Direct Material Cost deviation w.r.t the minimal cost at 3% CBR.

For 3% CBR minimum material cost is in case of "cementitious base and subbase with SAMI at the interface of base and the bituminous layer (CB and CSB with SAMI)" as its material cost deviation with minimal costing combination is 0%. Cost deviation for the 3% CBR is highest in case of "Granular Base and Granular Subbase (GB and GSB)" crust type. Cost deviation is varying from 0 to 69%.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	45%	12%	0%	19%	16%
100	53%	13%	0%	19%	20%
150	57%	15%	0%	19%	24%

Table. 2. Direct Material Cost deviation w.r.t the minimal cost at 4% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	41%	12%	0%	18%	13%
100	46%	14%	0%	18%	16%
150	50%	15%	0%	18%	20%

Table. 3. Direct Material Cost deviation w.r.t the minimal cost at 5% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	31%	12%	0%	19%	15%
100	39%	14%	0%	18%	18%
150	41%	15%	0%	18%	22%

For 4% and 5% CBR, minimum material cost is in case of "cementitious base and subbase with SAMI at the interface of base and the bituminous layer (CB and CSB with SAMI)".

Material cost deviation is highest in case of "Granular Base and Granular Subbase (GB and GSB)" crust type.

Table. 4. Direct Material Cost deviation w.r.t the minimal cost at 6% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	22%	12%	0%	19%	18%
100	35%	14%	0%	19%	19%
150	37%	16%	0%	19%	23%

Table. 5. Direct Material Cost deviation w.r.t the minimal cost at 7% BR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	14%	12%	0%	19%	21%
100	29%	14%	0%	19%	21%
150	29%	16%	0%	19%	24%

L

Table. 6. Direct Material Cost deviation w.r.t the minimal cost at 8% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	15%	13%	0%	17%	1%
100	30%	14%	0%	17%	11%
150	25%	14%	0%	16%	15%

Table. 7. Direct Material Cost deviation w.r.t the minimal cost at 9% & 10% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	6%	13%	0%	16%	4%
100	14%	14%	0%	15%	9%
150	21%	14%	0%	15%	13%

Table. 8. Direct Material Cost deviation w.r.t the minimal cost at 15% CBR.

It can be observed that as CBR increasing the material cost deviation is reducing. In all cases "Cementitious base and subbase with SAMI at the interface of base and the bituminous layer (CB and CSB with SAMI)" is least costing road as deviation from the minimal cost is 0%.

The probable direct material cost escalations can be calculated by using cost deviation percentages presented in above tables. Suppose for 5% CBR and traffic 150msa, at first "Foamed bitumen/bitumen emulsion treated RAP" with cost deviation of 20% w.r.t. minimal cost is selected and now if there is requirement of change in road crust type as "Cementitious Base and Cementitious Subbase of aggregate interlayer for crack relief (CB and CSB)" having 18% material cost deviation for same CBR and Traffic volume, Then the cost escalation or savings is obtained as,

% Escalation in material cost = $\frac{(18-20)}{20} * 100 = -10\%$

Here "-10%" indicates there will be 10% cost savings in material cost if pavement crust type is changed.

2.3. DIRECT CONSTRUCTION COST DEVIATION

The direct construction cost deviation percentages are obtained by using same analysis as used in case of material cost deviation estimation and these are as follows,

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	60%	3%	4%	0%	12%
100	73%	5%	4%	0%	19%
150	78%	6%	4%	0%	23%

Table. 9. Direct construction Cost deviation w.r.t the
minimal cost at 3% CBR.

Highest construction cost deviation is in case of 3% CBR. Cost deviation w.r.t. the minimal construction cost is ranging from 0% to 78%. The direct construction cost is minimum in case of the cementitious base and granular subbase with crack relief layer of aggregate layer above the cementitious base as the cost deviation is 0% w.r.t. the minimal construction cost.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	54%	4%	5%	0%	10%
100	62%	6%	5%	0%	16%
150	67%	7%	5%	0%	20%

Table. 10. Direct construction Cost deviation w.r.t the minimal cost at 4% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	46%	6%	6%	0%	8%
100	56%	7%	6%	0%	12%
150	61%	8%	6%	0%	17%

Table. 11. Direct construction Cost deviation w.r.t the minimal cost at 5% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	38%	5%	6%	0%	10%
100	48%	7%	6%	0%	14%
150	53%	8%	6%	0%	18%

Table. 12. Direct construction Cost deviation w.r.t the minimal cost at 6% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	28%	5%	5%	0%	13%
100	41%	6%	5%	0%	15%
150	49%	8%	5%	0%	19%

Table. 13. Direct construction Cost w.r.t the minimal cost at 7% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	24%	5%	5%	0%	16%
100	34%	6%	5%	0%	16%
150	42%	8%	5%	0%	20%

Table. 14. Direct construction Cost w.r.t the minimal cost at 8% CBR.

TRAFFIC (msa)	GB & GSB Pavement	CTB + CTSB + Crack Relief Layer	CB + CTSB + SAMI	CB + GSB + Crack Relief Layer	CB + COLD MIX RAP
50	31%	10%	11%	3%	0%
100	38%	9%	8%	0%	7%
150	44%	8%	8%	0%	12%

Table. 15. Direct construction Cost w.r.t the minimal cost at 9% & 10% CBR.

TRAFFIC	GB & GSB	CTB + CTSB +	CB + CTSB	CB + GSB +	CB + COLD
(msa)	Pavement	Relief Layer	+ SAMI	Relief Layer	MIX RAP
50	16%	9%	9%	0%	1%
100	27%	10%	9%	0%	6%
150	35%	10%	9%	0%	11%

For the 90-10% CBR and traffic volume of 50 msa, the minimal construction costing is "Foamed bitumen/bitumen emulsion treated RAP".

Table. 16. Direct construction Cost w.r.t the minimal cost
at 15% CBR.

It can easily observed that the direct construction cost deviation is reducing as the CBR% is increasing. It is also observed that direct construction cost deviation percentages are increasing with increasing the traffic volume.

By using same analysis as used for the percentage material cost escalation, the direct construction cost escalation or saving due to change in road crust type can be calculated for any combination of Traffic volume with subgrade CBR. Suppose if here in case of 9-10% CBR and Traffic 150 msa, at first "Cementitious base and subbase with SAMI" with direct construction cost deviation 8% was selected and now if it's proposed to change the road crust type to "Foamed bitumen/bitumen emulsion treated RAP" with construction cost deviation 12%. The total percentage cost escalation in direct construction cost would be

% Escalation in direct construction cost =
$$\frac{(12-8)}{8} * 100 = 50\%$$

So here in this case the direct construction cost escalation due to change in the flexible pavement crust type is 50%.

By using the same analysis, effect of change in flexible pavement crust type as a result of change in construction methodology can be obtained easily.

3. CONCLUSION

L

This analysis can be used to obtain the effect on direct construction cost due to change in flexible road crust type as a result of construction methodology at any point of construction. Cost savings or escalation percentages can be easily obtained for any combination of flexible pavement crust type, subgrade CBR with Traffic volume ranging from 50msa to 150 msa. The construction cost baseline, construction planning and cost optimization for flexible pavements can be done effectively by using the cost deviation percentages presented in this paper.

FUTURE SCOPE 4.

Material cost: Construction cost ratios for various combinations of flexible pavement road crust at various subgrade CBRs for traffic volume between 2-150MSA, can be obtained. Same analysis can also be applied for the rigid pavements and feasibility is checked.

REFERENCES

- [1] Cantarelli, C. C., van Wee, B., Molin, E. J. E., and Flyvbjerg, B. 2012. Different cost performance: Different determinants? The case of cost overruns in Dutch transportation infrastructure projects. Transport Policy, 22:88-95.
- [2] Flyvbjerg, Bent, Mette K. Skamris Holm, and Søren L. Buhl. "What causes cost overrun in transport infrastructure projects?." Transport reviews 24, no. 1 (2004): 3-18.
- [3] Morris, P., & Willson, W. F. (2006). Measuring and Managing Cost Escalation. AACE International Transactions, CS61.
- [4] Ahmad S, Azher S, Castillo M, Kappagantula P. Construction delays in Florida; an empirical study. Florida; 2002.
- [5] Ibrahim Mahamid; "Effects of project's physical characteristics on cost deviation in road construction" Journal of King Saud University - Engineering Sciences (2013) 25, 81-88
- [6] Flyvbjerg B, Skamris Holm MK, Buhl SL. What Causes Cost Overrun in Transport Infrastructure Projects? Transport Reviews 2004;24(1): 3-18
- [7] Alemu Moges Belaya*, Olav Torpa; "Do Longer Projects Have Larger Cost Deviation Than Shorter Construction Projects?", Creative Construction Conference 2017, CCC 2017, June 2017, Primosten, Croatia 262 - 269
- [8] Harshavardhan N. Shinde; "Minimal Cost Approach for Selecting the Flexible Pavement Type to Minimize the Construction Cost of Road", International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) Volume VII, Issue VI, June 2018 | ISSN 2278-2540
- [9] Harshavardhan N. Shinde; "Preference of flexible pavement crust type for traffic 50msa and above, based on low direct construction cost.", International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 - 8958, Volume-7, Issue-5, June 2018, Page no 77-80

- Guidelines for the design of flexible pavements :IRC [10] 37, July 2012
- Government of Maharashtra Public Works [11] Department State e-DSR for year 2017-18, w.e.f. 14/06/2017
- MORTH Specifications for Road & Bridge Works [12] (5th Revision) 1, 2013