
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 915

SECURING CLOUD DATA UNDER KEY EXPOSURE

Sandeep kumar D1, P.R.Rajesh Kumar2

1PG Scholar, Dept of Computer science Engineering, Sri Krishna Devaraya University, Anantapuramu, AP, INDIA
2Asst.Professor, Dept of Computer science Engineering, Sri Krishna Devaraya University, Anantapuramu, AP, INDIA
---***---

Abstract - Recent news reveal a powerful attacker which
breaks data confidentiality by acquiring cryptographic keys,
by means of coercion or backdoors in cryptographic software.
Once the encryption key is exposed, the only viable measure to
preserve data confidentiality is to limit the attacker’s access to
the ciphertext. This may be achieved, for example, by
spreading ciphertext blocks across servers in multiple
administrative domains—thus assuming that the adversary
cannot compromise all of them. Nevertheless, if data is
encrypted with existing schemes, an adversary equipped with
the encryption key, can still compromise a single server and
decrypt the ciphertext blocks stored therein. In this paper, we
study data confidentiality against an adversary which knows
the encryption key and has access to a large fraction of the
ciphertext blocks and we evaluate its performance by means of
a prototype implementation. We also discuss practical insights
with respect to the integration of Bastion in commercial
dispersed storage systems. Our evaluation results suggest that
Bastion is well-suited for integration in existing systems since
it incurs less than 5% overhead compared to existing
semantically secure encryption modes.

Key Words: Key exposure, data confidentiality, dispersed
storage.

1.INTRODUCTION

The world recently witnessed a massive surveillance
program aimed at breaking users’ privacy. Perpetrators
were not hindered by the various security measures
deployed within the targeted services. For instance, although
these services relied on encryption mechanisms to guarantee
data confidentiality, the necessary keying material was
acquired by means of backdoors, bribe, or coercion.

In this paper, we study data confidentiality against
an adversary which knows the encryption key and has
access to a large fraction of the ciphertext blocks. The
adversary can acquire the key either by exploiting flaws or
backdoors in the key-generation software, or by
compromising the devices that store the keys (e.g., at the
user-side or in the cloud). As far as we are aware, this
adversary invalidates the security of most

2.PRELIMINARIES

We adapt the notation of for our settings. We define a block
cipher as a map F : {0,1}k × {0,1}l → {0,1}l, for positive k and l.
If Pl is the space of all (2l)! lbits permutations, then for any a
∈ {0,1}k, we have F(a,·) ∈ Pl. We also write Fa(x) to denote
F(a,x). We model F as an ideal block cipher, i.e., a block

cipher picked at random from BC(k,l), where BC(k,l) is the
space of all block ciphers with parameters k and l. For a
given block cipher F ∈ BC(k,l), we denote F−1 ∈ BC(k,l) as
F−1(a,y) or as Fa

−1(y), for a ∈ {0,1}k.

 2.1 Encryption modes

An encryption mode based on a block cipher F/F−1 is given by
a triplet of algorithms Q = (K,E,D) where:

K The key generation algorithm is a probabilistic
algorithm which takes as input a security
parameter k and outputs a key a ∈ {0,1}k that
specifies Fa and Fa

−1.

E The encryption algorithm is a probabilistic algorithm
which takes as input a message x ∈ {0,1}∗, and
uses Fa and Fa

−1 as oracles to output ciphertext y.

D The decryption algorithm is a deterministic algorithm
which takes as input a ciphertext y, and uses Fa

and Fa
−1 as oracles to output plaintext x ∈ {0,1}∗,

or ⊥ if y is invalid.

For correctness, we require that for any key a ← K(1k), for
any message x ∈ {0,1}∗, and for any y ←

EFa,Fa−1(x), we have x ← DFa,Fa−1(y).

Security is defined through the following chosenplaintext
attack (CPA) game adapted for block ciphers:

In the ind experiment, the adversary has unrestricted
oracle access to EFa,Fa−1 during the “find” stage. At this point, A
outputs two messages of equal length x0,x1, and some state
information that are passed as input when the adversary is
initialized for the “guess” stage (e.g., state can contain the
two messages x0,x1). During the “guess” stage, the adversary
is given the ciphertext of one message out of x0,x1 and must
guess which message was actually encrypted. The advantage
of the adversary in the ind experiment is:

Advind
Q (A) = |Pr[Expind

Q (A,0) = 1]−Pr[Expind
Q (A,1) = 1]

Definition 1. An encryption mode = (K,E,D) is ind secure if
for any probabilistic polynomial time adversary A, we have

Advind
Q (A) ≤ ǫ, where ǫ is a negligible function in the security

parameter.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 916

2.2 All or Nothing Transforms

An All or Nothing Transform (AONT) is an efficiently
computable transform that maps sequences of input blocks
to sequences of output blocks with the following properties:
(i) given all output blocks, the transform can be efficiently
inverted, and (ii) given all but one of the output blocks, it is
infeasible to compute any of the original input blocks. The
formal syntax of an AONT is given by a pair of p.p.t.
algorithms Q = (E,D) where:

E The encoding algorithm is a probabilistic algorithm
which takes as input a message x ∈ {0,1}∗, and
outputs a pseudo-ciphertext y.

D The decoding algorithm is a deterministic algorithm
which takes as input a pseudociphertext y, and
outputs either a message x ∈ {0,1}∗ or ⊥ to
indicate that the input pseudo-ciphertext is
invalid.

For correctness, we require that for all x ∈ {0,1}∗, and for
all y ← E(x), we have x ← D(y).

The literature comprises a number of security definitions
for AONT. In this paper, we rely on the definition of which
uses the aont experiment below. This definition specifies a
block length l such that the pseudo-ciphertext y can be
written as y = y[1]...y[n], where |y[i]| = l and n ≥ 1.

ExpaontQ (A,b) x,state ← A(find) y0 ← E(x) y1 ←
{0,1}|y0| b′ ← AYb(guess,state)

On input j, the oracle Yb returns yb[j] and accepts up to (n
− 1) queries. The aont experiment models an adversary
which must distinguish between the encoding of a message
of its choice and a random string (of the same length), while
the adversary is allowed access to all but one encoded
blocks. The advantage of A in the aont experiment is given
by:

Advaont
Q (A) = |Pr[Expaont

Q (A,0) = 1]−Pr[Expaont
Q (A,1) = 1]|

Definition 2. An All-or-Nothing Transform= (E,D)is aont
secure if for any p.p.t. adversary AQ, we have

Advaont
Q (A) ≤ ǫ, where ǫ is a negligible function in the

security parameter.

Known AONTs

Rivest suggested the package transform which leverages a
block cipher F/F−1 and maps m block strings to n = m + 1
block strings. The first n − 1 output blocks are computed by
XORing the i-th plaintext block with FK(i), where K is a
random key. The n-th output block is computed XORing K
with the encryption of each of the previous output blocks,
using a key K0 that is publicly known. That is, given

x[1]...x[m], the package transform outputs y[1]...y[n], with n =
m + 1, where:

y[i] = x[i] ⊕ FK(i), 1 ≤ i ≤ n − 1,

n−1

y[n] = K M FK0(y[i] ⊕ i).

3.SYSTEM AND SECURITY MODEL

In this section, we start by detailing the system and security
models that we consider in the paper. We then argue that
existing security definitions do not capture well the
assumption of key exposure, and propose a new security
definition that captures this notion.

3.1 System Model

We consider a multi-cloud storage system which can
leverage a number of commodity cloud providers (e.g.,
Amazon, Google) with the goal of distributing trust across
different administrative domains. This “cloud of clouds”
model is receiving increasing attention nowadays with cloud
storage providers such as EMC, IBM, and Microsoft, offering
products for multicloud systems

In particular, we consider a system of s storage servers
S1,...,Ss, and a collection of users. We assume that each server
appropriately authenticates users. For simplicity and
without loss of generality, we focus on the read/write
storage abstraction of which exports two operations:

 write(v)This routine splits v into s pieces

{v1,...,vs} and sends hvji to server Sj, for j ∈ [1...s].

read(·) The read routine fetches the stored value v from
the servers. For each j ∈ [1...s], piece vj is
downloaded from server Sj and all

Fig. 1. Our attacker model. We assume an adversary
which can acquire all the cryptographic secret material,

and can compromise a large fraction (up to all but one) of
the storage servers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 917

3.2 Adversarial Model

We assume a computationally-bounded adversary A which
can acquire the long-term cryptographic keys used to encrypt
the data. The adversary may do so either (i) by leveraging
flaws or backdoors in the key-generation software. or (ii) by
compromising the device that stores the keys (in the cloud or
at the user). Since ciphertext blocks are distributed across
servers hosted within different domains, we assume that the
adversary cannot compromise all storage servers (cf. Figure
1). In particular, we assume that the adversary can
compromise all but one of the servers and we model this
adversary by giving it access to all but λ ciphertext blocks.

Note that if the adversary also learns the user’s
credentials to log into the storage servers and downloads all
the ciphertext blocks, then no cryptographic mechanism can
preserve data confidentiality. We stress that compromising
the encryption key does not necessarily imply the
compromise of the user’s credentials. For example,
encryption can occur on a specific-purpose device [10], and
the key can be leaked, e.g., by the manufacturer; in this
scenario, the user’s credentials to access the cloud servers
are clearly not compromised.

access to all ciphertext blocks. That is, the indadversary
can compromise all the s storage servers. An (n − λ)CAKE-
adversary is given the encryption key but can access all but λ
ciphertext blocks. In practice,

1. Any party with access to all the ciphertext blocks and the
encryption key can recover the plaintext.

the (n − λ)CAKE-adversary has the encryption key but can
compromise up to s − 1 storage servers. Therefore,
properties: we seek an encryption mode with the following
does not know the encryption key but has access toQ

1) must be ind secure against an adversary which all
ciphertext blocks (cf. Definition 1), by
compromising all storage servers.

2) must be (n − λ)CAKE secure against an ad-Qversary
which knows the encryption key but has access to n
− λ ciphertext blocks (cf. Definition 2), since it
cannot compromise all storage servers.

4.BASTION: SECURITY AGAINST KEY EXPOSURE

In this section, we present our scheme, dubbed Bastion,
which ensures that plaintext data cannot be recovered as
long as the adversary has access to all but two ciphertext
blocks—even when the encryption key is exposed. We then
analyze the security of Bastion with respect to Definition 1
and Definition 2.

4.1 Overview

Bastion departs from existing AON encryption schemes.
Current schemes require a pre-processing round of block
cipher encryption for the AONT, followed by another round
of block cipher encryption . Differently, Bastion first encrypts
the data with one round of block cipher encryption, and then
applies an efficient linear post-processing to the ciphertext.
By doing so, Bastion relaxes the notion of all-or-nothing
encryption at the benefit of increased performance.

4.2 Bastion: Protocol Specification

We now detail the specification of Bastion. On input a
security parameter k, the key generation algorithm of
Bastion outputs a key K ∈ {0,1}k for the underlying block-
cipher. Bastion leverages block cipher encryption in the CTR
mode, which on input a plaintext bitstream x, divides it in
blocks x[1],...,x[m] where m is

odd2 such that each block has size l.3 The set of input
blocks is encrypted under key K, resulting in ciphertext y′ =
y′[1],...,y′[m+1], where y′[m+1] is an initialization vector
which is randomly chosen from {0,1}l.

Next, Bastion applies a linear transform to y′ as follows.
Let n = m + 1 and assume A to be an nby-n matrix where
element ai,j = 0l if i = j or ai,j = 1l, otherwise.4 Bastion computes
y = y′ · A, where additions and multiplications are
implemented by means of XOR and AND operations,
respectively.

That is, y[i] ∈ y is computed as , for i =
1...,n.

Given key K, inverting Bastion entails computing y′ = y ·
A−1 and decrypting y′ using K. Notice that matrix A is
invertible and A = A−1. The pseudocode of the encryption and
decryption algorithms of Bastion are shown in Algorithms 1
and 2, respectively. Both algorithms use F to denote a generic
block cipher (e.g., AES).

In our implementation, we efficiently compute the linear
transform using 2n XOR operations as follows: t = y′[1] ⊕
y′[2] ⊕ ··· ⊕ y′[n],

y[i] = t ⊕ y′[i], 1 ≤ i ≤ n.

Note that y′[1]...y′[n] (computed up to line 6 in Algorithm 1)
are the outputs of the CTR encryption mode, where y′[n] is
the initialization vector. Similar to the CTR encryption mode,
the final output of Bastion is one block larger than the
original input.

4.3 Correctness Analysis

We show that for every x ∈ {0,1}lm where m is odd, and for
every K ∈ {0,1}l, we have x = Dec(K,Enc(K,x)).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 918

In particular, notice that lines 2-6 of Algorithm 1 and
lines 9-12 of Algorithm 2 correspond to the standard CTR
encryption and decryption routines, respectively.

1) This requirement is essential for the correctness of the
subsequent linear transform on the ciphertext blocks.
That is, if m is even, then the transform is not invertible.

2) l is the block size of the particular block cipher used.

3) 0l and 1l denote a bitstring of l zeros and a bitstream of l
ones, respectively.

 then applies an efficient linear post-processing to the
ciphertext.

Algorithm 1 Encryption in Bastion.

1: procedure Enc(K,x = x[1]...x[m])

2: n = m + 1

3: y′[n] ←{0,1}l ⊲

4: for i = 1...n − 1 do 5: y′[i] = x[i] ⊕
FK(y′[n] + i)

6:

7:

8: for i = 1...n do

9: t = t ⊕ y′[i]

10: end for

11: for i = 1...n do

12: y[i] = y′[i] ⊕ t

13: end for

14: return y

15: end procedure

y’[n] is the IV for
CTR ⊲ y =
y[1]...y[n]

Algorithm 2 Decryption in Bastion.

1: procedure Dec(K,y = y[1]...y[n])

2: t = 0l

3: for i = 1...n do

4: t = t ⊕ y[i]

5: end for

6: for i = 1...n do

7: y′[i] = y[i] ⊕ t

8: end for

9: for i = 1...n − 1 do

10: x[i] = y′[i] ⊕ FK
−1(y′[n] + i)

11: end for

12: return x ⊲ x

13: end procedure = x[1]...x[n − 1]

Therefore, we are only left to show that the linear
transformation computed in lines 7-14 of Algorithm 1 is
correctly reverted in lines 2-8 of Algorithm 2. In (as
computed in the decryption algorithm) matchesL other
words, we need to show that t = i=1..n y[i] t = i=1..n y′[i] (as
computed in the encryption algo-

4.4 Security Analysis

In this section, we show that Bastion is mathrmind secure
and (n − 2)CAKE secure. Lemma 1. Bastion is ind secure.

Proof 1. Bastion uses an ind secure encryption mode to
encrypt a message, and then applies a linear transform
on the ciphertext blocks. It is straightforward to conclude
that Bastion is ind secure. In other words, a polynomial-
time algorithm A that has non-negligible advantage in
breaking the ind security of Bastion can be used as a
black-box by another polynomial-time algorithm B to
break the ind security of the underlying encryption mode.
In particular, B forwards A’s queries to its oracle and
applies the linear transformation of Algorithm 1 lines 7-
14 to the received ciphertext before forwarding it to A.
The same strategy is used when A outputs two messages
at the end of the find stage.

Lemma 2. Given any n − 2 blocks of y[1]...y[n] as output by
Bastion, it is infeasible to compute any y′[i], for 1 ≤ i ≤ n.

Proof 2. Let y = y[1],...,y[n] ← E(K,x = x[1]...x[m]). Note that
given any (n − 1) blocks of y, the adversary can compute

one block of y′. In particular, , for any
1 ≤ i ≤ n.

As it will become clear later, with one block y′[i] and the
encryption key, the adversary has non-negligible
probability of winning the game of Definition 3. However,
if only (n − 2) blocks of y are given, then each of the n
blocks of y′ can take on any possible values in {0,1}l,
depending on the two unknown blocks of y. Recall that
each block y′[i] is dependent on (n − 1) blocks of y and it
is pseudo-random as output by the CTR encryption
mode. Therefore, given any (n − 2) blocks of y, then y′[i]
could take any of the 2l possibilities, for 1 ≤ i ≤ n.

Lemma 3. Bastion is (n − 2)CAKE secure.

Proof 3. The security proof of Bastion resembles the
standard security proof of the CTR encryption mode and
relies on the existence of pseudo-random permutations.
In particular, given a polynomial-type algorithm A which
has non-negligible advantage in the (n − λ)CAKE
experiment with λ = 2, we can construct a polynomial-
time algorithm B which has non-negligible advantage in
distinguishing between a true random permutation and a
pseudo-random permutation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 919

B has access to oracle O and uses it to answer the encryption
and decryption queries issued by A. In particular, A’s queries
are answered as follows:

 • Decryption query for y[1]...y[n]

1) Compute t = y[1] ⊕ ... ⊕ y[n]

2) Compute y′[i] = y[i] ⊕ t, for 1 ≤ i ≤ n

3) Compute x[i] = y′[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1

4) Return x[1]...x[n − 1]

 • Encryption query for x[1]...x[n − 1]

1) Pick random y′[n] ∈ {0,1}l

2) Compute y′[i] = x[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1

3) Compute t = y′[1] ⊕ ... ⊕ y′[n]

4) Compute y[i] = y′[i] ⊕ t, for 1 ≤ i ≤ n

5) Return y[1]...y[n]

When A outputs two messages x1[1]...x1[n−1] and
x2[1]...x2[n − 1], B picks b ∈ {0,1} at random and does the
following:

1) Pick random

2) Compute yb
′[i] = xb[i]⊕O(yb

′[n],i), for 1 ≤ i ≤ n−1

3) Compute

4) Compute yb[i] = yb
′[i] ⊕ t, for 1 ≤ i ≤ n

At this point, A selects (n − 2) indexes i1,...in−2 and B returns
the corresponding yb[i1],...,yb[in−2]. Encryption and decryption
queries are answered as above. When A outputs its answer
b′, B outputs 1 if b = b′, and 0 otherwise. It is straightforward
to see that if A has advantage larger than negligible to guess
b, then B has advantage larger than negligible to distinguish
a true random permutation from a pseudorandom one.
Furthermore, the number of queries issued by B to its oracle
amounts to the number of encryption and decryption
queries issued by A. Note that by Lemma 2, during the guess
stage, A cannot issue a decryption query on the challenge
ciphertext since with only (n−2) blocks, finding the
remaining blocks is infeasible.

Fig 2: Current AON encryption schemes require a pre-
processing round of block cipher encryption for the AONT,

followed by another round of block cipher encryption.

Fig 3: On the other hand, Bastion first encrypts the data
with one round of block cipher encryption,

5.COMPARISON TO EXISTING SCHEMES

In what follows, we briefly overview several encryption
modes and argue about their security (according to
Definitions 1 and 2) and performance when compared to
Bastion.

Traditional CPA-encryption modes, such as the CTR mode,
provide ind security but are only 1CAKE secure. That is, an
adversary equipped with the encryption key must only fetch
two ciphertext blocks to break data confidentiality.

5.1Performance Comparison

Performance of Bastion with the encryption schemes
considered so far, in terms of computation, storage, and
security.

Given a plaintext of m blocks, the CTR encryption mode
outputs n = m + 1 ciphertext blocks, computed with (n − 1)
block cipher operations and (n − 1) XOR operations. The CTR
encryption mode is ind secure but only 1CAKE secure.

Rivest AONT outputs a pseudo-ciphertext of n = m+1 blocks
using 2(n−1) block cipher operations and 3(n−1) XOR
operations. Desai AONT outputs the same number of blocks
but requires only (n−1) block cipher operations and 2(n − 1)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 920

XOR operations. Both Rivest AONT and Desai AONT are,
however, not ind secure since the encryption key used to
compute the AONT output is embedded in the output itself.
Encrypting the output of Rivest AONT or Desai AONT with a
standard encryption mode (both use the ECB encryption
mode), requires additional n block cipher operations, and
yields an AON encryption that is ind secure7 and (n − 1)CAKE
secure. Encrypt-then-secretshareis ind secure and (n −
1)CAKE secure. It requires (n−1) block cipher operations and
n XOR operations if additive secret sharing is used. However
secret-sharing encryption results in a prohibitively large
storage overhead of n2 blocks.

Bastion also outputs n = m + 1 ciphertext blocks. It
achieves ind security and (n − 2)CAKE security with only (n −
1) block cipher operations and (3n − 1) XOR operations

6.IMPLEMENTATION AND EVALUATION

In this section, we describe and evaluate a prototype
implementation modeling a read-write storage system based
on Bastion. We also discuss insights with respect to the
integration of Bastion within existing dispersed storage
systems.

6.1 Implementation Setup

Our prototype, implemented in C++, emulates the read-write
storage model of Section 3.1. We instantiate Bastion with the
CTR encryption mode using both AES128 and Rijndael256,
implemented using the libmcrypt.so. 4.4.7 library. Since this
library does not natively support the CTR encryption mode,
we use it for the generation of the CTR keystream, which is
later XORed with the plaintext.

We compare Bastion with the AON encryption schemes of
Rivest and Desai. For baseline comparison, we include in our
evaluation the CTR encryption mode and the AONTs due to
Rivest and

We measure the peak throughput and the latency exhibited
by our implementations w.r.t. various file/block sizes. For
each data point, we report the average of 30 runs. Due to
their small widths, we do not show the corresponding 95%
confidence intervals.

6.2 Evaluation Results

Our evaluation results are reported in Figure 3 and Figure 4.
Both figures show that Bastion considerably improves (by
more than 50%) the performance of existing (n − 1)CAKE
encryption schemes and only incurs a negligible overhead
when compared to existing semantically secure encryption
modes (e.g., the CTR encryption mode) that are only 1CAKE
secure.

We also evaluate the performance of Bastion, with respect to
different block sizes of the underlying block cipher. Our

results show that—irrespective of the block size—Bastion
only incurs a negligible performance deterioration in peak
throughput when compared to the CTR encryption mode.
Figures 2 and 3 show the latency (in ms) incurred by the
encryption/encoding routines for different file sizes. The
latency of Bastion is comparable to that of the CTR
encryption mode—for both AES128 and Rijandael256—and
results in a considerable improvement over existing AON
encryption schemes (more than 50% gain in latency).

7.RELATED WORK

To the best of our knowledge, this is the first work that
addresses the problem of securing data stored in multicloud
storage systems when the cryptographic material is exposed.
In the following, we survey relevant related work in the
areas of deniable encryption, information dispersal, all-or-
nothing transformations, secret-sharing techniques, and
leakage-resilient cryptography.

Deniable Encryption

Our work shares similarities with the notion of “sharedkey
deniable encryption”An encryption scheme is “deniable” if—
when coerced to reveal the encryption key—the legitimate
owner reveals “fake keys” thus forcing the ciphertext to
“look like” the encryption of a plaintext different from the
original one—hence keeping the original plaintext private.
Deniable encryption therefore aims to deceive an adversary
which does not know the “original” encryption key but, e.g.,
can only acquire “fake” keys. Our security definition models
an adversary that has access to the real keying material.

3. CONCLUSIONS

In this paper, we addressed the problem of securing data
outsourced to the cloud against an adversary which has
access to the encryption key. For that purpose, we
introduced a novel security definition that captures data
confidentiality against the new adversary.

We analyzed the security of Bastion and evaluated its
performance in realistic settings. Bastion considerably
improves (by more than 50%) the performance of existing
primitives which offer comparable security under key
exposure, and only incurs a negligible overhead (less than
5%) when compared to existing semantically secure
encryption modes (e.g., the CTR encryption mode). Finally,
we showed how Bastion can be practically integrated within
existing dispersed storage systems.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie, “Fault-Scalable Byzantine Fault-
Tolerant Services,” in ACM Symposium on Operating
Systems Principles (SOSP), 2005, pp. 59–74.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 921

[2] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using Erasure
Codes Efficiently for Storage in a Distributed System,” in
International Conference on Dependable Systems and
Networks (DSN), 2005, pp. 336–345.

[3] W. Aiello, M. Bellare, G. D. Crescenzo, and R. Venkatesan,
“Security amplification by composition: The case of
doublyiterated, ideal ciphers,” in Advances in Cryptology
(CRYPTO), 1998, pp. 390–407.

[4] C. Basescu, C. Cachin, I. Eyal, R. Haas, and M. Vukolic,
“Robust Data Sharing with Key-value Stores,” in ACM
SIGACTSIGOPS Symposium on Principles of Distributed
Computing (PODC), 2011, pp. 221–222.

[5] A. Beimel, “Secret-sharing schemes: A survey,” in
International Workshop on Coding and Cryptology
(IWCC), 2011, pp. 11–46.

[6] A. Bessani, M. Correia, B. Quaresma, F. André, and P.
Sousa, “DepSky: Dependable and Secure Storage in a
Cloud-ofclouds,” in Sixth Conference on Computer
Systems (EuroSys), 2011, pp. 31–46.

[7] G. R. Blakley and C. Meadows, “Security of ramp
schemes,” in Advances in Cryptology (CRYPTO), 1984, pp.
242–268.

[8] V. Boyko, “On the Security Properties of OAEP as an
Allor-nothing Transform,” in Advances in Cryptology
(CRYPTO), 1999, pp. 503–518.

[9] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky,
“Deniable Encryption,” in Proceedings of CRYPTO, 1997.

[10] Cavalry, “Encryption Engine Dongle,”
 http://www. cavalrystorage.com/en2010.aspx/.

[11] C. Charnes, J. Pieprzyk, and R. Safavi-Naini,
“Conditionally secure secret sharing schemes with
disenrollment capability,” in ACM Conference on
Computer and Communications Security (CCS), 1994, pp.
89–95.

[12] A. Desai, “The security of all-or-nothing encryption:
Protecting against exhaustive key search,” in Advances in
Cryptology (CRYPTO), 2000, pp. 359–375.

[13] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M.
Welnicki, “HYDRAstor: a Scalable Secondary Storage,” in
USENIX Conference on File and Storage Technologies
(FAST), 2009, pp. 197–210.

[14] M. Dürmuth and D. M. Freeman, “Deniable encryption
with negligible detection probability: An interactive
construction,” in EUROCRYPT, 2011, pp. 610–626.

[15] EMC, “Transform to a Hybrid Cloud,” http://www.emc.
com/campaign/global/hybridcloud/index.htm.

[16] IBM, “IBM Hybrid Cloud Solution,” http://www-01.ibm.
com/software/tivoli/products/hybrid-cloud/.

[17] J. Kilian and P. Rogaway, “How to protect DES against
exhaustive key search,” in Advances in Cryptology
(CRYPTO), 1996, pp. 252–267.

[18] M. Klonowski, P. Kubiak, and M. Kutylowski, “Practical
Deniable Encryption,” in Theory and Practice of
Computer Science (SOFSEM), 2008, pp. 599–609.

[19] H. Krawczyk, “Secret Sharing Made Short,” in Advances
in Cryptology (CRYPTO), 1993, pp. 136–146.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R.
Eaton, D. Geels, R. Gummadi, S. C. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Y. Zhao,
“OceanStore: An Architecture for Global-Scale Persistent
Storage,” in International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2000, pp. 190–201.

[21] L. Lamport, “On interprocess communication,” 1985.

[22] S. Micali and L. Reyzin, “Physically observable
cryptography (extended abstract),” in Theory of
Cryptography Conference (TCC), 2004, pp. 278–296.

[23] NEC Corp., “HYDRAstor Grid Storage,”
 http://www. hydrastor.com.

[24] M. O. Rabin, “Efficient dispersal of information for
security, load balancing, and fault tolerance,” J. ACM, vol.
36, no. 2, pp. 335–348, 1989.

[25] J. K. Resch and J. S. Plank, “AONT-RS: Blending Security
and Performance in Dispersed Storage Systems,” in
USENIX Conference on File and Storage Technologies
(FAST), 2011, pp. 191–202.

