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Abstract - Recent news reveal a powerful attacker which 
breaks data confidentiality by acquiring cryptographic keys, 
by means of coercion or backdoors in cryptographic software. 
Once the encryption key is exposed, the only viable measure to 
preserve data confidentiality is to limit the attacker’s access to 
the ciphertext. This may be achieved, for example, by 
spreading ciphertext blocks across servers in multiple 
administrative domains—thus assuming that the adversary 
cannot compromise all of them. Nevertheless, if data is 
encrypted with existing schemes, an adversary equipped with 
the encryption key, can still compromise a single server and 
decrypt the ciphertext blocks stored therein. In this paper, we 
study data confidentiality against an adversary which knows 
the encryption key and has access to a large fraction of the 
ciphertext blocks and we evaluate its performance by means of 
a prototype implementation. We also discuss practical insights 
with respect to the integration of Bastion in commercial 
dispersed storage systems. Our evaluation results suggest that 
Bastion is well-suited for integration in existing systems since 
it incurs less than 5% overhead compared to existing 
semantically secure encryption modes. 

Key Words:  Key exposure, data confidentiality, dispersed 
storage. 

1.INTRODUCTION 

The world recently witnessed a massive surveillance 
program aimed at breaking users’ privacy. Perpetrators 
were not hindered by the various security measures 
deployed within the targeted services. For instance, although 
these services relied on encryption mechanisms to guarantee 
data confidentiality, the necessary keying material was 
acquired by means of backdoors, bribe, or coercion. 

In this paper, we study data confidentiality against 
an adversary which knows the encryption key and has 
access to a large fraction of the ciphertext blocks. The 
adversary can acquire the key either by exploiting flaws or 
backdoors in the key-generation software, or by 
compromising the devices that store the keys (e.g., at the 
user-side or in the cloud). As far as we are aware, this 
adversary invalidates the security of most 

2.PRELIMINARIES 

We adapt the notation of for our settings. We define a block 
cipher as a map F : {0,1}k × {0,1}l → {0,1}l, for positive k and l. 
If Pl is the space of all (2l)! lbits permutations, then for any a 
∈ {0,1}k, we have F(a,·) ∈ Pl. We also write Fa(x) to denote 
F(a,x). We model F as an ideal block cipher, i.e., a block 

cipher picked at random from BC(k,l), where BC(k,l) is the 
space of all block ciphers with parameters k and l. For a 
given block cipher F ∈ BC(k,l), we denote F−1 ∈ BC(k,l) as 
F−1(a,y) or as Fa

−1(y), for a ∈ {0,1}k. 

 2.1 Encryption modes  

An encryption mode based on a block cipher F/F−1 is given by 
a triplet of algorithms Q = (K,E,D) where: 

K The key generation algorithm is a probabilistic 
algorithm which takes as input a security 
parameter k and outputs a key a ∈ {0,1}k that 
specifies Fa and Fa

−1. 

E The encryption algorithm is a probabilistic algorithm 
which takes as input a message x ∈ {0,1}∗, and 
uses Fa and Fa

−1 as oracles to output ciphertext y. 

D The decryption algorithm is a deterministic algorithm 
which takes as input a ciphertext y, and uses Fa 

and Fa
−1 as oracles to output plaintext x ∈ {0,1}∗, 

or ⊥ if y is invalid. 

For correctness, we require that for any key a ← K(1k), for 
any message x ∈ {0,1}∗, and for any y ← 

EFa,Fa−1(x), we have x ← DFa,Fa−1(y). 

Security is defined through the following chosenplaintext 
attack (CPA) game adapted for block ciphers: 

In the ind experiment, the adversary has unrestricted 
oracle access to EFa,Fa−1 during the “find” stage. At this point, A 
outputs two messages of equal length x0,x1, and some state 
information that are passed as input when the adversary is 
initialized for the “guess” stage (e.g., state can contain the 
two messages x0,x1). During the “guess” stage, the adversary 
is given the ciphertext of one message out of x0,x1 and must 
guess which message was actually encrypted. The advantage 
of the adversary in the ind experiment is: 

Advind
Q (A) = |Pr[Expind

Q (A,0) = 1]−Pr[Expind
Q (A,1) = 1] 

Definition 1. An encryption mode = (K,E,D) is ind secure if 
for any probabilistic polynomial time adversary A, we have  

Advind
Q (A) ≤ ǫ, where ǫ is a negligible function in the security 

parameter. 
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2.2 All or Nothing Transforms 

An All or Nothing Transform (AONT) is an efficiently 
computable transform that maps sequences of input blocks 
to sequences of output blocks with the following properties: 
(i) given all output blocks, the transform can be efficiently 
inverted, and (ii) given all but one of the output blocks, it is 
infeasible to compute any of the original input blocks. The 
formal syntax of an AONT is given by a pair of p.p.t. 
algorithms Q = (E,D) where: 

E The encoding algorithm is a probabilistic algorithm 
which takes as input a message x ∈ {0,1}∗, and 
outputs a pseudo-ciphertext y. 

D The decoding algorithm is a deterministic algorithm 
which takes as input a pseudociphertext y, and 
outputs either a message x ∈ {0,1}∗ or ⊥ to 
indicate that the input pseudo-ciphertext is 
invalid. 

For correctness, we require that for all x ∈ {0,1}∗, and for 
all y ← E(x), we have x ← D(y). 

The literature comprises a number of security definitions 
for AONT. In this paper, we rely on the definition of which 
uses the aont experiment below. This definition specifies a 
block length l such that the pseudo-ciphertext y can be 
written as y = y[1]...y[n], where |y[i]| = l and n ≥ 1. 

ExpaontQ (A,b) x,state ← A(find) y0 ← E(x) y1 ← 
{0,1}|y0| b′ ← AYb(guess,state) 

On input j, the oracle Yb returns yb[j] and accepts up to (n 
− 1) queries. The aont experiment models an adversary 
which must distinguish between the encoding of a message 
of its choice and a random string (of the same length), while 
the adversary is allowed access to all but one encoded 
blocks. The advantage of A in the aont experiment is given 
by: 

Advaont
Q (A) = |Pr[Expaont

Q (A,0) = 1]−Pr[Expaont
Q (A,1) = 1]| 

Definition 2. An All-or-Nothing Transform= (E,D)is aont 
secure if for any p.p.t. adversary AQ, we have 

Advaont
Q (A) ≤ ǫ, where ǫ is a negligible function in the 

security parameter. 

Known AONTs 

Rivest  suggested the package transform which leverages a 
block cipher F/F−1 and maps m block strings to n = m + 1 
block strings. The first n − 1 output blocks are computed by 
XORing the i-th plaintext block with FK(i), where K is a 
random key. The n-th output block is computed XORing K 
with the encryption of each of the previous output blocks, 
using a key K0 that is publicly known. That is, given 

x[1]...x[m], the package transform outputs y[1]...y[n], with n = 
m + 1, where: 

y[i] = x[i] ⊕ FK(i), 1 ≤ i ≤ n − 1, 

n−1 

y[n] = K M FK0(y[i] ⊕ i). 

3.SYSTEM AND SECURITY MODEL 

In this section, we start by detailing the system and security 
models that we consider in the paper. We then argue that 
existing security definitions do not capture well the 
assumption of key exposure, and propose a new security 
definition that captures this notion. 

3.1 System Model 

We consider a multi-cloud storage system which can 
leverage a number of commodity cloud providers (e.g., 
Amazon, Google) with the goal of distributing trust across 
different administrative domains. This “cloud of clouds” 
model is receiving increasing attention nowadays with cloud 
storage providers such as EMC, IBM, and Microsoft, offering 
products for multicloud systems  

In particular, we consider a system of s storage servers 
S1,...,Ss, and a collection of users. We assume that each server 
appropriately authenticates users. For simplicity and 
without loss of generality, we focus on the read/write 
storage abstraction of which exports two operations: 

 write(v)This routine splits v into s pieces 

{v1,...,vs} and sends hvji to server Sj, for j ∈ [1...s]. 

read(·) The read routine fetches the stored value v from 
the servers. For each j ∈ [1...s], piece vj is 
downloaded from server Sj and all 

 

Fig. 1. Our attacker model. We assume an adversary 
which can acquire all the cryptographic secret material, 

and can compromise a large fraction (up to all but one) of 
the storage servers. 
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3.2 Adversarial Model 

We assume a computationally-bounded adversary A which 
can acquire the long-term cryptographic keys used to encrypt 
the data. The adversary may do so either (i) by leveraging 
flaws or backdoors in the key-generation software. or (ii) by 
compromising the device that stores the keys (in the cloud or 
at the user). Since ciphertext blocks are distributed across 
servers hosted within different domains, we assume that the 
adversary cannot compromise all storage servers (cf. Figure 
1). In particular, we assume that the adversary can 
compromise all but one of the servers and we model this 
adversary by giving it access to all but λ ciphertext blocks. 

Note that if the adversary also learns the user’s 
credentials to log into the storage servers and downloads all 
the ciphertext blocks, then no cryptographic mechanism can 
preserve data confidentiality. We stress that compromising 
the encryption key does not necessarily imply the 
compromise of the user’s credentials. For example, 
encryption can occur on a specific-purpose device [10], and 
the key can be leaked, e.g., by the manufacturer; in this 
scenario, the user’s credentials to access the cloud servers 
are clearly not compromised. 

access to all ciphertext blocks. That is, the indadversary 
can compromise all the s storage servers. An (n − λ)CAKE-
adversary is given the encryption key but can access all but λ 
ciphertext blocks. In practice, 

1. Any party with access to all the ciphertext blocks and the 
encryption key can recover the plaintext. 

the (n − λ)CAKE-adversary has the encryption key but can 
compromise up to s − 1 storage servers. Therefore, 
properties: we seek an encryption mode with the following 
does not know the encryption key but has access toQ 

1) must be ind secure against an adversary which all 
ciphertext blocks (cf. Definition 1), by 
compromising all storage servers. 

2) must be (n − λ)CAKE secure against an ad-Qversary 
which knows the encryption key but has access to n 
− λ ciphertext blocks (cf. Definition 2), since it 
cannot compromise all storage servers. 

4.BASTION: SECURITY AGAINST KEY EXPOSURE 

In this section, we present our scheme, dubbed Bastion, 
which ensures that plaintext data cannot be recovered as 
long as the adversary has access to all but two ciphertext 
blocks—even when the encryption key is exposed. We then 
analyze the security of Bastion with respect to Definition 1 
and Definition 2. 

4.1 Overview 

Bastion departs from existing AON encryption schemes. 
Current schemes require a pre-processing round of block 
cipher encryption for the AONT, followed by another round 
of block cipher encryption . Differently, Bastion first encrypts 
the data with one round of block cipher encryption, and then 
applies an efficient linear post-processing to the ciphertext. 
By doing so, Bastion relaxes the notion of all-or-nothing 
encryption at the benefit of increased performance. 

4.2 Bastion: Protocol Specification 

We now detail the specification of Bastion. On input a 
security parameter k, the key generation algorithm of 
Bastion outputs a key K ∈ {0,1}k for the underlying block-
cipher. Bastion leverages block cipher encryption in the CTR 
mode, which on input a plaintext bitstream x, divides it in 
blocks x[1],...,x[m] where m is 

odd2 such that each block has size l.3 The set of input 
blocks is encrypted under key K, resulting in ciphertext y′ = 
y′[1],...,y′[m+1], where y′[m+1] is an initialization vector 
which is randomly chosen from {0,1}l. 

Next, Bastion applies a linear transform to y′ as follows. 
Let n = m + 1 and assume A to be an nby-n matrix where 
element ai,j = 0l if i = j or ai,j = 1l, otherwise.4 Bastion computes 
y = y′ · A, where additions and multiplications are 
implemented by means of XOR and AND operations, 
respectively. 

That is, y[i] ∈ y is computed as , for i = 
1...,n. 

Given key K, inverting Bastion entails computing y′ = y · 
A−1 and decrypting y′ using K. Notice that matrix A is 
invertible and A = A−1. The pseudocode of the encryption and 
decryption algorithms of Bastion are shown in Algorithms 1 
and 2, respectively. Both algorithms use F to denote a generic 
block cipher (e.g., AES). 

In our implementation, we efficiently compute the linear 
transform using 2n XOR operations as follows: t = y′[1] ⊕ 
y′[2] ⊕ ··· ⊕ y′[n], 

y[i] = t ⊕ y′[i], 1 ≤ i ≤ n. 

Note that y′[1]...y′[n] (computed up to line 6 in Algorithm 1) 
are the outputs of the CTR encryption mode, where y′[n] is 
the initialization vector. Similar to the CTR encryption mode, 
the final output of Bastion is one block larger than the 
original input. 

4.3 Correctness Analysis 

We show that for every x ∈ {0,1}lm where m is odd, and for 
every K ∈ {0,1}l, we have x = Dec(K,Enc(K,x)). 
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In particular, notice that lines 2-6 of Algorithm 1 and 
lines 9-12 of Algorithm 2 correspond to the standard CTR 
encryption and decryption routines, respectively. 

1) This requirement is essential for the correctness of the 
subsequent linear transform on the ciphertext blocks. 
That is, if m is even, then the transform is not invertible. 

2) l is the block size of the particular block cipher used. 

3) 0l and 1l denote a bitstring of l zeros and a bitstream of l 
ones, respectively. 

 then applies an efficient linear post-processing to the 
ciphertext. 

 

Algorithm 1 Encryption in Bastion. 

1: procedure Enc(K,x = x[1]...x[m]) 

2: n = m + 1 

3: y′[n] ←{0,1}l ⊲ 

4: for i = 1...n − 1 do 5: y′[i] = x[i] ⊕ 
FK(y′[n] + i) 

6: 

7: 

8: for i = 1...n do 

9: t = t ⊕ y′[i] 

10: end for 

11: for i = 1...n do 

12: y[i] = y′[i] ⊕ t 

13: end for 

14: return y 

15: end procedure 

y’[n] is the IV for 
CTR ⊲ y = 
y[1]...y[n] 

Algorithm 2 Decryption in Bastion.  

1: procedure Dec(K,y = y[1]...y[n]) 

2: t = 0l 

3: for i = 1...n do 

4: t = t ⊕ y[i] 

5: end for 

6: for i = 1...n do 

7: y′[i] = y[i] ⊕ t 

8: end for 

9: for i = 1...n − 1 do 

10: x[i] = y′[i] ⊕ FK
−1(y′[n] + i) 

11: end for 

12: return x ⊲ x 

13: end procedure = x[1]...x[n − 1] 

Therefore, we are only left to show that the linear 
transformation computed in lines 7-14 of Algorithm 1 is 
correctly reverted in lines 2-8 of Algorithm 2. In (as 
computed in the decryption algorithm) matchesL other 
words, we need to show that t = i=1..n y[i] t = i=1..n y′[i] (as 
computed in the encryption algo- 

4.4 Security Analysis 

In this section, we show that Bastion is mathrmind secure 
and (n − 2)CAKE secure. Lemma 1. Bastion is ind secure. 

Proof 1. Bastion uses an ind secure encryption mode to 
encrypt a message, and then applies a linear transform 
on the ciphertext blocks. It is straightforward to conclude 
that Bastion is ind secure. In other words, a polynomial-
time algorithm A that has non-negligible advantage in 
breaking the ind security of Bastion can be used as a 
black-box by another polynomial-time algorithm B to 
break the ind security of the underlying encryption mode. 
In particular, B forwards A’s queries to its oracle and 
applies the linear transformation of Algorithm 1 lines 7-
14 to the received ciphertext before forwarding it to A. 
The same strategy is used when A outputs two messages 
at the end of the find stage. 

Lemma 2. Given any n − 2 blocks of y[1]...y[n] as output by 
Bastion, it is infeasible to compute any y′[i], for 1 ≤ i ≤ n. 

Proof 2. Let y = y[1],...,y[n] ← E(K,x = x[1]...x[m]). Note that 
given any (n − 1) blocks of y, the adversary can compute 

one block of y′. In particular, , for any 
1 ≤ i ≤ n. 

As it will become clear later, with one block y′[i] and the 
encryption key, the adversary has non-negligible 
probability of winning the game of Definition 3. However, 
if only (n − 2) blocks of y are given, then each of the n 
blocks of y′ can take on any possible values in {0,1}l, 
depending on the two unknown blocks of y. Recall that 
each block y′[i] is dependent on (n − 1) blocks of y and it 
is pseudo-random as output by the CTR encryption 
mode. Therefore, given any (n − 2) blocks of y, then y′[i] 
could take any of the 2l possibilities, for 1 ≤ i ≤ n. 

Lemma 3. Bastion is (n − 2)CAKE secure. 

Proof 3. The security proof of Bastion resembles the 
standard security proof of the CTR encryption mode and 
relies on the existence of pseudo-random permutations. 
In particular, given a polynomial-type algorithm A which 
has non-negligible advantage in the (n − λ)CAKE 
experiment with λ = 2, we can construct a polynomial-
time algorithm B which has non-negligible advantage in 
distinguishing between a true random permutation and a 
pseudo-random permutation. 
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B has access to oracle O and uses it to answer the encryption 
and decryption queries issued by A. In particular, A’s queries 
are answered as follows: 

 • Decryption query for y[1]...y[n] 

1) Compute t = y[1] ⊕ ... ⊕ y[n] 

2) Compute y′[i] = y[i] ⊕ t, for 1 ≤ i ≤ n 

3) Compute x[i] = y′[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1 

4) Return x[1]...x[n − 1] 

 • Encryption query for x[1]...x[n − 1] 

1) Pick random y′[n] ∈ {0,1}l 

2) Compute y′[i] = x[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1 

3) Compute t = y′[1] ⊕ ... ⊕ y′[n] 

4) Compute y[i] = y′[i] ⊕ t, for 1 ≤ i ≤ n 

5) Return y[1]...y[n] 

When A outputs two messages x1[1]...x1[n−1] and 
x2[1]...x2[n − 1], B picks b ∈ {0,1} at random and does the 
following: 

1) Pick random  

2) Compute yb
′[i] = xb[i]⊕O(yb

′[n],i), for 1 ≤ i ≤ n−1 

3) Compute  

4) Compute yb[i] = yb
′[i] ⊕ t, for 1 ≤ i ≤ n 

At this point, A selects (n − 2) indexes i1,...in−2 and B returns 
the corresponding yb[i1],...,yb[in−2]. Encryption and decryption 
queries are answered as above. When A outputs its answer 
b′, B outputs 1 if b = b′, and 0 otherwise. It is straightforward 
to see that if A has advantage larger than negligible to guess 
b, then B has advantage larger than negligible to distinguish 
a true random permutation from a pseudorandom one. 
Furthermore, the number of queries issued by B to its oracle 
amounts to the number of encryption and decryption 
queries issued by A. Note that by Lemma 2, during the guess 
stage, A cannot issue a decryption query on the challenge 
ciphertext since with only (n−2) blocks, finding the 
remaining blocks is infeasible. 

 

Fig 2: Current AON encryption schemes require a pre-
processing round of block cipher encryption for the AONT, 

followed by another round of block cipher encryption. 

 

Fig 3: On the other hand, Bastion first encrypts the data 
with one round of block cipher encryption, 

5.COMPARISON TO EXISTING SCHEMES 

In what follows, we briefly overview several encryption 
modes and argue about their security (according to 
Definitions 1 and 2) and performance when compared to 
Bastion. 

Traditional CPA-encryption modes, such as the CTR mode, 
provide ind security but are only 1CAKE secure. That is, an 
adversary equipped with the encryption key must only fetch 
two ciphertext blocks to break data confidentiality. 

5.1Performance Comparison 

Performance of Bastion with the encryption schemes 
considered so far, in terms of computation, storage, and 
security. 

Given a plaintext of m blocks, the CTR encryption mode 
outputs n = m + 1 ciphertext blocks, computed with (n − 1) 
block cipher operations and (n − 1) XOR operations. The CTR 
encryption mode is ind secure but only 1CAKE secure. 

Rivest AONT outputs a pseudo-ciphertext of n = m+1 blocks 
using 2(n−1) block cipher operations and 3(n−1) XOR 
operations. Desai AONT outputs the same number of blocks 
but requires only (n−1) block cipher operations and 2(n − 1) 
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XOR operations. Both Rivest AONT and Desai AONT are, 
however, not ind secure since the encryption key used to 
compute the AONT output is embedded in the output itself. 
Encrypting the output of Rivest AONT or Desai AONT with a 
standard encryption mode (both use the ECB encryption 
mode), requires additional n block cipher operations, and 
yields an AON encryption that is ind secure7 and (n − 1)CAKE 
secure. Encrypt-then-secretshareis ind secure and (n − 
1)CAKE secure. It requires (n−1) block cipher operations and 
n XOR operations if additive secret sharing is used. However 
secret-sharing encryption results in a prohibitively large 
storage overhead of n2 blocks. 

Bastion also outputs n = m + 1 ciphertext blocks. It 
achieves ind security and (n − 2)CAKE security with only (n − 
1) block cipher operations and (3n − 1) XOR operations 

6.IMPLEMENTATION AND EVALUATION 

In this section, we describe and evaluate a prototype 
implementation modeling a read-write storage system based 
on Bastion. We also discuss insights with respect to the 
integration of Bastion within existing dispersed storage 
systems. 

6.1 Implementation Setup 

Our prototype, implemented in C++, emulates the read-write 
storage model of Section 3.1. We instantiate Bastion with the 
CTR encryption mode using both AES128 and Rijndael256, 
implemented using the libmcrypt.so. 4.4.7 library. Since this 
library does not natively support the CTR encryption mode, 
we use it for the generation of the CTR keystream, which is 
later XORed with the plaintext. 

We compare Bastion with the AON encryption schemes of 
Rivest  and Desai. For baseline comparison, we include in our 
evaluation the CTR encryption mode and the AONTs due to 
Rivest and 

We measure the peak throughput and the latency exhibited 
by our implementations w.r.t. various file/block sizes. For 
each data point, we report the average of 30 runs. Due to 
their small widths, we do not show the corresponding 95% 
confidence intervals. 

6.2 Evaluation Results 

Our evaluation results are reported in Figure 3 and Figure 4. 
Both figures show that Bastion considerably improves (by 
more than 50%) the performance of existing (n − 1)CAKE 
encryption schemes and only incurs a negligible overhead 
when compared to existing semantically secure encryption 
modes (e.g., the CTR encryption mode) that are only 1CAKE 
secure. 

We also evaluate the performance of Bastion, with respect to 
different block sizes of the underlying block cipher. Our 

results show that—irrespective of the block size—Bastion 
only incurs a negligible performance deterioration in peak 
throughput when compared to the CTR encryption mode. 
Figures 2 and 3 show the latency (in ms) incurred by the 
encryption/encoding routines for different file sizes. The 
latency of Bastion is comparable to that of the CTR 
encryption mode—for both AES128 and Rijandael256—and 
results in a considerable improvement over existing AON 
encryption schemes (more than 50% gain in latency). 

7.RELATED WORK 

To the best of our knowledge, this is the first work that 
addresses the problem of securing data stored in multicloud 
storage systems when the cryptographic material is exposed. 
In the following, we survey relevant related work in the 
areas of deniable encryption, information dispersal, all-or-
nothing transformations, secret-sharing techniques, and 
leakage-resilient cryptography. 

Deniable Encryption 

Our work shares similarities with the notion of “sharedkey 
deniable encryption”An encryption scheme is “deniable” if—
when coerced to reveal the encryption key—the legitimate 
owner reveals “fake keys” thus forcing the ciphertext to 
“look like” the encryption of a plaintext different from the 
original one—hence keeping the original plaintext private. 
Deniable encryption therefore aims to deceive an adversary 
which does not know the “original” encryption key but, e.g., 
can only acquire “fake” keys. Our security definition models 
an adversary that has access to the real keying material. 

3. CONCLUSIONS 

In this paper, we addressed the problem of securing data 
outsourced to the cloud against an adversary which has 
access to the encryption key. For that purpose, we 
introduced a novel security definition that captures data 
confidentiality against the new adversary. 

We analyzed the security of Bastion and evaluated its 
performance in realistic settings. Bastion considerably 
improves (by more than 50%) the performance of existing 
primitives which offer comparable security under key 
exposure, and only incurs a negligible overhead (less than 
5%) when compared to existing semantically secure 
encryption modes (e.g., the CTR encryption mode). Finally, 
we showed how Bastion can be practically integrated within 
existing dispersed storage systems. 
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