
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 645

 Design, Analysis and Processing of Efficient RISC Processor

Ramareddy1, M.N.Pradeep2

1M-Tech., VLSI D& Embedded Systems, Dept of E&CE, Dayananda Sagar College of Engineering, Bangalore.
Karnataka, India

2Professor, Electronics and Communication Engineering, Dayananda Sagar College of Engineering, Bangalore.
Karnataka, India

---***---

Abstract - Due to the advancement in the modern
technology, the processors in digital signal world are playing
major role in almost all the electronic gadgets. RISC
processor takes a highest level compared to other processors
in terms of speed and area acquisition. Hence in this paper
we have implemented 32-bit RISC processor architecture
which is better when compared with other existing works.
The main feature of a RISC processor is to fetch the
instruction with only one clock cycle. In this proposed
architecture we have succeeded to implement the concept of
fetch, decode and execute more efficiently using the VHDL
for the design implementation and simulated on Xilinx ISE
14.5 and synthesized on Spartan 6. The results show that the
proposed 32-bit RISC processor architecture is more
efficient than the other existing works and can be
implemented on the hardware.

Key Words: VHDL, FPGA, Digilent Atlys, Xilinx ISE,

Operating frequency, etc.

1. INTRODUCTION

New society is highly dependent upon technological

things such as gadgets. The main requirements of any

gadgets are that it should be small in size, high processing

speed and good configuration. The configurability issues are

the main reason behind the rapid growth in the used of

embedded system on various electronic based consumer

product.

We know most of the embedded systems used a

microprocessor or microcontroller as operating core in the

total architecture which acts as a brain or controlling unit

and processing unit of the system. The microcontroller based

architectures are used in the system where the applications

do not have various different kinds of complex operations.

These types of architectures are mainly used for small and

medium range applications mainly. Also its configurability is

not so good. That is the main reason higher level embedded

systems contain microprocessor based architecture. The

microprocessor based embedded system having more re-

configurabilities in both software and hardware with respect

to microcontroller based embedded system.

The microprocessor is an integrated circuit (IC)

which is designed using VLSI technique. The architecture of

the microprocessor has greater effect on the various

performance parameters of the total embedded system. As a

result to design any efficient embedded system the

processor architecture also is efficient.

In this project we have proposed an efficient VLSI

architecture for RISC based microprocessor. The proposed

architecture is coded using standard VHDL language and

simulated using Xilinx ISE 14.5 tool. The comparison results

show that the proposed technique is better with respect to

existing techniques.

1.1. LITERATURE SURVEY

Uma [1] presented a new design for 8-bit microprocessors.

The presented architecture is implemented on Spartan-3E

FPGA board. To code architecture in FPGA the author use

standard HDL language. To check the functionality and

generate the bit-stream to the corresponding FPGA chip

Xilinx ISE tool is used. In this case the author implemented

most of the essential instruction set effectively using

structural modeling. This allows the author to reduce the

hardware requirement. The performance of the architecture

is improved due to this reason. Also the implementation cost

of the architecture reduces drastically due to this reason.

Moreover to increase throughput of the architecture the

author use some degrees of pipelining. ShahlaGul et al.

[2] Made a comparison between RISC and CISC

microprocessor architectures in this paper in a wide way.

Also they have showed that the types of operations are

performed by both RISC and CISC architectures. Like CISC

architecture divides the total algorithm into a various

simplifier instructions which executes step by step. This

simplifies the program having smaller architecture but for

larger or complex architecture this method is difficult. In

such case RISC architecture is helpful. Because the RISC

architecture embedded many instruction set. Also in the

design prospective the design of RISC architecture is harder

than the CISC architecture. This is mainly due to the

complexity of the controller which is used to cascade

instruction. Mrudul S. Ghaturle et al.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 646

2. PROPOSED 32-BIT RISC ARCHITECTURE

Reduced Instruction Set Computer (RISC) Architecture is

very highly optimized architecture to reduce the execution

time. The execution time is reduced and the speed of the

processor is increased due to the implementation of

pipelining and parallelism technique. The pipelining

technique produces different outputs at the different unit

blocks for every single clock cycle like fetch, decode and

execute. Hence the number of clock cycles used by a set of

instructions decreases for their execution. In order to make

this possible it is mandatory that the instructions should also

require a single clock cycle for their execution. Hence, only a

few numbers of common and basic instructions are used and

complex instructions are performed by the iterative

execution of the basic instructions. The block diagram is

shown in Fig. 1.

Fig-1: 32-bit RISC Processor Architecture

2.1. CONTROL UNIT

The program to be run by the processor is stored in the

Block RAM. These instruction sets are to be processed one at

a time for every clock cycle. Therefore control unit comes

first in the processing part which plays an important role in

feeding the instruction set to be processed with respect to

clock signal. There are two main registers, in which one is

used to store the instruction set that is to be executed

currently and the other one is used to store the next

instruction set that is to be processed. So the main role of

this block is to generate the address of the instruction that is

to be interpreted and fed to the processing. The block

diagram is shown in the Fig. 2.

Fig-2: Control Unit

2.2. PROGRAM COUNTER

The Program Counter also called as Instruction Pointer or

Instruction Address Register is an important part in the

processor to make it work more efficient than the other

general processor architectures. The program counter

always points to the next instruction to be fetched. For

example, if instruction A is being fetched, the program

counter will be pointing to the B instruction, which will be in

the sequence of the program instruction sets. By this we can

tell that the program counter is mainly used for the

pipelining concept, further to satisfy the parallelism concept.

 Usually the processors fetch instructions in a

sequential pattern which is controlled by the program

counter but some instructions like branch, jump, subroutine

calls, value returns, etc., replace the sequence. The next

instruction is fetched from other memory when branch

instruction is fetched. The previous program counter

contents are saved by the subroutine calls. When the

subroutine call is over, the program counter contents are

retrieved and the sequential instruction fetching is resumed.

The block diagram is shown in the Fig. 3.

 Fig-3: Program Counter

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 647

2.3. INSTRUCTION FETCH

Fetch the word means taking the data. The address

generated by the program counter is sent to the instruction

fetch unit and program counter points to the next instruction

incrementing the program counter value by four. The

address given to the fetch unit checks in the instruction

memory and takes the instruction data set to be decoded.

 The instruction set fetched from the memory

contains all the data is lightly coded, which is to be decoded

to produce the control signals, data path and the data form

the fetched instruction bits. For example, the instruction

MOV A, B should generate the control signals read to the

register A and write to register B and execute a data path

between A and B registers. The block diagram is shown in

the Fig. 4.

Fig-4: instruction Fetch

2.4. ALU

Arithmetic Logic Unit is the execution unit of arithmetic and

logical operations like addition, subtraction, etc. and OR,

AND, XOR, etc. Here in this proposed ALU architecture, we

have designed a 16-bit multiplication operation, which is

designed using Vedic multiplication technique. The

operation of the ALU is given in the Table 1.

Table-1: ALU Operation

Opcode Operation

000 AND

001 OR

010 Addition

011 Subtraction

100 NAND

101 NOR

110 Multiplication

111 No Operation

RESULTS

Fig-5: RTL Schematic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 648

The Technology Schematic is shown in the Fig.6.

Fig-6: Technology Schematic

The Simulation Results are shown in the Fig. 7.

Fig-7: Simulation Results

3. CONCLUSIONS

 In this paper we have proposed a new efficient architecture

of 32-bit RISC microprocessor. The architecture is the

modified version of normal multi instruction per cycle

architecture. The main advantage of this architecture is that

the reduction of the hardware requirement by considering

looping architecture. This will allow the user to perform very

complex mathematical computations present in most of the

real time algorithms. This will allow the user to use PC

interface through some specific software packages where all

binary opcode converted into some alphabetic opcode.

At the time of designing the whole architecture we

have modified each sub blocks manually which reduces the

overall hardware requirement of the total architecture and

increases the overall frequency. This can be seen in the

comparison section.

In this project we designed and tested 32-bit RISC

microprocessor manually from FPGA by giving manual

inputs. In future we will develop the software interface.

Software where we can write some real time algorithm for

our designed microprocessor in the similar way we execute

normal microprocessor instruction using MASM/TASM

software. Moreover in future we will not try to optimize the

proposed design up to next extent and also increase the bit

size to compare our proposed architecture with really

available microprocessors.

REFERENCES

1) Rafael C Gonzalez and Richard E Woods, “Digital Image
Processing”, 3rd Edition, Prentice Hall, 2008.

2) Mohamed Nasir Bin Mohamed Shukor, Lo HaiHiung,
Patrick Sebastian, “Implementation of Real-time Simple
Edge Detection on FPGA”, International Conference on
Intelligent and Advanced Systems, 2007.

3) Zhengyang Guo Wenbo Xu and Zhilei Chai, “Image Edge
Detection Based on FPGA”, Ninth International
Symposium on Distributed Computing and Applications
to Business Engineering and Science, 2010.

4) FerdousHossain, Mithun Kumar P.K. and Mohammad
Abu Yousuf, “Hardware Design and Implementation of
Adaptive Canny Edge Detection Algorithm”,
International Journal of Computer Applications, Vol.
128, No. 9, pp. 31-38, 2015.

5) T. Sridevi B. Poornima and Y. Ramadevi,
“Threshold Based Edge Detection Algorithm”,
International Journal of Computer Science &
Information Technology, Vol. 2, No. 6, pp. 153-161,
2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4638683
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570017
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570017

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 649

6) Mina Asaduzzaman, Md. Armanur Rahman, Mohammad
Abu Yousuf and Ferdous Hossain, “Dynamic
Thresholding based Adaptive Canny Edge Detection”,
International Journal of Computer Applications, Vol.
135, No. 4, pp. 37-41, 2016.

7) Neethu P. R, “Cancer cell detection using distributed
canny edge detector”, International Research

8) Journal of Engineering and Technology, Vol. 2, pp. 1224-
1226, 2015.

9) R. Tourki, T. Saidani, M. Atri, D. Dia and W. Elhamzi,
“Hardware Co-simulation For Video Processing Using
Xilinx System Generator”, Proceedings of the World
Congress on Engineering, 2009.

10) WeibinRong, Zhanjing Li, Wei Zhang and Lining Sun,
“An Improved Canny Edge Detection Algorithm”,
International Conference on Mechatronics and
Automation, pp.577-782, 2014.

