

Optimum location of Virtual outriggers in high rise buildings for seismic and wind responses

Professor N. G. Gore¹, Miss Purva Mhatre²

¹Professor, Dept. Of Civil Engineering, MGM's College of Engineering and Technology, Navi Mumbai, India ²Student, Dept. of Civil Engineering, MGM's College of Engineering and Technology, Navi Mumbai, India

Abstract - Outriggers have been used in construction of high rises since late 20th century. Outriggers provide lateral stability against wind and seismic loads. Virtual outriggers are a type of outrigger using floor diaphragms instead of deep beams which ensures space optimization. Virtual outriggers are located at suitable storeys (height) to ensure efficient performance. Parameters used for study are lateral displacement due to seismic and wind forces in X and Y direction, storey drift, base reaction, maximum overturning moment and top storey acceleration. Optimum location as determined by analyzing and comparing these parameters when outriggers are located at different heights for models of 50, 60 and 70 storeys. Models are analyzed for one, two and three outrigger systems.

Key Words: Outrigger, Virtual outrigger, wind load, seismic load, single outrigger system, multi outrigger system, lateral displacement, storey drift, overturning moment, top storey acceleration, base shear.

1. INTRODUCTION

Tall buildings form an integral part of human society and Outriggers have become an ideal structural solution to the problem of lateral instability caused in tall buildings due to winds and seismic forces. Outriggers are rigid and horizontal beams/trusses which connect the central core of the building to external peripheral columns. This improves the building strength and overturning stiffness. In spite of being structurally efficient, outriggers pose a few architectural and economic constraints which can be conveniently overcome by using Virtual outriggers.

2. LITERATURE

A number of researchers in the past have worked on the concept of outriggers and virtual outriggers as well.

R Shankar Nair (1998) in his paper gave a brief on the conventional outrigger system and problems associated with its installation and also outlined the concept of virtual outrigger system. The paper explains the virtual outrigger system with its advantages over the conventional outrigger system. The paper also gives example of Plaza Rakyat Tower in Kuala Lumpur which has two virtual outriggers.

Z. Bayati, et al (2008) worked on optimum number of outrigger systems in a building. The paper presents the

results of an investigation on drift reduction in uniform belted structure with rigid outriggers, through the analysis of a model structure of 80 storeys.

S. Fawzia, et al (2011) studied the effects of cyclonic winds on 28, 42 and 47 storey buildings of L – shaped layout. The results showed that the plan dimensions have vital impact on structural heights. Increase in height with same plan dimensions, leads to reduction in lateral rigidity.

Msc. Rafael Shehu (2015) analysed the aspects of building performance designed or retrofitted by the means of conventional or virtual outrigger. The paper highlights ductile characteristics of structures post elastic phase and during seismic events. Structures of 25, 30 and 35 storeys are used to study rigid outrigger, vierendel outrigger and bracing outrigger.

Prajyot A. Kakde and Ravindra Desai (2017) used a 70 storeys building to study lateral stability and sway in case of winds. The building was modelled in ETABS 2016. The paper compares drift caused due to wind and seismic forces on tall buildings without outrigger and multiple outrigger system at located at varied heights.

The papers published conclude to the fact that use of outriggers in high rise buildings increases the stiffness by 20-30%. Optimum location of single outrigger system is at approximately mid height of the building. Also, virtual outriggers are equally structurally efficient as conventional outriggers.

3. VIRTUAL OUTRIGGER

In virtual outriggers, there is no direct connection between core and peripheral columns. The load is transferred to peripheral columns via floor diaphragms which are stiffer than usual slabs.

Virtual outriggers have a similar function to that of a conventional outrigger but the method employed varies. The working of virtual outriggers can be explained with the following two concepts.

3.1 Belt trusses as Virtual Outriggers

The overturning moment in the core is converted into a vertical couple at the exterior columns. Rotation of the core is resisted by the floor diaphragms at the top and bottom of the belt trusses; thus, part of the moment in the core is

converted into a horizontal couple in the floors. The horizontal couple, transferred through the two floors to the truss chords, is converted by the truss into vertical forces at exterior columns.

Fig -1: Working of belt truss as Virtual Outrigger

3.2 Basements as Virtual Outriggers

The principle is same as when belt trusses are used as virtual outriggers. Some fraction of the moment in the core is converted into a horizontal couple in the floors at the top and the bottom of the basement. This horizontal couple is transmitted through the floor diaphragms to the side walls of the basement, which convert the horizontal couple into a vertical couple at the ends.

Fig -2: Working of basements as Virtual Outrigger

The concept of virtual outriggers presents a reasonably unique solution to the problems posed by conventional outrigger system.

4. MODEL

Models of a structure of 50, 60 and 70 storeys are made in ETABS software. The plan is triangular in shape with each side measuring 36 m. The shape is chosen to take into

consideration the critical loads at the edges. The plan with location of columns at the bottom storey is shown in the figure below.

Fig -3: Model plan used for analysis

The building is assumed to be a commercial building located in Mumbai, India, with floor to floor height of 4 m.

4.1 Structural configuration

The structural configuration of the structure is as follows:

Type of Structure	Special R.C. Moment resisting frame				e	
Number for storeys			50,60,70			
Slab Thickness			150 mm			
Slab thickness at Virtual			200 mm			
outrigger level			200 11111			
	Storey	Exterior	Interior	Perimeter	Interior	
	range	peripheral	columns	Beam	Beam Size	
		column		Size		
		(Cp)	(Ci)	(Bp)	(Bi)	
	(All dimensions are in m)					
Frame elements	61 – 70	0.8 m φ	0.8 x 0.8	0.6 x 0.7	0.45 x 0.5	
Frame elements	51 – 60	0.8 m φ	0.8 x 0.8	0.6 x 0.7	0.55 x 0.6	
	41 – 50	1.0 m φ	0.8 x 0.8	0.6 x 0.7	0.65 x 0.7	
	31 - 40	1.2 m φ	0.9 x 0.9	0.7 x 0.8	0.75 x 0.8	
	21 – 30	1.4 m φ	0.9 x 0.9	0.7 x 0.8	0.75 x 0.8	
	11 – 20	1.6 m φ	1.0 x 1.0	0.8 x 0.9	0.75 x 0.8	
	Base – 10	1.9 m φ	1.0 x 1.0	0.8 x 0.9	0.75 x 0.8	
Bean dimensions at			0.8 v 1.0 m			
outrigger level			0.0 x 1.0 III			
Thickness of internal wall	1 150mm					
Thickness of shear core	450 mm					
Grade of reinforcing steel	Fe500					
Grade of concrete	M50					

4.2 Loading

The loads considered for the structure are as follows:

1] Dead load: Unit weight of concrete : 25 kN/m³ Unit weight of floor finish: 1 kN/m³

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Volume: 06 Issue: 01 | Jan 2019 www

www.irjet.net

Unit weight of masonry	: 20 kN/m ³
------------------------	------------------------

2]	Live load:	Commercial are Staircase Terrace	: 4 kN/m : 3 kN/m : 2 kN/m	1 ² 1 ² 1 ²
3]	Seismic load:	Zone factor Response reduct	ion facto	: 0.16 (Zone III) r: 5
		Importance facto	or	: 1.5
		Frame type		: SMRF
4]	Wind load:	Basic wind speed	ł	: 44 m/s
-		Design wind spe	ed	: Vb * k1 * k2 * k3
		Probability facto	r	: k1 = 1
		Terrain factor		: k2 (category 2)
		Topography fact	or	: k3 (class C)

4.3 Virtual outrigger storey configuration

The model works on the principle of using belt trusses as virtual outrigger. The core moment is transferred to peripheral columns using floor diaphragms. The peripheral columns which are connected by a belt truss or belt walls then equally transmit the moment to the foundation.

Thickness of floor diaphragms	:	200 mm
Grade of concrete	:	M50
Reinforcement	:	Fe 550
Size of perimeter beams	:	0.8 x 1 m

Fig -4: 3D Model for virtual outrigger storey at top

5. ANALYSIS

Models of 50, 60 and 70 storeys are subjected to seismic and wind loads. The models are analysed for one-outrigger system, two-outrigger system and three-outrigger system. The placement of virtual outriggers in each of the system is based on work of past researchers. The details of models are as follows:

1] One outrigger system

#	Details Virtual outrigger @ sto				
In case of models of:		50 storey	60 storey	70 storey	
la	Virtual outrigger @ top	50	60	70	
lb	Virtual outrigger @ 3/4 th height	38	45	53	
lc	Virtual outrigger @ 2/3 rd height	34	40	47	
ld	Virtual outrigger @ mid height	25	30	35	

2] Two outrigger system

#	Details	50 storey	60 storey	70 storey	
	Details	Virtual Ou	Outrigger located @ storey		
2a	Virtual Outrigger @ top & 3/4 th height	50 & 38	60 & 45	70 & 53	
2b	Virtual Outrigger @ top & 2/3 rd height	50 & 34	60 & 40	70 & 47	
2c	Virtual Outrigger @ top & mid height	50 & 25	60 & 30	70 & 35	
2d	Virtual Outrigger @ 3/4 th & mid height	38 & 25	45 & 30	53 & 35	
2e	Virtual Outrigger @ $3/4^{\text{th}} \& 1/4^{\text{th}}$ height	38 & 13	45 & 15	53 & 18	
2f	Virtual Outrigger 2/3 rd & mid height	34 & 25	40 & 30	47 & 35	
2g	Virtual Outrigger 2/3 rd & 1/3 rd height	34 & 17	40 & 20	47 & 24	

3] Three outrigger system

#	Details	Virtual Outrigger @			
'n			60 storey	70 storey	
3a	Virtual Outrigger at top, 3-4 th and mid height	50, 38 & 25	60, 45 & 30	70, 53 & 35	
3b	Virtual Outrigger at 3-4 th , mid and 1-4 th height	38, 25 & 13	45, 30 & 15	53, 35 & 18	
3c	Virtual Outrigger at 2-3 rd , mid and 1-3 rd height	34, 25 & 17	40, 30 & 20	47,35 & 24	

Each of the above models are analysed for the following parameters:

- Lateral displacement for seismic and wind loads in X and Y direction
 - Top storey displacement
 - $\circ \quad \ \ {\rm Floor \ wise \ displacement}$
 - Average displacement
- Storey drift for seismic and wind forces in X and Y direction
 - o Maximum drift
 - o Floor wise drift
 - Average drift
 - Top storey acceleration
- Base shear
- Maximum overturning moment

The given parameters form the base to draw patterns and variations so that results can be concluded.

6. RESULTS

The following results are obtained in each of the outrigger system cases.

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Volume: 06 Issue: 01 | Jan 2019

www.irjet.net

Lateral displacement due to seismic forces in X direction for 50, 60 and 70 storey models is shown and analyzed below.

Chart -1: Lateral displacement for 50 storey model

Chart -2: Lateral displacement for 60 storey model

Chart -3: Lateral displacement for 70 storey model

The contents of the graph are analyzed in the following table. The displacements with least vales are highlighted.

Model	Condition	Lateral disp	when Virtual		
		#la	#1b	#lc	#ld
50.4	Top storey	0.049532	0.048992	0.048504	<mark>0.048316</mark>
50 storey	Average	0.024593	0.024128	0.024013	<mark>0.023509</mark>
60 storer	Top storey	0.083828	0.080816	0.080409	<mark>0.079733</mark>
ou storey	Average	0.039593	0.038611	0.038082	<mark>0.036889</mark>
70 storey	Top storey	0.135226	0.13073	0.130689	<mark>0.130667</mark>
	Average	0.060808	0.059436	0.058743	<mark>0.059105</mark>

Storey drifts due to wind forces in Y direction for 50, 60 and 70 storey models are shown in the charts below.

Chart -4: Storey drift for 50 storey model

Chart -5: Storey drift for 60 storey model

Chart -6: Storey drift for 70 storey model

www.irjet.net

JET Volume: 06 Issue: 01 | Jan 2019

The table below analyses the data for storey drift.

		Storey	y drift in Y direction (wind) when Virtual			
Model	Condition	Outrigger is located @				
		#la	#1b	#lc	#ld	
50 etc	Max. Value	0.003765	0.00374	0.003707	<mark>0.003411</mark>	
50 storey	Average	0.003082	0.0030161	0.0029995	<mark>0.002965</mark>	
60 storer	Max. Value	0.006028	0.005976	<mark>0.005892</mark>	0.006008	
ou storey	Average	0.00512141	0.0050135	0.0050170	<mark>0.005000</mark>	
70 storey	Max. Value	0.10261	0.009912	0.00975	<mark>0.009499</mark>	
	Average	0.00815894	0.0079928	0.0080019	<mark>0.0079296</mark>	

Top storey acceleration in Ux direction analysis is as follows:

	a 111	Top store	ey acceleration in Ux direction(in m/s2) when			
Model	Condition		Virtual Outrigg	ger is Located @		
		#la	#1b	#lc	#ld	
50 stores	Spec X	<mark>0.3357</mark>	0.4263	0.3608	0.4309	
50 storey	Spec Y	0.1298	0.164	0.1507	<mark>0.1093</mark>	
60 et a 101	Spec X	<mark>0.2994</mark>	0.3767	0.3347	0.3712	
oo storey	Spec Y	0.1336	0.1344	<mark>0.0976</mark>	0.1146	
70 storey	Spec X	<mark>0.2708</mark>	0.3349	0.3099	0.3255	
	Spec Y	0.1193	<mark>0.0944</mark>	0.1304	0.1159	

The top storey acceleration is analyzed for Uy and Uz direction as well.

The table below shows base reaction due to seismic forces in X direction.

Madal	C V	Base Reaction (in kN) when Virtual Outrigger is located @				
Model	Spec A	#la	#1b	#lc	#ld	
	Fx	6381.76	6366.77	6824.49	6518.47	
50 storey	Fx	2027.97	2501.91	827.39	2519.56	
	Resultant	<mark>6696.23</mark>	6840.71	6874.46	6984.86	
	Fx	6882.45	6978.28	8345.39	6906.99	
60 storey	Fx	3084.16	3133.02	398.366	3259.32	
	Resultant	<mark>7541.89</mark>	7649.32	8354.89	7640.1	
70 storey	Fx	7402.24	7842.28	8864.67	7684.72	
	Ex.	3955.15	3293.19	1862.12	3788.05	
	Resultant	8392.63	8505.67	9058 13	8567.62	

Base reactions due to seismic forces in Y direction are also analyzed.

The table below presents maximum overturning moment.

Model	Moment	Maximum over	Maximum overturning moment (in kNm) when Virtual outrigg is located @				
		#la	#1b	#lc	#1d		
50 storey	Spec X	<u>527108</u>	532261	538303	547184		
	Spec Y	541741	540949	<mark>540868</mark>	542541		
60 storey	Spec X	704130	706247	705138	<mark>699969</mark>		
	Spec Y	721743	723244	721207	<mark>717157</mark>		
70 storey	Spec X	<mark>893548</mark>	897735	897057	897270		
	Spec Y	<mark>913380</mark>	916823	915220	916086		

Similar analysis is done for all the models in two-outrigger system and three outrigger system.

7. CONCLUSION

The following conclusions can be drawn for each of the outrigger systems.

7.1 One-Outrigger system

For each parameter, optimum location varies. This is mainly due to variation in height, impact of seismic and wind loads and layout of the structure.

and hay but of the structu	10.	
Lateral displacement	:	Mid-height
Storey drift	:	Mid height
Top storey acceleration	:	No clear interpretation
Base reaction	:	2-3 rd height
Maximum overturning moment		: No clear interpretation

7.2 Two-Outrigger system

The optimum locations in case of two outrigger system are:				
Lateral displacement	:	2-3 rd and 1-3 rd height		
Storey drift	:	3-4 th and 1-4 th height		
Top storey acceleration	:	2-3 rd and mid-height		
Base reaction	:	No clear interpretation		
Maximum overturning moment		: 3-4 th and 1-4 th height		

7.3 Three-Outrigger system

The optimum locations in case of three outrigger system are:				
Lateral displacement	:	3-4 th , mid and 1-4 th heights		
Storey drift	:	3-4 th , mid and 1-4 th heights		
Top storey acceleration	:	No clear interpretation		
Base reaction	:	Top, 3-4 th and mid-height		
Maximum overturning moment		: 3-4 th , mid and 1-4 th height		

REFERENCES

- [1] R Shankar Nair, "Belt Trusses as Basements as Virtual Outriggers for Tall Buildings", Engineering Journal, Fourth Quarter, Page 140-146, 1998.
- [2] Z. Bayati, M. Mahadikhani & A. Rahaei, "Optimized use of Multi-Outriggers to stiffen tall buildings",14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.
- [3] S. Fawzia, A. Nasir & T. Fatima, "Study of effectiveness of outrigger System for high-rise composite buildings for cyclonic region", International Journal of Civil, Environmental, Structual, Construction and Architectural Engineering, Volume: 05, Number: 12, Page 789-797, 2011.
- [4] Msc. Rafael Shehu, "Ductility of Outrigger typologies for high rise structures", IOSR Journal of Mechanical and Civil Engineering, eISSN: 2278-1684, pISSN: 2320-334X, Volume: 12, Issue: 02, Page 34-41, 2015.
- [5] Prajot A. Kakde & Ravindra Desai, "Comparative study of Outrigger and belt truss structural system for steel and concrete material", International Journal of Engineering and Technology, eISSN: 2395-0056, pISSN: 2395-0072, Volume: 04, Issue:05, Page 142-147, 2017