
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1180

LOSSLESS DATA COMPRESSION AND DECOMPRESSION ALGORITHM

AND ITS HARDWARE ARCHITECTURE

V V V SAGAR1

1JTO MPLS NOC BSNL BANGALORE
---***--
Abstract - LZW (Lempel Ziv Welch) and AH (Adaptive
Huffman) algorithms were most widely used for lossless data
compression. But both of these algorithms take more memory
for hardware implementation. We discuss about the design of
the two-stage hardware architecture with Parallel dictionary
LZW algorithm first and Adaptive Huffman algorithm in the
next stage. In this architecture, an ordered list instead of the
tree based structure is used in the AH algorithm for speeding
up the compression data rate. The resulting architecture
shows that it not only outperforms the AH algorithm at the
cost of only one-fourth the hardware resource but it is also
competitive to the performance of LZW algorithm (compress).
In addition, both compression and decompression rates of the
proposed architecture are greater than those of the AH
algorithm even in the case realized by software. The
performance of the PDLZW algorithm is enhanced by
incorporating it with the AH algorithm. The two stage
algorithm is discussed to increase compression ratio with
PDLZW algorithm in first stage and AHDB in second stage.

Key Words: PDLZW, AHDB, Verilog HDL language, Xilinx
ISE 9.1, Synopsys

1. INTRODUCTION

Data transmission and storage cost money. The more
information being dealt with, the more it costs. In spite of
this, most digital data are not stored in the most compact
form. Rather, they are stored in whatever way makes them
easiest to use, such as: ASCII text from word processors,
binary code that can be executed on a computer, individual
samples from a data acquisition system, etc. Typically, these
easy-to-use encoding methods require data files about twice
as large as actually needed to represent the information. Data
compression is the general term for the various algorithms
and programs developed to address this problem. A
compression program is used to convert data from an easy-to-
use format to one optimized for compactness. Likewise, an
uncompression program returns the information to its
original form.

A new two-stage hardware architecture is proposed that
combines the features of both parallel dictionary LZW
(PDLZW) and an approximated adaptive Huffman (AH)
algorithms. In the proposed architecture, an ordered list
instead of the tree based structure is used in the AH
algorithm for speeding up the compression data rate. The
resulting architecture shows that it outperforms the AH
algorithm at the cost of only one-fourth the hardware

resource, is only about 7% inferior to UNIX compress on the
average cases, and outperforms the compress utility in some
cases. The compress utility is an implementation of LZW
algorithm.

2. PDLZW Algorithm

The major feature of conventional implementations of the
LZW data compression algorithms is that they usually use
only one fixed-word-width dictionary. Hence, a quite lot of
compression time is wasted in searching the large-address-
space dictionary instead of using a unique fixed-word-width
dictionary a hierarchical variable-word-width dictionary set
containing several small address space dictionaries with
increasing word widths is used for the compression
algorithm. The results show that the new architecture not
only can be easily implemented in VLSI technology due to its
high regularity but also has faster compression rate since it
no longer needs to search the dictionary recursively as the
conventional implementations do.

Lossless data compression algorithms include mainly LZ
codes [5, 6]. A most popular version of LZ algorithm is called
LZW algorithm [4]. However, it requires quite a lot of time to
adjust the dictionary. To improve this, two alternative
versions of LZW were proposed. These are DLZW (dynamic
LZW) and WDLZW (word-based DLZW) [5]. Both improve
LZW algorithm in the following ways. First, it initializes the
dictionary with different combinations of characters instead
of single character of the underlying character set. Second, it
uses a hierarchy of dictionaries with successively increasing
word widths. Third, each entry associates a frequency
counter. That is, it implements LRU policy. It was shown that
both algorithms outperform LZW [4]. However, it also
complicates the hardware control logic.

In order to reduce the hardware cost, a simplified DLZW
architecture suited for VLSI realization called PDLZW
(parallel dictionary LZW) architecture. This architecture
improves and modifies the features of both LZW and DLZW
algorithms in the following ways. First, instead of initializing
the dictionary with single character or different
combinations of characters a virtual dictionary with the
initial │Σ│ address space is reserved. This dictionary only
takes up a part of address space but costs no hardware.
Second, a hierarchical parallel dictionary set with
successively increasing word widths is used. Third, the
simplest dictionary update policy called FIFO (first-in first-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1181

out) is used to simplify the hardware implementation. The
resulting architecture shows that it outperforms Huffman
algorithm in all cases and about only 5% below UNIX
compress on the average case but in some cases outperforms
the compress utility.

2.1 Dictionary Design Considerations

The dictionary used in PDLZW compression algorithm is one
that consists of m small variable-word width dictionaries,
numbered from 0 to m - 1, with each of which increases its
word width by one byte. That is to say, dictionary 0 has one
byte word width, dictionary 1 two bytes, and so on. These
dictionaries: constitute a dictionary set. In general, different
address space distributions of the dictionary set will present
significantly distinct performance of the PDLZW compression
algorithm. However, the optimal distribution is strongly
dependent on the actual input data files. Different data,
profiles have their own optimal address space distributions.
Therefore, in order to find a more general distribution,
several different kinds of data samples are: run with various
partitions of a given address space. Each partition
corresponds to a dictionary set. For instance, the 1K address
space is partitioned into ten different combinations and
hence ten dictionary sets. An important consideration for
hardware implementation is the required dictionary address
space that dominates the chip cost for achieving an
acceptable compression ratio.

2.2. Compression processor architecture

In the conventional dictionary implementations of LZW
algorithm, they use a unique and large address space
dictionary so that the search time of the dictionary is quite
long even with CAM (content addressable memory). In our
design the unique dictionary is replaced with a dictionary set
consisting of several smaller dictionaries with different
address spaces and word widths. As doing so the dictionary
set not only has small lookup time but also can operate in
parallel.

The architecture of PDLZW compression processor is
depicted in Figure 1. It consists of CAMs, an 5- byte shift
register, a shift and update control, and a codeword output
circuit. The word widths of CAMs increase gradually from 2
bytes up to 5 bytes with 5 different address spaces: 256, 64,
32, 8 and 8 words. The input string is shifted into the 5-byte
shift register. The shift operation can be implemented by
barrel shifter for achieving a faster speed. Thus there are 5
bytes can be searched from all CAMs simultaneously. In
general, it is possible that there are several dictionaries in
the dictionary set matched with the incoming string at the
same time with different string lengths. The matched
address within a dictionary along with the dictionary
number of the dictionary that has largest number of bytes
matched is outputted as the output codeword, which is
detected and combined by the priority encoder. The
maximum length string matched along with the next

character is then written into the next entry pointed by the
update pointer (UP) of the next dictionary (CAM) enabled by
the shift and dictionary update control circuit. Each
dictionary has its own UP that always points to the word to
be inserted next. Each update pointer counts from 0 up to its
maximum value and then back to 0. Hence, the FIFO update
policy is realized. The update operation is inhibited if the
next dictionary number is greater than or equal to the
maximum dictionary number.

Fig- 1 PDLZW Architecture for compression

The data rate for the PDLZW compression processor is at
least one byte per memory cycle. The memory cycle is
mainly determined by the cycle time of CAMs but it is quite
small since the maximum capacity of CAMs is only 256
words. Therefore, a very high data rate can be expected.

2.3 PDLZW Algorithms

Like the LZW algorithm proposed in [17], the PDLZW
algorithm proposed in [9] also encounters the special case in
the decompression end. In this paper, we remove the special
case by deferring the update operation of the matched
dictionary one step in the compression end so that the
dictionaries in both compression and decompression ends
can operate synchronously. The detailed operations of the
PDLZW algorithm can be referred to in [9]. In the following,
we consider only the new version of the PDLZW algorithm.

2.4 PDLZW Compression Algorithm:

As described in [9] and [12], the PDLZW compression
algorithm is based on a parallel dictionary set that consists
of m small variable-word-width dictionaries, numbered from
0 to m-1 , each of which increases its word width by one

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1182

byte. More precisely, dictionary 0 has one byte word width,
dictionary 1 two bytes, and so on. The actual size of the
dictionary set used in a given application can be determined
by the information correlation property of the application.
To facilitate a general PDLZW architecture for a variety of
applications, it is necessary to do a lot of simulations for
exploring information correlation property of these
applications so that an optimal dictionary set can be
determined. The detailed operation of the proposed PDLZW
compression algorithm is described as follows. In the
algorithm, two variables and one constant are used. The
constant max_dict_no denotes the maximum number of
dictionaries, excluding the first single-character dictionary
(i.e., dictionary 0), in the dictionary set. The variable
max_matched_dict_no is the largest dictionary number of all
matched dictionaries and the variable matched_addr
identifies the matched address within the
max_matched_dict_no dictionary. Each compressed
codeword is a concatenation of max_matched_dict_no and
matched_addr.

Algorithm: PDLZW Compression

Input: The string to be compressed.
Output: The compressed codewords with each having log2K
bits. Each codeword consists of two components:
max_matched_dic_no and matched_addr, where K is the total
number of entries of the dictionary set.

Begin

1: Initialization.
1.1: string-1= null.
1.2: max_matched_dic_no =max_dict_no.
1.3: update_dict_no = max_matched_dict_no

update_string= Ø {empty}.
2: while (the input buffer is not empty) do
2.1: Prepare next max_dict_no +1characters for searching.
2.1.1: string-2 = read next.
(max_matched_dict_no +1) characters from the input
buffer.
2.1.2: string = string-1 || string -2.
{Where || is the concatenation operator}
2.2 Search string in all dictionaries in parallel and set the
max_matched_dict_no and matched_addr.
2.3: Output the compressed codeword containing
max_matched_dict_no || matched_addr.
2.4: if (max_matched_dict_no < max_dict_no and
update_string ≠ Ø) then
add the update_string to the entry pointed by UP
[update_dict_no] of dictionary [update_dict_no].
 {UP [update_dict_no] is the update pointer associated with
the dictionary}
2.5 Update the update pointer of the dictionary
[max_matched_dict_no + 1].
2.5.1 UP [max_matched_dict_no + 1] = UP
[max_matched_dict_no + 1] + 1

2.5.2 if UP[max_matched_dict_no + 1] reaches its upper
bound then reset it to 0. {FIFO update rule.}
2.6: update_string =extract out the first
(max_matched_dict_no + 2)
Bytes from string;
update_string_no= max_matched_dict_no + 1 .
2.7: string -1= shift string out the first
(max_matched_dict_no + 1) bytes.
End {End of PDLZW Compression Algorithm.}

2.5 PDLZW Decompression Algorithm:

To recover the original string from the compressed one, we
reverse the operation of the PDLZW compression algorithm.
This operation is called the PDLZW decompression
algorithm. By decompressing the original substrings from
the input compressed codewords, each input compressed
codeword is used to read out the original substring from the
dictionary set. To do this without loss of any information, it
is necessary to keep the dictionary sets used in both
algorithms, the same contents. Hence, the substring
concatenated of the last output substring with its first
character is used as the current output substring and is the
next entry to be inserted into the dictionary set. The detailed
operation of the PDLZW decompression algorithm is
described as follows. In the algorithm, three variables and
one constant are used. As in the PDLZW compression
algorithm, the constant max_dict_no denotes the maximum
number of dictionaries in the dictionary set. The variable
last_dict_no memorizes the dictionary address part of the
previous codeword. The variable last_output keeps the
decompressed substring of the previous codeword, while the
variable current_output records the current decompressed
substring. The output substring always takes from the
last_output that is updated by current_output in turn.

Algorithm: PDLZW Decompression

Input: The compressed codewords with each containing
log 2 K bits, where is the total number of entries of the
dictionary set.
Output: The original string.

Begin

1: Initialization.
1.1: if (input buffer is not empty) then
current_output= empty; last_output= empty;
addr= read next log2 k codeword from input buffer.
{where codeword = dict_no || dict_addr and || is the
concatenation operator.}
1.2 if (dictionary[addr] is defined) then
current_output = dictionary[addr];
last_output= current_output;
output = last_output;
update_dict_no= dict_no[addr] + 1
2: while (the input buffer is not empty) do

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1183

2.1: addr= read next log2k bit codeword from input buffer.
2.2{output decompressed string and update the
associated dictionary.}
2.2.1: current_output= dictionary[addr];
2.2.2: if(max_dict_no update_dict_no) then
add (last_output || the first character of current_output) to
the entry pointed by
UP[update_dict_no] of dicitionary [update_dict_no];
2.2.3: UP[update_dict_no] =UP[update_dict_no] + 1 .
2.2.4: if UP[update_dict_no] reaches its upper bound then
reset it to 0.
2.2.5: last_output =current_output;
Output= last_output;
update_dict_no= dict_no[addr] + 1
End {End of PDLZW Decompression Algorithm. }

3. Two Stage Architecture

The output code words from the PDLZW algorithm are not
uniformly distributed but each codeword has its own
occurrence frequency, depending on the input data statistics.
Hence, it is reasonable to use another algorithm to encode
statistically the fixed-length code output from the PDLZW
algorithm into a variable-length one. As seen in figure 4.3
because of using only PDLZW algorithm for different
dictionary size sometimes the compression ratio may
decrease as dictionary size increase for particular address
space. This irregularity can also be removed by using AH in
the second stage. Up to now, one of the most commonly used
algorithms for converting a fixed-length code into its
corresponding variable-length one is the AH algorithm.
However, it is not easily realized in VLSI technology since the
frequency count associated with each symbol requires a lot
of hardware and needs much time to maintain.
Consequently, in what follows, we will discuss some
approximated schemes and detail their features.

Algorithm: AHDB
 Input: The compressed codewords from PDLZW
algorithm.
Output: The compressed codewords.

Begin

1: Input pdlzw_output;
2: while (pdlzw_output!= null)
2.1: matched_index =search_ordered_list(pdlzw_output);
2.2: swapped_block
=determine_which_block_to_be_swapped(matched_index);
2.3: if (swapped_block!=k) then
2.3.1:swap(ordered_list[matched_index],ordered_list[point
er_of_swapped_block]);
2.3.2: pointer_of_swapped_block=
pointer_of_swapped_block + 1;
2.3.3: reset_check(pointer_of_swapped_block); {Divide the
pointer_of_swapped_block by two (or reset) when it
reaches a threshold.}

 else
2.3.4: if(matched_index!=0) then
Swap(list[matched_index],list[matched_index - 1]) ;
2.4: Input pdlzw_output;
End {End of AHDB Algorithm. }

3.1 Performance of PDLZW + AHDB

As described previously, the performance of the PDLZW
algorithm can be enhanced by incorporating it with the AH
algorithm, as verified from Fig. 4.3. The percentage of data
reduction increases more than 5% in all address spaces from
272 to 4096. This implies that one can use a smaller
dictionary size in the PDLZW algorithm if the memory size is
limited and then use the AH algorithm as the second stage to
compensate the loss of the percentage of data reduction.
From both Figs. 4.3 and 4.4 , we can conclude that
incorporating the AH algorithm as the second stage not only
increases the performance of the PDLZW algorithm but also
compensates the percentage of data reduction loss due to the
anomaly phenomenon occurred in the PDLZW algorithm. In
addition, the proposed scheme is actually a parameterized
compression algorithm because its performance varies with
different dictionary- set sizes but the architecture remains
the same. Furthermore, our design has an attractive feature:
although simple and, hence, fast but still very efficient, which
makes this architecture very suitable for VLSI technology.
The performance in percentage of data reduction of various
partitions using the 368- address dictionary of the PDLZW
algorithm followed by the AHDB algorithm is shown in
Tables VI and VII. The percentage of data reduction and
memory cost of various partitions using a 368-address
dictionary PDLZW algorithm followed by the AHDB
algorithm is depicted in Table VIII. To illustrate our design,
in what follows, we will use the PDLZW compression
algorithm with the 368-address dictionary set as the first
stage and the AHDB as the second stage to constitute the
two-stage compression processor. The decompression
processor is conceptually the reverse of the compression.
Counter part and uses the same data path. As a consequence,
we will not address its operation in detail in the rest of the
paper.

3.2 PROPOSED DATA COMPRESSION
ARCHITECTURE

In this section, we will show an example to illustrate the
hardware architecture of the proposed two-stage
compression scheme. The proposed two-stage architecture
consists of two major components: a PDLZW processor and
an AHDB processor, as shown in Fig. 6. The former is
composed of a dictionary set with partition {256, 64, 32, 8,
and 8}. Thus, the total memory required in the processor is
296 B (= 64×2 + 32×3 + 8×4 + 8×5) only. The latter is
centered around an ordered list and requires a content
addressable memory (CAM) of 414 B (=368 × 9B
).Therefore, the total memory used is a 710-B CAM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1184

3.3 PDLZW Processor

The major components of the PDLZW processor are CAMs, a
5-B shift register, and a priority encoder. The word widths of
CAMs increase gradually from 2 to 5 B with four different
address spaces: 64, 32, 8, and 8 words, as portrayed in Fig. 6.
The input string is shifted into the 5-B shift register. Once in
the shift register the search operation can be carried out in
parallel on the dictionary set. The address along with a
matched signal within a dictionary containing the prefix
substring of the incoming string is output to the priority
encoder for encoding the output codeword pdlzw_output, ,
which is the compressed codeword output from the PDLZW
processor. This codeword is then encoded into canonical
Huffman code by the AHDB processor. In general, it is not
impossible that many (up to five) dictionaries in the
dictionary set containing prefix substrings of different
lengths of the incoming string simultaneously. In this case,
the prefix substring of maximum length is picked out and the
matched address within its dictionary along with the
matched signal of the dictionary is encoded and output to the
AHDB processor.

In order to realize the update operation of the dictionary set,
each dictionary in the dictionary set except the dictionary 0
has its own update pointer (UP) that always points to the
word to be inserted next. The update operation of the
dictionary set is carried out as follows. The maximum- length
prefix substring matched in the dictionary set is written to
the next entry pointed by UP the of next dictionary along
with the next character in the shift register. The update
operation is inhibited if the next dictionary number is
greater than or equal to the maximum dictionary number.

3.4 AHDB Processor

The AHDB processor encodes the output codewords from
the PDLZW processor. As described previously, its purpose is
to recode the fixed-length codewords into variable-length
ones for taking the advantage of statistical property of the
codewords from the PDLZW processor and, thus, to remove
the information redundancy contained in the codewords.
The encoding process is carried out as follows. The
pdlzw_output, which is the output from the PDLZW
processor and is the “symbol” for the AHDB algorithm, is
input into swap unit for searching and deciding the matched
index, , from the ordered list. Then the swap unit exchanges
the item located in n with the item pointed by the pointer of
the swapped block. That is, the more frequently used symbol
bubbles up to the top of the ordered list. The index
ahdb_addr of the “symbol” pdlzw_output of the ordered list is
then encoded into a variable-length codeword (i.e., canonical
Huffman codeword) and output as the compressed data for
the entire processor. The operation of canonical Huffman
encoder is as follows. The ahdb_addr is compared with all
codeword_offset : 1, 9, 18, 31, 101, 154, 171, and 186
simultaneously, as shown in Table IV and Fig. 6, for deciding

the length of the codeword to be encoded. Once the length is
determined, the output codeword can be encoded as
ahdb_addr- code_offset + first_codeword. For example, if
ahdb_addr=38 from Table IV, the length is 8 b since 38 is
greater than 31 and smaller than 101. The output codeword
is: 38-31+44=001100112 As described above, the
compression rate is between 1–5 B per memory cycle.

Table 1 Performance Comparison in Percentage of Data
Reduction for Text file between Compress, PDLZW + AH,
PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB

Table 2 Performance Comparison in Percentage of Data
Reduction for Executable file between Compress, PDLZW +
AH, PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB

4. Performance

Table 1 and 2 shows the compression ratio of the LZW
(compress), the AH algorithm, PDLZW+AHAT, PDLZW+AHFB
, and PDLZW+AHDB. The dictionary set used in PDLZW is
only 368 addresses (words) and partitioned as
{256,64,32,8,8}.From the table, the compression ratio of
PDLZW + AHDB is competitive to that of the LZW (i.e.,
compress) algorithm in the case of executable files but is
superior to that of the AH algorithm in both cases of text and
executable files.

Because the cost of memory is a major part of any
dictionary- based data compression processor discussed in
the paper, we will use this as the basis for comparing the
hardware cost of different architectures. According to the
usual implementation of the AH algorithm, the memory
requirement of an N- symbol alphabet set is (N + 1) + 4 (2N
-1) integer variables [18], which is equivalent to 2 × {(N +1)
+ 4(2N-1)} = 4.5kB where N=256. The memory required in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1185

the AHDB algorithm is only a 256-B CAM, which corresponds
to the 384-B static random-access memory (SRAM). Here, we
assume the complexity of one CAM cell is 1.5 times that of a
SRAM cell [21]. However, as seen from Tables I and II, the
average performance of the AHDB algorithm is only 1.65%=
((39.50-36.86) + (26.89-26.23)/2)% worse than that of the
AH algorithm.

After cascading with the PDLZW algorithm, the total memory
cost is increased to 710-B CAM equivalently, which
corresponds to 1065 B of RAM and is only one-fourth of that
of the AH algorithm. However, the performance is improved
by 8.11%=(39.66%-31.55%) where numbers 39.66% and
31.55% are from Tables VIII and III, respectively.

5. Results

The proposed two-stage compression/decompression
processor given in Fig 5.3 has been synthesized and
simulated using Verilog HDL. The resulting chip has a die
area of 4.3× 4.3mm and a core area of 3.3 ×3.3 mm . The
simulated power dissipation is between 632 and 700 mW at
the operating frequency of 100 MHz. The compression rate is
between 16.7 and 125 MB/s; the decompression rate is
between 25 and 83 MB/s. Since we use D-type flip-flops
associated with Two Stage Architecture needed gates as the
basic memory cells of CAMs (the dictionary set in the PDLZW
processor) and of ordered list (in the AHDB processor),
these two parts occupy most of the chip area. The remainder
only consumes about 20% of the chip area. To reduce the
chip area and increase performance, the full-custom
approach can be used. A flip-flop may take between 10 to 20
times the area of a six-transistor static RAM cell , a basic CAM
cell may take up to 1.5 times the area (nine transistors) of a
static RAM cell. Thus, the area of the chip will be reduced
dramatically when full-custom technology is used. However,
our HDL-based approach can be easily adapted to any
technology, such as FPGA, CPLD, or cell library

Fig- 2 Two-stage Architecture for compression

 6. CONCLUSION

 A new two-stage architecture for lossless data compression
applications, which uses only a small-size dictionary, is
proposed. This VLSI data compression architecture
combines the PDLZW compression algorithm and the AH
algorithm with dynamic-block exchange. The PDLZW
processor is based on a hierarchical parallel dictionary set
that has successively increasing word widths from 1 to 5 B
with the capability of parallel search. The total memory used
is only a 296-B CAM. The second processor is built around an
ordered list constructed with a CAM of 414B (= 368 × 9B)
and a canonical Huffman encoder. The resulting architecture
shows that it is not only to reduce the hardware cost
significantly but also easy to be realized in VLSI technology
since the entire architecture is around the parallel dictionary
set and an ordered list such that the control logic is
essentially trivial. In addition, in the case of executable files,
the performance of the proposed architecture is competitive
with that of the LZW algorithm (compress). The data rate for
the compression processor is at least 1 and up to 5 B per
memory cycle. The memory cycle is mainly determined by
the cycle time of CAMs but it is quite small since the
maximum capacity of CAMs is only 64 × 2 B for the PDLZW
processor and 414 B for the AHDB processor. Therefore, a
very high data rate can be achieved.

REFERENCES

[1] Ming-Bo Lin, Jang-Feng Lee and Gene Eu Jan "LZW data

compression and decompression algorithm and its
hardware architecture," IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol.14, no.9, pp.925-936, Sep. 2006..

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. New York: McGraw-
Hill, 2001.

[3] R. C. Gonzalez and R. E.Woods, Digital Image Processing.
Reading, MA: Addison-Welsley, 1992.

[4] S. Henriques and N. Ranganathan, “A parallel
architecture for data compression,” in Proc. 2nd IEEE
Symp. Parall. Distrib. Process., 1990, pp. 260–266.

[5] S.-A. Hwang and C.-W. Wu, “Unified VLSI systolic array
design for LZ data compression,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 9, no. 4, pp. 489–499, Aug.
2001.

[6] S.-A. Hwang and C.-W. Wu, “Unified VLSI systolic array
design for LZ data compression,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 9, no. 4, pp. 489–499, Aug.
2001.

[7] B. Jung and W. P. Burleson, “Efficient VLSI for Lempel-
Ziv compression in wireless data communication
networks,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 6, no. 3, pp. 475–483, Sep. 1998.

[8] D. E. Knuth, “Dynamic Huffman coding,” J. Algorithms,
vol. 6, pp. 163–180, 1985.

[9] M.-B. Lin, “A parallel VLSI architecture for the LZW data
compression algorithm,” in Proc. Int. Symp. VLSI
Technol., Syst., Appl., 1997, pp. 98–101.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1186

[10] J. L. Núñez and S. Jones, “Gbit/s lossless data
compression hardware,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 11, no. 3, pp. 499–510, Jun. 2003.

[11] H. Park and V. K. Prasanna, “Area efficient VLSI
architectures for Huffman coding,” IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 40, no. 9, pp.
568–575, Sep. 1993.

[12] N. Ranganathan and S. Henriques, “High-speed vlsi
designs for lempel-ziv-based data compression,” IEEE
Trans. Circuits Syst. II. Analog Digit. Signal Process., vol.
40, no. 2, pp. 96–106, Feb. 1993.

[13] S. Khalid, Introduction to Data Compression, 2nd ed. San
Mateo, CA: Morgan Kaufmann, 2000.

[14] B. W. Y.Wei, J. L. Chang, and V. D. Leongk, “Single-chip
lossless data compressor,” in Proc. Int. Symp. VLSI
Technol., Syst., Appl., 1995, pp. 211–213.

[15] T. A. Welch, “A technique for high-performance data
compression,” IEEE Comput., vol. 17, no. 6, pp. 8–19, Jun.
1984.

[16] I. H. Witten, Alistair, and T. C. Bell, Managing
Compressing and Indexing Documents and Images, 2nd
ed. New York: Academic, 1999, pp. 36–51.

[17] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Trans. Inf. Theory,
vol. IT-23, no. 3, pp. 337–343, Mar. 1977.

[18] I. H. Witten, Alistair, and T. C. Bell, Managing
Compressing and Indexing Documents and Images,
2nd ed. New York: Academic, 1999, pp. 36–51.

