Analyze - College Entrance Structure - Manual calculation (Hardy Cross Method) and by Computer Program (Finite Element Method)

Sandeep Kumar Sharma
HOD (Civil Deptt.), Sri Balaji College of Engineering \& Technology, Jaipur.

Abstract

The latest trend in structure analysis and design is to use the computer to do all the work as a black box. While doing analysis by software, we don't bother about the theoretical concept. I agree that manual methods are time consuming and tedious but they are prove to be highly useful as they give us a rough idea or say check on the detailed analysis .This paper deal the complete analysis of an entrance porch of a college by moment distribution method and by using software STAAD PRO and comparing results of practically designed entrance porch by me.

Index terms -Moment distribution method, Stiffness, Carry-Over Factor, Distribution Factor, Sway, Staad- Pro.

1. INTRODUCTION

Moment distribution method was introduced by Professor Hardy Cross in 1932. This method has remained the most popular method of tackling indeterminate beams and rigid frames. Moment distribution method uses an iterative technique and one goes on carrying on the cycle to reach to a desired degree of accuracy. STAAD PRO is a comprehensive integrated finite element analysis and design solution. The finite element method is a numerical method for solving problems of structural analysis, heat transfer, fluid flow, mass transport etc. Here we analyze an entrance porch of a college building on which two statues of 2500 kg each was fixed.

2. PLAN OF PORCH STRUCTURE

The typical floor plan of entrance porch of area 20.79 sq. m. at college campus is shown above. Part -section show some details of porch structure.

3. CALCULATION OF LOAD

(A)Load per unit area of terrace slab
R.C.C. slab self weight
$\left\{25 \mathrm{KN} / \mathrm{m}^{3} * 0.125 \mathrm{~m}=3.125 \mathrm{KN} / \mathrm{m}^{2}\right\}$
Water Proofing
$[2.0+0.0] \mathrm{kn} / \mathrm{m}^{2}$
Floor Finish
Live Load
$\left[\begin{array}{ll}0.0 & +2.0] \mathrm{kn} / \mathrm{m}^{2}\end{array}\right.$

$$
\text { Sum }=[6.125+2.0] \mathrm{kn} / \mathrm{m}^{2}
$$

(B) Load taken by Beam B_{1} (In our case, it is same for beam B_{2})
(i)From slab portion (consider one way distribution) $8.125 \mathrm{kn} / \mathrm{m}^{2} * 3 \mathrm{~m} / 2=12.19 \mathrm{kn} / \mathrm{m}$
(ii)Beam self weight $\quad=4.0 \mathrm{kn} / \mathrm{m}$
$\left\{25 \mathrm{kn} / \mathrm{m} 3^{*} 0.4 \mathrm{~m}^{*} 0.4 \mathrm{~m}\right\}$
Total Load (w) $\quad=16.19 \mathrm{kn} / \mathrm{m}$
Design u.d.l. load $\left(w_{u}\right)=1.5$ * $16.19=\mathbf{2 4 . 2 8 5} \mathbf{K n} / \mathbf{m}$
(iii) Self weight of statue fix at top of beam B_{1}

$$
\mathrm{Q}_{1}=2500 \mathrm{~kg}=24525 \mathrm{~N} \& \mathrm{Q}_{2}=2500 \mathrm{~kg}=24525 \mathrm{~N}
$$

Design concentrated load $\mathrm{Q}_{1 \mathrm{u}} \& \mathrm{Q}_{2 \mathrm{u}}$ each equal to $1.5^{*} 24.525 \mathrm{Kn}=\mathbf{3 6 . 7 9} \mathbf{K n}$
4. ANALYZE BY MOMENT DISTRIBUTION METHOD

Data required:

Section of members C_{1} to C_{4}

Section of members B_{1} and B_{2}
Length of members C_{1} to C_{4}
Length of members B_{1} and B_{2}
$-400 \mathrm{~mm} * 400 \mathrm{~mm}$
$-400 \mathrm{~mm} * 400 \mathrm{~mm}$

- 4350mm
- 6000mm

Moment of inertia of members $\quad \mathrm{C}_{1}$ to $\mathrm{C}_{4}-\mathrm{I}=21.33 * 10^{8} \mathrm{~mm}^{4}$
Moment of inertia of members $\quad B_{1}$ to $B_{2}-I=21.33 * 10^{8} \mathrm{~mm}^{4}$

JOINT	MEMBER	RELATIVE STIFFNESS	DISTRIBUTION FACTOR
	$\mathrm{~J}_{2} \mathrm{~J}_{1}$	$\mathrm{I} / 4.35$	0.58
	$\mathrm{~J}_{2} \mathrm{~J}_{3}$	$\mathrm{I} / 6$	0.42
$\mathrm{~J}_{3}$	$\mathrm{~J}_{3} \mathrm{~J}_{2}$	$\mathrm{I} / 6$	0.42
	$\mathrm{~J}_{3} \mathrm{~J}_{4}$	$\mathrm{I} / 4.35$	0.58

Non Sway:

JOINT	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$		$\mathbf{J}_{\mathbf{3}}$		$\mathbf{J}_{\mathbf{3}}$
MEMBER	$\mathbf{J}_{\mathbf{1}} \mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{2}} \mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}} \mathbf{J}_{\mathbf{3}}$	$\mathbf{J}_{\mathbf{3}} \mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{3}} \mathbf{J}_{\mathbf{4}}$	$\mathbf{J}_{\mathbf{4}} \mathbf{3}_{\mathbf{3}}$
D.F.		$\mathbf{0 . 5 8}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 5 8}$	
C.0.	$\mathbf{0 . 5}$					
F.E.M.			$\mathbf{- 1 3 1 . 1 0 5}$	$\mathbf{+ 9 4 . 3 1 5}$		
Balancing		76.0409	55.0641	-39.6123	-54.7027	
C.O.	38.02045		-19.8062	27.53205		-27.3514
Balancing		11.48757	8.318583	-11.5635	-15.9686	

C.O.	5.743784		-5.78173	4.159292		-7.98429
Balancing		3.353404	2.428327	-1.7469	-2.41239	
C.0.	1.6767		-0.87345	1.2142		-1.2062
Balancing		0.5066	0.36685	-0.509964	-0.70424	
C.O.	0.2533		-0.25498	0.1834		-0.35212
Balancing		0.14789	0.10709	-0.077	-0.1064	
TOTAL	$\mathbf{+ 4 5 . 6 9} \mathrm{knm}$	$\mathbf{+ 9 1 . 5 4} \mathrm{knm}$	$\mathbf{- 9 1 . 5 4} \mathrm{knm}$	$\mathbf{+ 7 3 . 8 9} \mathrm{knm}$	$\mathbf{- 7 3 . 8 9} \mathrm{knm}$	$\mathbf{- 3 6 . 8 9} \mathrm{knm}$

Horizontal reaction at $\mathrm{J}_{1}, \mathrm{H}_{J 1}=\frac{M_{J_{1} J_{2}}+M_{J_{2} J_{1}}}{4.35}=\frac{+45.69+91.54}{4.35}=31.547 \mathrm{Kn}(\rightarrow)$
Horizontal reaction at $\mathrm{J}_{2}, \mathrm{H}_{\mathrm{J} 4}=\frac{M_{J_{3} J_{4}}+M_{J_{4} J_{3}}}{4.35}=\frac{-73.89-36.89}{4.35}=25.467 \mathrm{Kn}(\leftarrow)$
The value of ' \mathbf{P} ' preventing side sway $=31.547-25.467=\mathbf{6 . 0 8} \mathbf{K n}(\leftarrow)$

Side Sway:

Now let a sway force $\mathbf{S}=\mathbf{6 . 0 8} \mathbf{K n}(\rightarrow)$ be applied at J_{2}. This will cause the columns $\mathrm{J}_{1} \mathrm{~J}_{2}$ and $\mathrm{J}_{3} \mathrm{~J}_{4}$ to rotate in clockwise direction and thus anti-clock moments will be induced at column heads such that
$\frac{M_{J_{2} J_{1}}}{M_{J_{3} J_{4}}}=\frac{\frac{I}{L^{2}}}{\frac{L}{L^{2}}}=\frac{1}{1}$
We shall assume arbitrary values of sway moments in the above proportion.
Let $M_{J_{2} J_{1}}=-1.0 \mathrm{Knm}$ and $M_{J_{3} J_{4}}=-1.0 \mathrm{Knm}$
So, $M_{J_{1} J_{2}}$ is also-1.0 Knm and $M_{J_{4} J_{3}}$ is also -1.0 Knm

JOINT	J_{1}	J_{2}		J_{3}		J_{3}
MEMBER	$\mathrm{J}_{1} \mathrm{~J}_{2}$	$\mathrm{J}_{2} \mathrm{~J}_{1}$	$\mathrm{J}_{2} \mathrm{~J}_{3}$	$\mathrm{J}_{3} \mathrm{~J}_{2}$	$\mathrm{J}_{3} \mathrm{~J}_{4}$	$\mathrm{J}_{4} \mathrm{~J}_{3}$
D.F.		0.58	0.42	0.42	0.58	
C.O.	0.5	0.5	0.5	0.5	0.5	0.5
F.E.M.	-1.0	-1.0			-1.0	-1.0
Balancing		+0.58	+0.42	+0.42	+0.58	
C.O.	+0.29		+0.21	+0.21		+0.29
Balancing		-0.1218	-0.0882	-0.0882	-0.1218	
C.O.	-0.0609		-0.0441	-0.0441		-0.0609
Balancing		+0.0256	+0.0185	+0.0185	+0.0256	
C.O.	+0.0128		+0.0093	+0.0093		+0.0128
Balancing		-0.0054	-0.0039	-0.0039	-. 0054	
TOTAL	-0.758 knm	-0.522 knm	+0.522 knm	+0.522 knm	-0.522 knm	-0.758 knm

Horizontal reaction at $\mathrm{J}_{1}, \mathrm{H}_{J 1}=\frac{M_{J_{1} J_{2}}+M_{J_{2} J_{1}}}{4.35}=\frac{-0.758-0.522}{4.35}=0.294 \mathrm{Kn}(\leftarrow)$
Horizontal reaction at $\mathrm{J}_{2}, \mathrm{H}_{\mathrm{J} 4}=\frac{M_{J_{3} J_{4}}+M_{J_{4} J_{3}}}{4.35}=\frac{-0.758-0.522}{4.35}=0.294 \mathrm{Kn}(\leftarrow)$
So for $\sum \mathrm{H}=0$, the sway force $(\mathrm{S})=\mathrm{H}_{\mathrm{J} 1}+\mathrm{H}_{\mathrm{J} 4}=0.588 \mathrm{Kn}(\rightarrow)$
When sway force $(\mathrm{S})=0.588 \mathrm{Kn}(\rightarrow)$ then moment induced are

JOINT	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{3}$		
TOTAL	-0.758 knm	-0.522 knm	+0.522 knm	+0.522 knm	-0.522 knm	-0.758 knm

But magnitude of actual sway force is equal to $\mathrm{P}=\mathbf{6 . 0 8} \mathbf{K n}$. So, moment induced are

JOINT	\mathbf{J}_{1}	\mathbf{J}_{2}		\mathbf{J}_{3}	\mathbf{J}_{3}
TOTAL	-7.838 knm	-5.4 knm	+5.4 knm	$+\mathbf{5 . 4} \mathrm{knm}$	$-\mathbf{5 . 4} \mathrm{knm}$

Moment in Non -Sway situation

JOINT	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{3}}$	$\mathbf{J}_{\mathbf{3}}$		
TOTAL	$\mathbf{+ 4 5 . 6 9 \mathrm { knm }}$	$\mathbf{+ 9 1 . 5 4 \mathrm { knm }}$	$-\mathbf{- 9 1 . 5 4} \mathrm{knm}$	$\mathbf{+ 7 3 . 8 9 \mathrm { knm }}$	$\mathbf{- 7 3 . 8 9} \mathrm{knm}$	$-\mathbf{- 3 6 . 8 9} \mathrm{knm}$

Final Moments

JOINT	J_{1}	$\mathrm{~J}_{2}$		$\mathrm{~J}_{3}$		\mathbf{J}_{3}
TOTAL	$+\mathbf{3 7 . 8 5} \mathrm{knm}$	+86.14 knm	-86.14 knm	$+\mathbf{7 9 . 2 9} \mathrm{knm}$	$-\mathbf{7 9 . 2 9} \mathrm{knm}$	$-\mathbf{- 4 4 . 7 3 \mathrm { knm }}$

5. ANALYZE BY STAAD PRO SOFTWARE

Input file:

JOINT COORDINATES
100 0; 204.35 0; 364.350 ; 460 0;
MEMBER INCIDENCES
11 2; 22 3; 33 4;
DEFINE MATERIAL START
ISOTROPIC CONCRETE
E $2.17185 \mathrm{e}+007$
POISSON 0.17
DENSITY 23.5616
ALPHA 1e-005
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 27579
END DEFINE MATERIAL
MEMBER PROPERTY
1 TO 3 PRIS YD 0.4 ZD 0.4
CONSTANTS
MATERIAL CONCRETE ALL

SUPPORTS
14 FIXED
LOAD 1 LOADTYPE Dead TITLE DEAD
MEMBER LOAD
2 UNI GY - 24.285
2 CON GY -36.79 1
2 CON GY -36.79 2
PERFORM ANALYSIS PRINT ALL
PERFORM ANALYSIS PRINT ALL
FINISH

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 06 Issue: 01 | Jan 2019
www.irjet.net
p-ISSN: 2395-0072

6. CONCLUSION

By doing manual analysis, we got clarity on structural concept and gained more knowledge than analyze using software. Results obtained from Hardy Cross method and from STAAD - PRO software which is based on F.E.M. are same. We have felt the real engineering practice in this work.

7. ACKNOWLEDGEMENT

My sincere thanks to my department colleagues for their constraint help during my research.

REFERENCES

[1] Hardy Cross and N. D. Morgan, Continuous frames of Reinforced Concrete (Wiley,1932).
[2] Structural analysis volume -2 by BHAVIKATTI.
[3] Structural analysis by Dr. R. Vaidyanathan.

