\_\_\_\_\_\_\*\*\*

www.irjet.net

# Response of Multistory Building Located on 20° and 30° Sloping Ground under Seismic Loading

Mohd. Arif Lahori<sup>1</sup>, Sagar Jamle<sup>2</sup>

<sup>1</sup>M Tech Scholar, Department of Civil Engineering, Oriental University, Indore (M. P.), India <sup>2</sup>Assistant Professor, Department of Civil Engineering, Oriental University, Indore (M. P.), India

**Abstract** - Construction space on plain ground is main criteria now days since there is the scarcity of land and it has been observed that the construction site shifted on hill. Since the main thing is how to maintain the structure that would not to be collapse under seismic activities and under sloping ground. Construction on steep slope is very hard since the structural weight is transferring on slope. The objective of the present study is to perform the analysis and comparison of building situated on plane ground and on sloping ground. For sloping ground, step back structures and step back set back structures were taken and total 5 building cases B1 to B5 analyzed by software approach. To determine how the structural design parameters evolve by taking 20 degree and 30 degree slope. Basic parameters such as shear forces, bending moments, torsional moments in both beams and columns are taken into account. Staad pro software with response spectrum method is used in this work. Building with Step Back Set Back configuration (30 degree inclination) suited the best of all the structural cases.

Volume: 06 Issue: 01 | Jan 2019

Key Words: Hill slope angle, Multi-story building, Response spectrum analysis, Seismic forces, Sloping Ground, Step back frame, Step back set back frame.

### 1. INTRODUCTION

Indian seismic zones define the shaking properties of the ground, since it is highly recommend designing the structure seismic proof. All the structures should be analyzed before the construction since there are many possibilities of failure. But what if the structure supposed to be constructed on hill like in northern and north eastern states of India. Since the slope varies there are many possibilities that during an earthquake, structure would collapse down from a hill. To make the structure which maintain its own stability under steep slope under earthquake.

**Step Back Structures:-** The structure maintaining its horizontal plane same as under plain ground but the lower part maintain its sloping position.

**Step Back Set Back Structures:-** The structure not maintaining its horizontal plane but arrange just like steps and the lower part maintain its sloping position.

### 2. AIM OF THE PRESENT STUDY

In seismic prone regions, there are many possibilities of hazard or destruction to a structure. To make the structure seismic proof it is essential to analyze the multistory building on 20 degree and 30 degree sloping ground under earthquake effects to determine its design parameters. The various purposes of this work are as follows:

e-ISSN: 2395-0056

p-ISSN: 2395-0072

- 1. To explore the possibilities of overall structural resistance of Step back and Step back set back structure at  $20^{\circ}$  and  $30^{\circ}$  on hill slope.
- 2. To take different cases and comparing them among each other by using Response Spectrum Method of dynamic analysis using Staad pro software.
- 3. To determine maximum Axial Forces in columns at ground level for various cases.
- 4. To find and examine maximum Shear Forces in columns for various cases.
- 5. To show the variation of maximum Bending Moments in columns for various cases.
- 6. To investigate maximum Shear Forces in beams parallel to X and Z direction for various cases.
- 7. To study and compare maximum Bending Moments in beams along X and Z direction for various cases.
- 8. To evaluate maximum Torsional Moments in beams along X and Z directions.

#### 3. MODELING OF VARIOUS STRUCTURAL CASES

For this study, a standard residential G+8 storied building is taken having story height of each floor is 3.66 m and overall building height is taken as 36.60 m. The size of beams is taken as 500 mm x 300 mm, interior and exterior columns are 450 mm x 450 mm and thickness of slab is 125 mm respectively. The built up area of the structure is taken as 288 sq. m. A total of 5 building cases have taken for analysis after analyzing various research papers. These cases are numbered as CASE B1 to B5 mentioned below consist of building on plain ground, step back configuration with 20 degree and 30 degree inclination and Step back set back configuration with 20 degree and 30 degree inclination such that these modeled structures are situated on sloping ground.. Dead load as per IS 875 part I is taken as 12 KN/m2 on intermediate floors, 10 KN/m2 on roof, Live load as per IS 875 part II is taken as 2 KN/m2. Zone factor is taken as 0.36,

Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

Importance factor taken as 1, response reduction factor taken as 5.

The fundamental natural period (Ta) for moment resisting frame building with brick infill panels are taken for both X and Z direction by using formula:-

$$T_a = \frac{0.09h}{\sqrt{d}}$$

All the cases are assumed to be placed over medium soil condition and situated at earthquake zone V as per Indian Standard. Modeling and analyzing are performed in Staad Pro software.

### 4. VARIOUS CASES WITH RESPECT TO DIFFERENT **BUILDING CONFIGURATIONS**

- CASE B1 General building on plane ground (0 degree inclination)
- CASE B2 Building with Step Back configuration (20 degree inclination)
- CASE B3 Building with Step Back configuration (30 degree inclination)
- CASE B4 Building with Step Back Set Back configuration (20 degree inclination)
- CASE B5 Building with Step Back Set Back configuration (30 degree inclination)

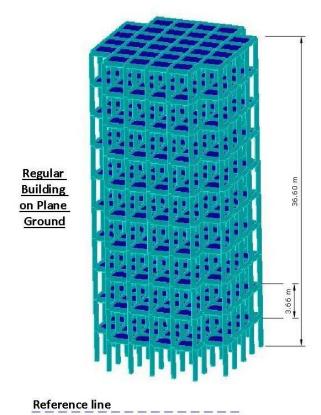
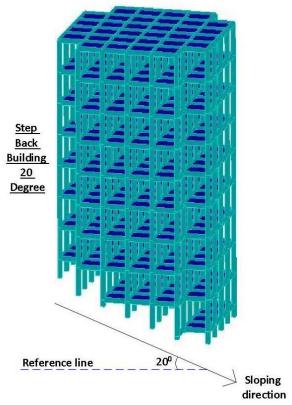




Fig -1: Regular Building on Plane Ground



e-ISSN: 2395-0056

Fig -2: Step Back Building 20 Degree

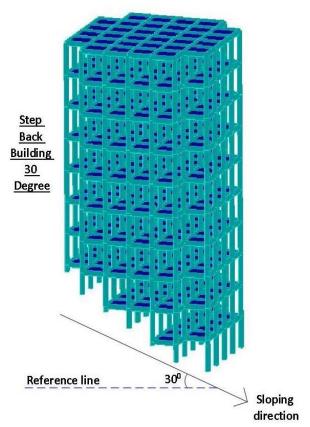



Fig -3: Step Back Building 30 Degree

Volume: 06 Issue: 01 | Jan 2019

www.irjet.net

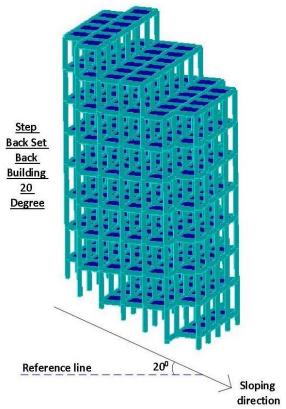



Fig -4: Step Back Set Back Building 20 Degree

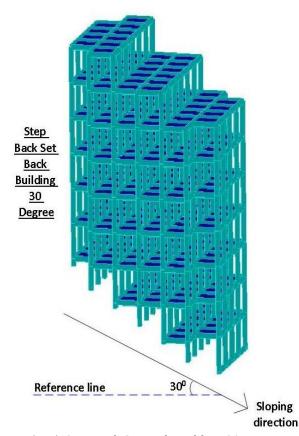
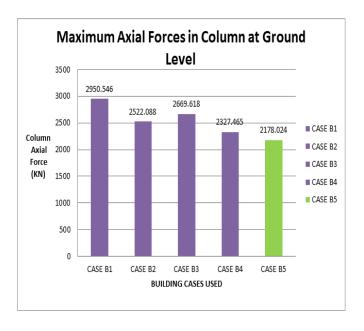



Fig -5: Step Back Set Back Building 30 Degree

## 5. COMPARATIVE ANALYSIS OF OBTAINED RESULTS


e-ISSN: 2395-0056

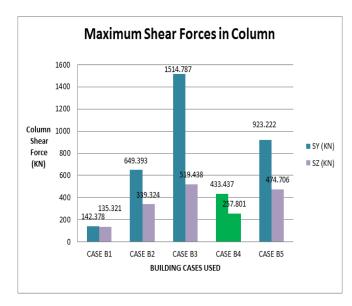
p-ISSN: 2395-0072

By using response spectrum method, all the five building modeled cases are modeled and analyzed systematically by taking earthquake effects in both the directions. Comparison of the selected cases are done keeping in mind the step back and step back set back frame of 20 degree and 30 degree over a hilly slope Results evaluated by software approach are shown both in tabular form as well as graphical form.

Table -1: Maximum Axial Forces in column at ground level

| CASES   | Column<br>Axial Force<br>(KN) | Case that creates least axial force                  |
|---------|-------------------------------|------------------------------------------------------|
| CASE B1 | 2950.546                      |                                                      |
| CASE B2 | 2522.088                      | CACE DE (gomnaring the worst                         |
| CASE B3 |                               | CASE B5 (comparing the worst case in sloping ground) |
| CASE B4 | 2327.465                      | case in stoping ground)                              |
| CASE B5 | 2178.024                      |                                                      |

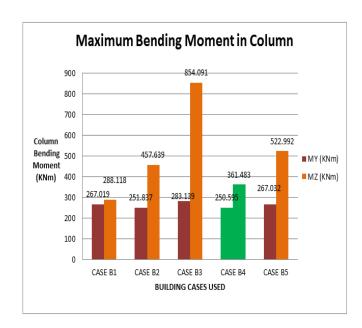



**Graph -1**: Graphical representation of Maximum Axial Forces in column at ground level

www.irjet.net

Table -2: Maximum Shear Forces in columns

Volume: 06 Issue: 01 | Jan 2019


| CASES   | Column<br>Shear Force<br>(KN) |                  | Case that creates  |
|---------|-------------------------------|------------------|--------------------|
|         | Shear<br>along Y              | Shear<br>along Z | least shear force  |
| CASE B1 | 142.378                       | 135.321          |                    |
| CASE B2 | 649.393                       | 339.324          | CASE B4 (comparing |
| CASE B3 | 1514.787                      | 519.438          | the worst case in  |
| CASE B4 | 433.437                       | 257.801          | sloping ground)    |
| CASE B5 | 923.222                       | 474.706          |                    |

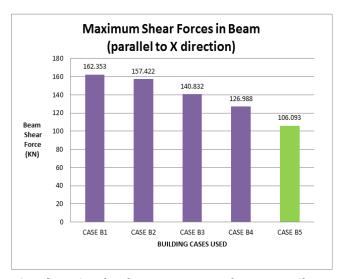


**Graph -2**: Graphical representation of Maximum Shear Forces in columns

Table -3: Maximum Bending Moment in columns

| CASES   | Column<br>Bending Moment<br>(KNm) |         | Case that creates least bending |
|---------|-----------------------------------|---------|---------------------------------|
|         | Moment                            | Moment  | moment                          |
|         | along Y                           | along Z |                                 |
| CASE B1 | 267.019                           | 288.118 |                                 |
| CASE B2 | 251.837                           | 457.639 | CASE B4 (comparing              |
| CASE B3 | 283.139                           | 854.091 | the worst case in               |
| CASE B4 | 250.595                           | 361.483 | sloping ground)                 |
| CASE B5 | 267.032                           | 522,992 |                                 |




e-ISSN: 2395-0056

p-ISSN: 2395-0072

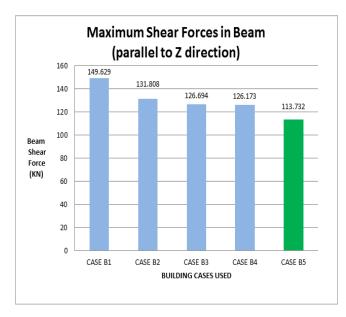
**Graph -3**: Graphical representation of Maximum Bending Moment in columns

**Table -4:** Maximum Shear Forces in beams parallel to X direction

| CASES   | Beam<br>Shear Force<br>(parallel to X<br>direction)<br>(KN) | Case that creates<br>least shear forces<br>in beams |
|---------|-------------------------------------------------------------|-----------------------------------------------------|
| CASE B1 | 162.353                                                     | CACE DE                                             |
| CASE B2 | 157.422                                                     | CASE B5                                             |
| CASE B3 | 140.832                                                     | (comparing the worst case in                        |
| CASE B4 | 126.988                                                     | sloping ground)                                     |
| CASE B5 | 106.093                                                     | Stoping ground)                                     |



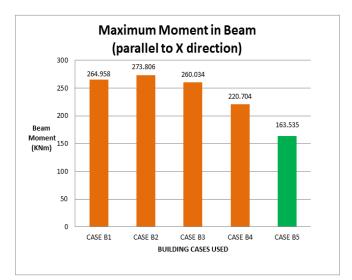
**Graph -4**: Graphical representation of Maximum Shear Forces in beams parallel to X direction


© 2019, IRJET

www.irjet.net

**Table -5:** Maximum Shear Forces in beams parallel to Z direction

Volume: 06 Issue: 01 | Jan 2019


| CASES   | Beam<br>Shear Force<br>(parallel to Z<br>direction)<br>(KN) | Case that creates least shear forces in beams |
|---------|-------------------------------------------------------------|-----------------------------------------------|
| CASE B1 | 149.629                                                     |                                               |
| CASE B2 | 131.808                                                     | CASE B5 (comparing the                        |
| CASE B3 | 126.694                                                     | worst case in sloping                         |
| CASE B4 | 126.173                                                     | ground)                                       |
| CASE B5 | 113.732                                                     |                                               |

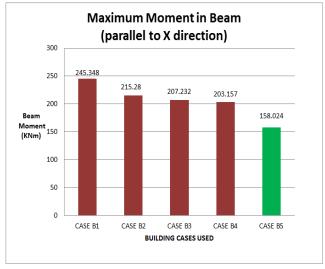


**Graph -5**: Graphical representation of Maximum Shear Forces in beams parallel to Z direction

**Table -6:** Maximum Bending Moment in beams along X direction

| CASES   | Beam Bending Moment (along X direction) (KNm) | Case that creates least<br>bending moment in<br>beams |
|---------|-----------------------------------------------|-------------------------------------------------------|
| CASE B1 | 264.958                                       |                                                       |
| CASE B2 | 273.806                                       | CASE B5 (comparing the                                |
| CASE B3 | 260.034                                       | worst case in sloping                                 |
| CASE B4 | 220.704                                       | ground)                                               |
| CASE B5 | 163.535                                       |                                                       |



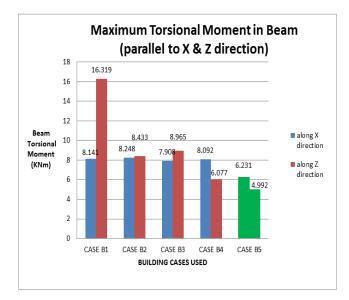

e-ISSN: 2395-0056

p-ISSN: 2395-0072

**Graph -6**: Graphical representation of Maximum Bending Moment in beams along X direction

**Table -7:** Maximum Bending Moment in beams along Z direction

| CASES   | Beam Bending Moment (along Z direction) (KNm) | Case that creates least<br>bending moment in<br>beams |
|---------|-----------------------------------------------|-------------------------------------------------------|
| CASE B1 | 245.348                                       |                                                       |
| CASE B2 | 215.280                                       | CASE B5 (comparing the                                |
| CASE B3 | 207.232                                       | worst case in sloping                                 |
| CASE B4 | 203.157                                       | ground)                                               |
| CASE B5 | 158.024                                       |                                                       |




**Graph -7**: Graphical representation of Maximum Bending Moment in beams along Z direction

Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

**Table -8:** Maximum Torsional Moment in beams along X and Z direction

| CASES   | Beam Torsional Moment (along X direction) (KNm) | Beam Torsional Moment (along Z direction) (KNm) | Case that creates<br>least torsional<br>moment in<br>beams |
|---------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|
| CASE B1 | 8.141                                           | 16.319                                          | CACE DE                                                    |
| CASE B2 | 8.248                                           | 8.433                                           | CASE B5                                                    |
| CASE B3 | 7.908                                           | 8.965                                           | (comparing the worst case in                               |
| CASE B4 | 8.092                                           | 6.077                                           | sloping ground)                                            |
| CASE B5 | 6.231                                           | 4.992                                           | Sioping ground)                                            |



**Graph -8**: Graphical representation of Maximum Torsional Moment in beams along X and Z direction

### 6. CONCLUSION AND RECOMMENDATIONS

The following conclusion has been investigated by different model configurations are as follows:-

- 1. Total 5 different cases used in this work. The main focus in this work is to show how the values differ from each other under 20 degree and 30 degree.
- 2. Maximum Axial forces in column at ground level seem to be low in case of Case B5, since the load distributed on sloping ground.
- 3. In case of shear forces in column, other than structure on plain ground, building with step back set back 20 degree inclination shows least values.
- 4. Again Case B4 with 20 degree inclination shows least values in maximum Bending Moment in columns.

5. Beam in Both X and Z direction shows least values of shear forces in Case B5.

e-ISSN: 2395-0056

- 6. Step back set back 30 degree configuration suited the least values of Maximum Bending Moment in beam parallel to both X and Z direction respectively.
- 7. Torsion in beam again shows least values in Case B5.
- 8. It is found that when there will be incremental degree of sloping ground, building on greater slope transfer larger loads as compared to plain ground. Step back set back frame perform better than frame as per result.

#### ACKNOWLEDGEMENT

I would like to thank *Mr. Sagar Jamle*, Assistant Professor, Department of Civil Engineering, Oriental University, Indore, for his involvement and dedication in my topic and continuous support throughout this work.

#### REFERENCES

- [1] B.G. Birajdar, S.S. Nalawade," Seismic Analysis Of Buildings Resting On Sloping Ground", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No. 1472.
- [2] Roser J. Robert, Ranjana M. Ghate (2016), "Seismic Analysis of Multistoried RCC Building on Sloping Ground", International Journal For Research In Emerging Science And Technology, ISSN: 2349-7610, Vol. 03, Issue 12, pp. 40-45.
- [3] Dr. Sanjaya Kumar Patro, Susanta Banerjee, Debasnana Jena, Sourav Kumar Das, (2013), "A Review on Seismic Analysis Of a Building on sloping ground", International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 02, Issue 10, pp. 627-630.
- [4] S. M. Nagargoje and K. S. Sable," Seismic performance of multi-storeyed building on sloping ground", Elixir International Journal, 7 December 2012.
- [5] G Suresh, Dr. E Arunakanthi (2014), "Seismic Analysis of Buildings Resting on Sloping Ground and Considering Bracing System", International Journal of Engineering Research & Technology, ISSN: 2278-0181, Vol. 03, Issue 09, pp. 1107-1113.
- [6] Shivanand B, H. S. Vidyadhara (2014), "Design Of 3d RC Frame on Sloping Ground", International Journal of Research in Engineering and Technology, ISSN: 2319-1163, Vol. 03, Issue 08, pp. 307-317.
- [7] Satish Kumar, D.K. Paul (1999), "Hill buildings configuration from seismic consideration", Journal of Structural Engineering, Vol. 26, Issue 03, pp. 179-185.



e-ISSN: 2395-0056 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

- [8] Paresh G. Mistry, Hemal J. Shah (2016), "Seismic Analysis of Building on Sloping Ground Considering Bi-Directional Earthquake", International Journal of Scientific Development and Research (IJSDR), ISSN: 2455-2631, Vol. 01, Issue 04, pp. 59-62.
- [9] Tamboli Nikhil Vinod, Ajay swarup (2017), "Study Of Seismic Behavior Of Multi-Storied R.C.C. Buildings Resting On Sloping Ground And Bracing System", International Journal of Advance Research and Innovative Ideas in Education, ISSN: 2395-4396, Vol. 03, Issue 04, pp. 317-324.
- [10] I.S. 1893 (Part 1) 2002, Criteria for earthquake resistant design of structure, general provision and building, Bureau of Indian standards, New Delhi.
- [11] IS 456 2000, Plain and Reinforced Concrete-Code of Practice.