International Research Journal of Engineering and Technology (IRJET)

ET Volume: 06 Issue: 01 | Jan 2019

www.irjet.net

EFFICIENT BONDAGE NUMBER OF A JUMP GRAPH

N. Pratap Babu Rao

Associate Professor S.G. College Koppal(Karnataka), INDIA

***______

ABSTRACT:- A set S of vertices in jump graph J(G) is an efficient domination set, If every vertex in V-S is adjacent exactly one vertex in S. The efficient domination number $\gamma_e(J(G))$ of J(G) is minimum number of vertices is an efficient dominating set of J(G). In general $\gamma_e(J(G))$ can be made to increase by removal of edges from J(G). Our main objective is to Study this phenomenon. Let E be set of edges of J(G) such that $\gamma_e(J(G)-E) > \gamma_e(J(G))$. Then we define the efficient bondage number $b_e(J(G))$ of J(G) to be the minimum number of edges in E. In this communication an upper bound for $b_e(J(G))$ has been established and its exact values for some classes of graph have been found. In addition Nordhaus-Gaddum type results are established.

Key words: dominating set, bondage number.

Mathematical classification: b05C56.

1. INTRODUCTION: Dominating sets were studied by Berge.C[1] and ore[2] Domination alteration sets in gaphs were studied by Bauer et.al[3]. A similar5concept named as the bondage number of a graph was studied by Fink et.al.,[4]. The efficient domination number was introduced by Cockayayne et.al., [5]. In this communication we study stability of $\gamma_{e(J}(G)$) by defining the efficient bondage number $b_e(J(G))$ of a jump gaph J(G). The graphs considered in this communication are finite undirected, without loops, multiple edges and isolated vertices. Any undefined terms here may be found in Harary [6]. A set X of vertices is a dominating set of J(G)(if every vertex in X is adjacent at least one vertex in X. The domination number γ (J(G) of J(G) is the minimum number of edges in E. A set S of vertices in J(G) is an efficient dominating set if every vertx u in V-S is adjacent to exactly one vertex in S. The efficient domination number $\gamma_e(J(G))$ of J(G) is the minimum number of vertices is an efficient dominating set of J(G).

Let E be a set of edges such that $\gamma_e(J(G) - E) > \gamma_e(J(G))$. Then we can define the efficient bondage number $b_e(J(G))$ is the minimum number of edges in E. Here we note that if

 $\gamma_{e}(J(G)) = p$ then $b_{e}(J(G))$ does not exists.

2. Results:

The following results is straight fowar hence we omit the proof.

Theorem1: for any graph J(G) with p vertices

 $\gamma_{e}(J(G)) = 1$ if and only if $\Delta(J(G))=p-1$.

Theorem 2: For any path P_p with p=2 vertices

 $\gamma_{e}(J(P_{p})) = \lceil p/3 \rceil$

Theorem 3: For any cycle C_p with $p \ge 3$ vertices

$$\gamma_{e}(C_{p}) = \lceil \frac{p}{2} \rceil$$
 if $p \equiv 0,1 \pmod{3}$

 $= \lceil \frac{p}{2} \rceil = 1$ if $p \equiv 2 \pmod{3}$

Hence $\lceil x \rceil$ denotes the least integer greater than or equal to x,

3. Main Results

Theorem 3.1: Let J(G) be a graph $\Delta(J(G)) = p - 1$ Then $b_e(J(G)) = \lceil \frac{n}{2} \rceil$ where n is the number of vertices of degree p - 1.

Proof: Let $u_1, u_2, u_3, \dots, u_n$ be the n vertices of degree p - 1 then clearly removal of fewer then $\lceil \frac{n}{2} \rceil$ edges results into a graph J(G') having maximum degree Δ (G')= p - 1.

Hence $b_e(J(G)) \ge \lceil \frac{n}{2} \rceil$

Now we consider the following cases.

Case (i): If n is even then the removal of $\frac{n}{2}$ independent edges u_1u_2 , u_3u_4 ,.... $u_{n-1}u_n$ results into a graph J(H) having Δ (J(G)) = p - 2 Hence $b_e(J(G)) = \frac{p}{2}$.

Case (ii) : If n is odd then the removal of $\frac{n-1}{2}$ independent edges u_1u_2 , u_3u_4 ,.... $u_{n-2}u_{n-1}$ yields a graph J(H') containing exactly one vertex u_n of degree p-1. Thus by removing an edge incident with u_n we obtain a graph J(H'') with $\Delta(J(H'')) = p - 2 \gamma_e(J(G')) \ge 2$.

Hence from case (i) and (ii) it follows that

 $B_{e}(J(G)) = \frac{n}{2} \text{ if p is even}$ $= \frac{n-1}{2} + 1 \text{ if p is odd}$ $B_{e}(J(G)) = \lceil \frac{n}{2} \rceil$

Hence the proof.

The following result directly from Theorem 3.1

Proposition 3.2: For any complete graph K_p with $p \ge 2$ vertices $b_e(J(K_p)) = \lceil \frac{p}{2} \rceil$

Proof: By theorem 3.1 $b_e(K_p) = \frac{n}{2}$ since n=p

Proposition 3.3: For any wheel W_p with $p \ge 5$ vertices $b_e(J(W_p)) = 1$

Proof: Since W_p contains exactly one vertex of degree p – 1 Hence

$$B_{e}(J(W_{p})) = \lceil \frac{1}{2} \rceil = 1$$

Theorem3.4L Let $K_{m,n}$ be a complete bipartite graph other then C_3 with $1 \le m \le n$ then

 $B_{\rm e}(J(K_{m,n}))=m$

Proof: Let $v=v_1 \cup v_2$ be the vertex sets of $K_{m,n}$ where $|v_1|=m$ and $|v_2|=n$ let $v \in v_2$ then by removing all edges incident with v we obtain a graph J(G') containing two components

 $_{K1} \,and \,\, K_{m,n\text{-}1}$

Hence $\gamma_{e}(J(G')) = \gamma_{e}(J(K_{1})) + \gamma_{e}(J(K_{m,n-1}))$ = $1 + \gamma_{e}(JK_{m,n}) \ge \gamma_{e}(J(K_{m,n}))$ Thus $b_e(J(K_{m,n})) = \deg v = |v_1| = m$

Proposition 3.5: For any cycle C_p with $p \ge 3$ vertices

 $b_e(J(C_p)) = 2 \text{ if } p \equiv 0 \pmod{3}$ $= 3 \text{ if } p \equiv 1 \pmod{3}$ $= 4 \text{ if } p \equiv 2 \pmod{3}$

Proof: Let C_p be a cycle with $p \ge 3$ vertices. Then we consider the following cases,

Case 1: If $p \equiv o \pmod{3}$ let J(H) be a graph OBTAINED BY REMOVING TWO ADJACENT EDGES FROM c_P . Then clearly J(H) consists of an isolated vertex and a path of order p - 1.

Thus $\gamma_{e}(J(H)) = 1 + \gamma_{e}(J(P_{p-1})) = 1 + \lceil \frac{p-1}{3} \rceil$ Since $p \equiv 0 \pmod{3} \quad \lceil \frac{p-1}{3} \rceil = \lceil \frac{p}{3} \rceil$ Therefore $\gamma_{e}(J(H)) = 1 + \lceil \frac{p}{3} \rceil$ $= 1 + \gamma_{e}(J(C_{p})) > \gamma_{e}(J(C_{p}))$

Hence $b_e(J(C_p))=2$

Case 2: if $p \equiv 1 \pmod{3}$ then the removal of three consecutive edgs from $J(C_p)$ results in a graph J(H) consisting of two isolated vertices and a path of order p - 2 Hence,

$$\gamma_{e}(J(H)) = 2 + \gamma_{e}(J(P_{p-2}))$$
$$= 2 + \Gamma \frac{p-2}{3} \neg$$
$$= 1 + \Gamma \frac{p}{3} \neg$$
$$= 1 + \gamma_{e}(J(C_{p})) > \gamma_{e}(J(C_{p}))$$

Thus $b_e(J(C_p)) = 3$.

Case 3: if $p \equiv 2 \pmod{3}$ then by removing four consecutive edges from C_p we obtain a graph J(H) containing three isolated vertices and a path of order p - 3 then

$$\gamma_{e}(J(H)) = 3 + \gamma_{e}(J(P_{p-3})) = 3 + \Gamma \frac{p-3}{3} \neg$$
$$= 2 + \Gamma \frac{p}{3} \neg > \gamma_{e}(J(C_{p}))$$
Hence, h (IC, 1) = 4

Hence $b_e(JC_p) = 4$

Hence the proof.

Proposition 3.6: For any path P_p with $p \ge 2$ vertices then

$$b_e(J(P_p)) = 2 \text{ if } p \equiv 1 \pmod{3}$$

= 1 otherwise.

Proof: Let P_p be a path with p > 2 then we consider the following cases,

Case 1: if $p \equiv 1 \pmod{3}$ then the removal of two end edges results a graph J(G') containing two isolated vertices and path of order p – 2. Hence.

$$\begin{aligned} \gamma_{e}(J(G')) &= 2 + \gamma_{e} \left(J(P_{p-2}) \right) \\ &= 2 + \Gamma \frac{p-2}{3} \ \gamma \\ &= \Gamma \frac{p}{3} \ \gamma + 1 \ > \Gamma \frac{p}{3} \ \gamma \ = \gamma_{e} \left(J(P_{p}) \right) \end{aligned}$$

Thus $b_e(J(P_p)) = 2$

Case 2: If $p \neq 1$ (mod 3) then the removed of an edge from J(P_p) results a graph J(H) containing an isolated vertex and a path of oder p - 1.

$$\therefore \gamma_{e}(J(H)) = 1 + \gamma_{e} (J(P_{p-1}))$$
$$= 1 + \Gamma \frac{p-1}{3} \neg$$
$$= \Gamma \frac{p}{3} \neg = \gamma_{e} (J(P_{p}))$$

Hence $b_e(J(P_p)) = 1$

Theorem3.7: For any connected graph J(G) with $p \ge 2$ vertices $b_e(J(G)) \le p - 1$.

Further the bound is attained if $G = C_p$ with $3 \le p \le 5$

Proof: On the contrary suppose $b_e(J(G)) \ge p$ let E_u denote the set of edges incident with a vertex u. Then clearly

 $\gamma_{e}(J(G-E_{u})) \geq \gamma_{e}(J(G))$

Which is a contradiction and $|E_u| \le p-1$

Hence $b_e(J(G)) \le p - 1$

Further for $J(G) = J(C_p)$ with $3 \le p \le 5$ it is easy to see that

$$b_{e}(J(G)) = p - 1$$

Theorem 3.8: Let u and v be distinct adjacent vertices in a non trivial graph J(G) then

 $B_e(J(G)) = \min \{ \deg u + \deg v \}.$

Proof: Let u and v be two distinct adjacent vertices of J(G) such that eg u + deg v is minimum. Suppose $b_e(J(G)) = \deg u + \deg v$. Let E_u denote the set of edgs that are incident with u and v Then clearly $|E| = \deg u + \deg v - 1$ and hence $\gamma_e(J(G) - E) = \gamma_e(J(G))$. Since u and v are isolated vertices in J(G) – E, $\gamma_e(J(G) - u - V) = \gamma_e(J(G)) - 2$. Thus for any minimum efficient dominating set S of J(G) – u – v, $S \cup |u|$ is an efficient dominating set of J(G) with cardinality $\gamma_e(J(G)) - 1$, a contradiction. Hence $b_e(J(G)) \le \min \{ \deg u + \deg v \}$.

Corollary 3.8.1: For any nontrivial graph J(G)

 $b_{e}(J(G)) \leq \delta(J(G)) + \Delta(J(G))$

Proof: This follows from the Theorem 3.8

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 372

Now we obtain a Nordhaus-Gaddum type result.

Theorem 3.9 For any graph J(G)

(i) $b_e(J(G)) + b_e(J(\bar{G})) \le 2 (p-1)$ and

(ii) $b_e(J(G)) \cdot b_e(J(\overline{G})) \le 2p(\delta(J(G)) + \Delta(J(G)))$

Proof: By corollary 3.8.1 we have

 $b_{e}(J(G)) \leq \delta(J(G)) + \Delta(J(G))$

and $b_e(J(\overline{G})) \leq \delta(J(\overline{G})) + \Delta(J(\overline{G}))$

Hence $b_e(JG)$ + $b_eJ(\overline{G}) = \delta(J(G)) + \Delta(J(G)) + \delta(J(\overline{G})) + \Delta(J(\overline{G}))$

 $= \delta(J(G)) + \Delta(J(G)) + p - 1 - \Delta(J(G)) + p - 1 - \delta(J(G))$

=2(p-1)

Also $b_e(JG)$. $b_eJ(\overline{G}) = (\delta(J(G)) + \Delta(J(G))) \cdot (\delta(J(\overline{G})) + \Delta(J(\overline{G})))$

= $(\delta(J(G)) + \Delta(J(G))) (p - 1 - \Delta(J(G)) + p - 1 - \delta(J(G)))$

= $(\delta(J(G)) + \Delta(J(G))) (2(p-1) - \Delta(J(G)) - \delta(J(G)))$

= $2p((\delta(J(G)) + \Delta(J(G))))$

Thus $b_e(J(G)) + b_e(J(\overline{G})) \le 2 (p - 1)$ and $b_e(J(G)) \cdot b_e(J(\overline{G})) \le 2p (\delta(J(G)) + \Delta (J(G)))$.

REFERENCES

[1] Berge .C (1973) Graphs and Hyper graphs. North Holland Amsterdam.

[2]Ore.O(1962) Theory of Graphs, Amer.Math.Soc.Colloq.Publ.38 Providence.

[3] Bauer.D, F.Nieminen, J and Seffel, C.L. (1983) Discret4 Math. 47:153

[4] Fink J., F. Jacobson, M.S.Kinch, L.F & Roberts, J (1990) Discrete Math, 86:47.

[5] Cockayne E.J, HartnellB.L, HedetniemiS.T.& Laskar R (1988) Efficient domination I graphs, I Clemson univ.Dept.of Mathematical Sciences Techn.Report 558.

[6] Harary F.(1969) Graph Theory, Addison Wesley, Rading Mass.

[7]V.R.Kulli and N.D.Sonar, Efficient bondage number of a graph, Nat.Acad.Sci.Letters, Vol19, No.9 &10 1996.