EFFICIENT BONDAGE NUMBER OF A JUMP GRAPH

N. Pratap Babu Rao
Associate Professor S.G. College Koppal(Karnataka), INDIA

Abstract

A set S of vertices in jump graph $\mathrm{J}(\mathrm{G})$ is an efficient domination set, If every vertex in V-S is adjacent exactly one vertex in S . The efficient domination number $\left.\gamma_{\mathrm{e}} \mathrm{J}(\mathrm{G})\right)$ of $\mathrm{J}(\mathrm{G})$ is minimum number of vertices is an efficient dominating set of $\mathrm{J}(\mathrm{G})$. In general $\gamma_{\mathrm{e}} \mathrm{J}(\mathrm{G})$) can be made to increase by removal of edges from $\mathrm{J}(\mathrm{G})$. Our main objective is to Study this phenomenon. Let E be set of edges of $\mathrm{J}(\mathrm{G})$ such that $\left.\gamma_{\mathrm{e}} \mathrm{J}(\mathrm{G})-\mathrm{E}\right)>\gamma_{\mathrm{e}}(\mathrm{J}(\mathrm{G})$). Then we define the efficient bondage number $b_{e}(J(G))$ of $J(G)$ to be the minimum number of edges in E. In this communication an upper bound for $b_{e}(J(G))$ has been established and its exact values for some classes of graph have been found. In addition Nordhaus-Gaddum type results are established.

Key words: dominating set, bondage number.

Mathematical classification: b05C56.

1. INTRODUCTION: Dominating sets were studied by Berge.C[1] and ore[2] Domination alteration sets in gaphs were studied by Bauer et.al[3] . A similar5concept named as the bondage number of a graph was studied by Fink et.al.,[4]. The efficient domination number was introduced by Cockayayne et.al., [5]. In this communication we study stability of $\gamma_{\mathrm{e}(\mathrm{J}(\mathrm{G}) \text {) by defining }}$ the efficient bondage number $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G})$) of a jump gaph $\mathrm{J}(\mathrm{G})$, The graphs considered in this communication are finite undirected, without loops, multiple edges and isolated vertices. Any undefined terms here may be found in Harary [6]. A set X of vertices is a dominating set of $\mathrm{J}(\mathrm{G})$ (if every vertex in X is adjacent at least one vertex in X . The domination number $\gamma(\mathrm{J}(\mathrm{G})$ of $\mathrm{J}(\mathrm{G})$ is the minimum number of vertices in a dominating set of $\mathrm{J}(\mathrm{G})$. Let E be a set of edges such that $\gamma(\mathrm{J}(\mathrm{G})-\mathrm{E})>\gamma(\mathrm{J}(\mathrm{G}))$. Then the bondage number $b(J(G))$ of $J(G)$ is the minimum number of edges in E. A set S of vertices in $J(G)$ is an efficient dominating set if every vertx u in V-S is adjacent to exactly one vertex in S. The efficient domination number $\gamma_{e}(J(G))$ of $J(G)$ is the minimum number of vertices is an efficient dominating set of J(G).

Let E be a set of edges such that $\gamma_{\mathrm{e}}\left(\mathrm{J}(\mathrm{G}) _\mathrm{E}\right)>\gamma_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))$.Then we can define the efficient bondage number $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))$ is the minimum number of edges in E . Here we note that if
$\gamma_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))=\mathrm{p}$ then $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))$ does not exists.

2. Results:

The following results is straight fowar hence we omit the proof.
Theorem1: for any graph $J(G)$ with p vertices

$$
\gamma_{\mathrm{e}}(\mathrm{~J}(\mathrm{G}))=1 \text { if and only if } \Delta(\mathrm{J}(\mathrm{G}))=\mathrm{p}-1
$$

Theorem 2: For any path P_{p} with $p=2$ vertices

$$
\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)=\ulcorner\mathrm{p} / 3\rceil
$$

Theorem 3: For any cycle C_{p} with $p \geq 3 v e r t i c e s$

$$
\begin{aligned}
\gamma_{\mathrm{e}}\left(\mathrm{C}_{\mathrm{p}}\right) & \left.=\Gamma \frac{p}{3}\right\urcorner \text { if } \mathrm{p} \equiv 0,1(\bmod 3) \\
& \left.=\Gamma \frac{p}{3}\right\urcorner=1 \text { if } \mathrm{p} \equiv 2(\bmod 3)
\end{aligned}
$$

Hence $\Gamma \mathrm{x}\rceil$ denotes the least integer greater than or equal to x ,

3. Main Results

Theorem 3.1: Let $J(G)$ be a graph $\Delta(J(G))=p-1$ Then $\left.b_{e}(J(G))=\Gamma \frac{n}{2}\right\urcorner$ where n is the number of vertices of degree $p-1$.
Proof: Let $u_{1}, u_{2}, u_{3} \ldots \ldots . . u_{n}$ be the n vertices of degree $p-1$ then clearly removal of fewer then $\left\ulcorner\frac{n}{2}\right\urcorner$ edges results into a graph $J\left(G^{\prime}\right)$ having maximum degree $\Delta\left(G^{\prime}\right)=p-1$.

Hence $\left.b_{e}(J(G)) \geq 「 \frac{n}{2}\right\urcorner$
Now we consider the following cases.
Case (i): If n is even then the removal of $\frac{n}{2}$ independent edges $u_{1} u_{2}, u_{3} u_{4}, \ldots \ldots . . . u_{n-1} u_{n}$ results into a graph $J(H)$ having $\Delta(J(G))$ $=p-2$ Hence $b_{e}(J(G))=\frac{p}{2}$.

Case (ii) : If n is odd then the removal of $\frac{n-1}{2}$ independent edges $u_{1} u_{2}, u_{3} u_{4}, \ldots \ldots \ldots \ldots . . u_{n-2} u_{n-1}$ yields a graph J(H') containing exactly one vertex u_{n} of degree $p-1$. Thus by removing an edge incident with u_{n} we obtain a graph $J\left(H^{\prime \prime}\right)$ with $\Delta\left(J\left(H^{\prime \prime}\right)\right)=p-2$ $\gamma_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{G}^{\prime}\right)\right) \geq 2$.

Hence from case (i) and (ii) it follows that

$$
\left.\left.\begin{array}{rl}
\mathrm{B}_{\mathrm{e}}(\mathrm{~J}(\mathrm{G})) & =\frac{n}{2} \text { if } \mathrm{p} \text { is even } \\
& =\frac{n-1}{2}+1 \text { if } \mathrm{p} \text { is odd } \\
\mathrm{B}_{\mathrm{e}}(\mathrm{~J}(\mathrm{G})) & =
\end{array}\right) \frac{n}{2}\right\urcorner
$$

Hence the proof.
The following result directly from Theorem 3.1
Proposition 3.2: For any complete graph K_{p} with $p \geq 2$ vertices $\left.b_{e}\left(J\left(K_{p}\right)\right)=\Gamma \frac{p}{2}\right\urcorner$
Proof: By theorem $3.1 \mathrm{~b}_{\mathrm{e}}\left(\mathrm{K}_{\mathrm{p}}\right)=\frac{n}{2}$ since $\mathrm{n}=\mathrm{p}$
Proposition 3.3: For any wheel W_{p} with $p \geq 5$ vertices $b_{e}\left(J\left(W_{p}\right)\right)=1$
Proof: Since W_{p} contains exactly one vertex of degree p-1 Hence
$\mathrm{B}_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{W}_{\mathrm{p}}\right)\right)=\left\ulcorner\frac{1}{2}\right\urcorner=1$
Theorem3.4L Let $K_{m, n}$ be a complete bipartite graph other then C_{3} with $1 \leq m \leq n$ then
$B_{e}\left(J\left(K_{m, n}\right)\right)=m$
Proof: Let $v=v_{1} \cup v_{2}$ be the vertex sets of $K_{m, n}$ where $\left|v_{1}\right|=m$ and $\left|v_{2}\right|=n$ let $v \in v_{2}$ then by removing all edges incident with v we obtain a graph J(G') containing two components ${ }_{K 1}$ and $K_{m, n-1}$

Hence $\left.\gamma_{\mathrm{e}} \mathrm{J}\left(\mathrm{G}^{\prime}\right)\right)=\gamma_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{K}_{1}\right)\right)+\gamma_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}-1}\right)\right)$

$$
=1+\gamma_{\mathrm{e}}\left(\mathrm{~J} \mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right) \quad \geq \gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)\right)
$$

Thus $b_{e}\left(J\left(K_{m, n}\right)\right)=\operatorname{deg} v=\left|v_{1}\right|=m$
Proposition 3.5: For any cycle C_{p} with $p \geq 3$ vertices

$$
\begin{aligned}
\mathrm{b}_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right) & =2 \text { if } \mathrm{p} \equiv \mathrm{o}(\bmod 3) \\
= & 3 \text { if } \mathrm{p} \equiv 1(\bmod 3) \\
= & 4 \text { if } \mathrm{p} \equiv 2(\bmod 3)
\end{aligned}
$$

Proof: Let C_{p} be a cycle with $p \geq 3$ vertices. Then we consider the following cases,
Case 1: If $\mathrm{p} \equiv \mathrm{o}(\bmod 3)$ let $\mathrm{J}(\mathrm{H})$ be a graph OBTAINED BY REMOVING TWO ADJACENT EDGES FROM c_{p}. Then clearly J(H) consists of an isolated vertex and a path of order p-1.

Thus $\left.\gamma_{\mathrm{e}}(\mathrm{J}(\mathrm{H}))=1+\gamma_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{P}_{\mathrm{p}-1}\right)\right)=1+\Gamma \frac{p-1}{3}\right\rceil$
Since $\mathrm{p} \equiv \mathrm{o}(\bmod 3) \quad\left\ulcorner\frac{p-1}{3}\right\rceil=\left\lceil\frac{p}{3}\right\urcorner$
Therefore $\left.\gamma_{\mathrm{e}}(\mathrm{J}(\mathrm{H}))=1+\Gamma \frac{p}{3}\right\urcorner$

$$
=1+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)>\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)
$$

Hence $\quad b_{e}\left(J\left(C_{p}\right)\right)=2$
Case 2: if $p \equiv 1(\bmod 3)$ then the removal of three consecutive edgs from $J\left(C_{p}\right)$ results in a graph $J(H)$ consisting of two isolated vertices and a path of order p-2 Hence,

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{~J}(\mathrm{H})) & =2+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}-2}\right)\right) \\
& \left.=2+\Gamma \frac{p-2}{3}\right\urcorner \\
= & \left.1+\Gamma \frac{p}{3}\right\urcorner \\
= & 1+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)>\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)
\end{aligned}
$$

Thus $\mathrm{b}_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)=3$.
Case 3: if $p \equiv 2(\bmod 3)$ then by removing four consecutive edges from C_{p} we obtain a graph $J(H)$ containing three isolated vertices and a path of order $p-3$ then

$$
\begin{aligned}
\gamma_{\mathrm{e}}(\mathrm{~J}(\mathrm{H}))=3+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}-3}\right)\right) & \left.=3+\Gamma \frac{p-3}{3}\right\urcorner \\
= & \left.2+\Gamma \frac{p}{3}\right\urcorner>\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)
\end{aligned}
$$

Hence $\left.\quad b_{e}\left(J C_{p}\right)\right)=4$
Hence the proof.
Proposition 3.6: For any path P_{p} with $p \geq 2$ vertices then

$$
\begin{aligned}
\mathrm{b}_{\mathrm{e}}\left(J\left(\mathrm{P}_{\mathrm{p}}\right)\right) & =2 \text { if } \mathrm{p} \equiv 1(\bmod 3) \\
& =1 \text { otherwise. }
\end{aligned}
$$

Proof: Let P_{p} be a path with $\mathrm{p}>2$ then we consider the following cases,
Case 1: if $p \equiv 1(\bmod 3)$ then the removal of two end edges results a graph $J\left(G^{\prime}\right)$ containing two isolated vertices and path of order p-2. Hence.

$$
\begin{aligned}
\gamma_{\mathrm{e}}\left(J\left(\mathrm{G}^{\prime}\right)\right) & =2+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}-2}\right)\right) \\
& \left.=2+\Gamma \frac{p-2}{3}\right\urcorner \\
= & \left.\left\ulcorner\frac{p}{3}\right\urcorner+1>\Gamma \frac{p}{3}\right\urcorner=\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)
\end{aligned}
$$

Thus $\mathrm{b}_{\mathrm{e}}\left(\mathrm{J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)=2$
Case 2: If $p \not \equiv 1(\bmod 3)$ then the removed of an edge from $J\left(P_{p}\right)$ results a graph $J(H)$ containing an isolated vertex and a path of oder p-1.

$$
\begin{aligned}
\therefore \gamma_{\mathrm{e}}(\mathrm{~J}(\mathrm{H})) & =1+\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}-1}\right)\right) \\
= & 1+\left\ulcorner\frac{p-1}{3}\right\urcorner \\
= & \left\ulcorner\frac{p}{3}\right\urcorner=\gamma_{\mathrm{e}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)
\end{aligned}
$$

Hence $b_{e}\left(J\left(P_{p}\right)\right)=1$
Theorem3.7: For any connected graph $J(G)$ with $p \geq 2$ vertices $b_{e}(J(G)) \leq p-1$.
Further the bound is attained if $G=C_{p}$ with $3 \leq p \leq 5$
Proof: On the contrary suppose $\mathrm{b}_{\mathrm{e}}(J(\mathrm{G})) \geq \mathrm{p}$ let E_{u} denote the set of edges incident with a vertex u . Then clearly

$$
\gamma_{\mathrm{e}}\left(J\left(\mathrm{G}-\mathrm{E}_{\mathrm{u}}\right)\right) \geq \gamma_{\mathrm{e}}(\mathrm{~J}(\mathrm{G}))
$$

Which is a contradiction and $\left|\mathrm{E}_{\mathrm{u}}\right| \leq \mathrm{p}-1$
Hence $b_{e}(J(G)) \leq p-1$
Further for $\mathrm{J}(\mathrm{G})=\mathrm{J}\left(\mathrm{C}_{\mathrm{p}}\right)$ with $3 \leq \mathrm{p} \leq 5$ it is easy to see that

$$
b_{e}(J(G))=p-1
$$

Theorem 3.8: Let u and v be distinct adjacent vertices in a non trivial graph $J(G)$ then

$$
B_{e}(J(G))=\min \{\operatorname{deg} u+\operatorname{deg} v\} .
$$

Proof: Let u and v be two distinct adjacent vertices of $J(G)$ such that eg $u+\operatorname{deg} v$ is minimum. Suppose $b_{e}(J(G))=\operatorname{deg} u+\operatorname{deg}$ v. Let E_{u} denote the set of edgs that are incident with u and v Then clearly $|\mathrm{E}|=\operatorname{deg} u+\operatorname{deg} v-1$ and hence $\gamma_{e}(J(G)-E)=$ $\gamma_{e}(J(G))$. Since u and v are isolated vertices in $J(G)-E, \gamma_{e}(J(G)-u-V)=\gamma_{e}(J(G))-2$. Thus for any minimum efficient dominating set S of $J(G)-u-v, S \cup|u|$ is an efficient dominating set of $J(G)$ with cardinality $\gamma_{e}(J(G))-1$, a contradiction. Hence $b_{e}(J(G)) \leq \min \{\operatorname{deg} u+\operatorname{deg} v\}$.

Corollary 3.8.1: For any nontrivial graph J(G)

$$
\left.\mathrm{b}_{\mathrm{e}} \mathrm{~J}(\mathrm{G})\right) \leq \delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))
$$

Proof: This follows from the Theorem 3.8

Now we obtain a Nordhaus-Gaddum type result.
Theorem 3.9 For any graph J(G)
(i) $\quad \mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))+\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\bar{G})) \leq 2(\mathrm{p}-1)$ and
(ii) $\quad \mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G})) \cdot \mathrm{b}_{\mathrm{e}}(\mathrm{J}(\bar{G})) \leq 2 \mathrm{p}(\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G})))$

Proof: By corollary 3.8.1 we have

$$
\mathrm{b}_{\mathrm{e}}(\mathrm{~J}(\mathrm{G})) \leq \delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))
$$

and $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\bar{G})) \leq \delta(\mathrm{J}(\bar{G}))+\Delta(\mathrm{J}(\bar{G}))$
Hence $\left.\mathrm{b}_{\mathrm{e}}(\mathrm{JG})\right)+\mathrm{b}_{\mathrm{e}}(\bar{G})=\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))+\delta(\mathrm{J}(\bar{G}))+\Delta(\mathrm{J}(\bar{G}))$

$$
=\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))+\mathrm{p}-1-\Delta(\mathrm{J}(\mathrm{G}))+\mathrm{p}-1-\delta(\mathrm{J}(\mathrm{G}))
$$

$$
=2(p-1)
$$

Also $\left.\quad \mathrm{b}_{\mathrm{e}}(\mathrm{JG})\right) \cdot \mathrm{b}_{\mathrm{e}} \mathrm{J}(\bar{G})=(\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))) \cdot(\delta(\mathrm{J}(\bar{G}))+\Delta(\mathrm{J}(\bar{G})))$

$$
\begin{aligned}
& =(\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G})))(\mathrm{p}-1-\Delta(\mathrm{J}(\mathrm{G}))+\mathrm{p}-1-\delta(\mathrm{J}(\mathrm{G}))) \\
& =(\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G})))(2(\mathrm{p}-1)-\Delta(\mathrm{J}(\mathrm{G}))-\delta(\mathrm{J}(\mathrm{G}))) \\
& =2 \mathrm{p}((\delta(\mathrm{~J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G}))))
\end{aligned}
$$

Thus $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G}))+\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\bar{G})) \leq 2(\mathrm{p}-1)$ and $\mathrm{b}_{\mathrm{e}}(\mathrm{J}(\mathrm{G})) \cdot \mathrm{b}_{\mathrm{e}}(\mathrm{J}(\bar{G})) \leq 2 \mathrm{p}(\delta(\mathrm{J}(\mathrm{G}))+\Delta(\mathrm{J}(\mathrm{G})))$.

REFERENCES

[1] Berge .C (1973) Graphs and Hyper graphs. North Holland Amsterdam.
[2]Ore.O(1962) Theory of Graphs, Amer.Math.Soc.Colloq.Publ. 38 Providence.
[3] Bauer.D, F.Nieminen, J and Seffel,C.L.(1983) Discret4 Math.47:153
[4]Fink J,.F, Jacobson, M.S,Kinch, L.F \&Roberts, J (1990)Discrete Math, 86:47.
[5] Cockayne E.J, HartnellB.L, HedetniemiS.T.\& Laskar R (1988) Efficient domination I graphs, I Clemson univ.Dept.of Mathematical Sciences Techn.Report 558.
[6] Harary F.(1969) Graph Theory, Addison Wesley, Rading Mass.
[7]V.R.Kulli and N.D.Sonar, Efficient bondage number of a graph, Nat.Acad.Sci.Letters, Vol19, No. 9 \&10 1996.

