ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS: AN APPLICATION

Jayesh Jain ${ }^{1}$, Dr. Mahender Singh Poonia ${ }^{2}$

${ }^{1}$ Research Scholar, Department of Mathematics, Shree JJT University, Jhunjhunu, Rajasthan
${ }^{2}$ Associate Professor, Department of Mathematics, Shree JJT University, Jhunjhunu, Rajasthan

Abstract

In the present paper, we have studied a class $W R(\lambda, \beta, \alpha, \mu, \theta)$ which consist of analytic and univalent functions with negative coefficients in the open disk $\quad U=$ $\{z \in C:|z|<1\}$ defined by Hadamard product with Rafid Operator,we obtain coefficient bounds, extreme points for this class ,Also weighted mean, arithmetic mean and some results.

Key Words: Univalent function, Rafid operator, Extreme point, Hadamard product, Weighted mean, Arithmetic mean.

1. INTRODUCTION

Let R stand in favor of mapping

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{z}-\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \in N=\{1,2,3, \ldots\}\right) \tag{1}
\end{equation*}
$$

whichever analytic and univalent in the unit disk
$\mathrm{U}=\{z \in C:|z|<1\}$ If $f \in R$ is specified in (1) and $\mathrm{g} \in \mathrm{R}$ specified in

$$
\mathrm{g}(\mathrm{z})=\mathrm{z}-\sum_{n=2}^{\infty} b_{n} z^{n}, \mathrm{~b}_{n} \geq 0
$$

after that effective Hadamard product f ${ }^{*} g$ of f and g is clear with $\quad \mathrm{f} * \mathrm{~g}(\mathrm{z})=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z)$
Lemma 1. The Rafid Operator of $\mathrm{f} \in R, 0 \leq \mu<1$, $0 \leq \theta \leq 1$ is denoted by R_{μ}^{θ} and defined as following

$$
\begin{align*}
& R_{\mu}^{\theta}(\mathrm{f}(\mathrm{z}))=\frac{1}{(1-\mu)^{1+\theta} \sqrt{\theta+1}} \int_{0}^{\infty} t^{\theta-1} e^{-\left(\frac{1}{1-\mu}\right)} \mathrm{f}(\mathrm{zt}) \mathrm{dt} \\
& =\mathrm{z}-\sum_{n-2}^{\infty} k(n, \mu, \theta) a_{n} z^{n} \tag{3}
\end{align*}
$$

Definition1. A function $f(z) \in R, z \in U$ is said to be in the class $\mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$
if and only if satisfies the inequality
$\operatorname{Re}\left\{\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))^{\prime}\right)^{\prime}}\right\}$
$\geq \beta\left|\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}-1\right|+\alpha$
somewhere $0 \leq \mu<1,0 \leq \theta \leq 10 \leq \alpha<1, \beta \geq 0, z \epsilon U$
and $g(z)$ are given by

$$
\mathrm{g}(\mathrm{z})=\mathrm{z}-\sum_{n=2}^{\infty} b_{n} z^{n}, \mathrm{~b}_{n} \geq 0
$$

Lemma 2. Let $\mathrm{w}=\mathrm{u}+\mathrm{iv}$. Then $\operatorname{Re} \mathrm{w} \geq \sigma$ iff

$$
|w-(1+\sigma)| \leq|w+(1-\sigma)|
$$

Lemma 3. Let $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ and σ, γ are real numbers.
Then Re $\mathrm{w}>\sigma|w-1|+\gamma$ if and only if
$\operatorname{Re}\left\{w\left(1+\sigma e^{i \phi}\right)-\sigma e^{i \phi}\right\}>\gamma$
We endeavor to study the coefficient bounds, extreme points, Hadamard product of the class $\operatorname{WR}(\lambda, \beta, \alpha, \mu, \theta)$, wighted mean, arithmetic can and some results.

2. COEFFICIENT BOUNDS AND EXTREME POINTS:

We acquire the essential and satisfactory circumstance and extreme points for the functions $\mathrm{f}(\mathrm{z})$ in the class $\operatorname{WR}(\lambda, \beta, \alpha, \mu, \theta)$.

Therom2.1 The mapping $f(z)$ clear with (1) is in the class WR $(\lambda, \beta, \alpha, \mu, \theta)$ iff
$\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta) a_{n} b_{n}$
$\leq 1-\alpha$
wherever $0 \leq \mu<1,0 \leq \theta \leq 10 \leq \alpha<1$,
$0 \leq \lambda \leq 1, \beta \geq 0$
Proof; By clarification (1),we get
$\operatorname{Re}\left\{\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}\right\}$
$\geq \beta\left|\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}-1\right|+\alpha$
subsequently through Lemma 3, we comprise
$\operatorname{Re}\left\{\begin{array}{l}\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))^{\prime \prime}\right.}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}} \\ X\left(1+\beta e^{i \phi}\right)-\beta e^{i \phi}\end{array}\right\} \geq \alpha$
$-\pi<\phi \leq \pi$, or consistently,
$\operatorname{Re}\left\{\begin{array}{l}\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}\left(1+\beta e^{i \phi}\right)}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}} \\ - \\ \frac{\beta \mathrm{e}^{i \phi}\left((1-\lambda)\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z^{2}\left(R_{\mu}^{\theta}\left((\mathrm{f} * \mathrm{~g})(\mathrm{z})^{\prime}\right)\right)\right.\right.}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}\end{array}\right\} \geq \alpha$
(6)

Let $\mathrm{F}(\mathrm{z})=$

$$
\begin{aligned}
& {\left[z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{"}\right]\left(1+\beta e^{i \phi}\right)} \\
& -\beta e^{i \phi}\left[(1-\lambda)\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}\right]\right.
\end{aligned}
$$

And

$$
\mathrm{E}(\mathrm{f})=(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)
$$

next to Lemma 2. (6) is comparable to
$|F(Z)+(1-\alpha) E(Z)| \geq|F(Z)-(1+\alpha) E(Z)|$ for $0 \leq \alpha<1$ But $|F(Z)+(1-\alpha) E(Z)|=$
$-\beta e^{i \phi}\left[(1-\lambda)\left(z-\sum_{n=2}^{\infty} k(n, \mu, \theta) a_{n} b_{n} z^{n}\right)\right]$
$-\beta e^{i \phi}\left[\lambda z+\lambda \sum_{n=2}^{\infty} n k(n, \mu, \theta) a_{n} b_{n} z^{n}\right]$
$\left.+(1-\alpha)\left[z-\sum_{n=2}^{\infty}(1-\lambda+n \lambda) k(n, \mu, \theta) a_{n} b_{n} z^{n}\right)\right]$
$=\mid(2-\alpha) z-\sum_{n=2}^{\infty}\left[\left(n+\lambda n(n-1)+(1-\alpha)(1-\lambda+n \lambda] k(n, \mu, \theta) a_{n} b_{n} z^{n}\right.\right.$
$-\beta e^{i \phi} \sum_{n=2}^{\infty}[n+n \lambda(n-1)-(1-\lambda+n \lambda)] k(n, \mu, \theta) a_{n} b_{n} z^{n}$
$\geq(2-\alpha)|z|-\sum_{n=2}^{\infty}\left[\left(n+\lambda n(n-1)+(1-\alpha)(1-\lambda+n \lambda] k(n, \mu, \theta) a_{n} b_{n}|z|^{n}\right.\right.$
$-\beta \sum_{n=2}^{\infty}[n+\lambda n(n-2)-1+\lambda] k(n, \mu, \theta) a_{n} b_{n}|z|^{n}$
Also $|F(Z)-(1+\alpha) E(Z)|=$
$\mid-a z-\sum_{n=2}^{\infty}\left[(n+\lambda n(n-1)-(1+\alpha)(1-\lambda+n \lambda)] k(n, \mu, \theta) a_{n} b_{n} z^{n}\right.$
$-\beta e^{i \phi} \sum_{n=2}^{\infty}[n+n \lambda(n-1)-(1-\lambda+n \lambda)] k(n, \mu, \theta) a_{n} b_{n} z^{n}$
$\leq \alpha|z|+\sum_{n=2}^{\infty}\left[\left(n+\lambda n(n-1)-(1+\alpha)(1-\lambda+n \lambda] k(n, \mu, \theta) a_{n} b_{n}|z|^{n}\right.\right.$
$+\beta \sum_{n=2}^{\infty}[n+\lambda n(n-1)-(1-\lambda+n \lambda)] k(n, \mu, \theta) a_{n} b_{n}|z|^{n}$
Furthermore
$|F(Z)+(1-\alpha) E(Z)|-|F(Z)-(1+\alpha) E(Z)|$

$$
\geq 2(1-\alpha)|z|
$$

$\sum_{n=2}^{\infty}\left[\begin{array}{l}(2 n+2 \lambda n(n-1)-2 \alpha(1-\lambda+n \lambda) \\ -\beta(2 n+2 n \lambda(n-1)-2(1-\lambda+n \lambda))\end{array}\right] k(n, \mu, \theta) a_{n} b_{n}|z|^{n} \geq 0$
Or
$\sum_{n=2}^{\infty}\left[\begin{array}{l}n(1+\beta)+\mathrm{n} \lambda(\mathrm{n}-1)(1+\beta)- \\ (1-\lambda+n \lambda)(\beta+\alpha)\end{array}\right] k(n, \mu, \theta) a_{n} b_{n}$
$\leq 1-\alpha$
This is comparable to
$\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta) a_{n} b_{n} \leq 1-\alpha$
on the contrary, expect that (5) holds. afterward we obliged to show
$\operatorname{Re}\left\{\begin{array}{l}\frac{z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}\left(1+\beta e^{i \phi}\right)}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}- \\ \frac{\beta \mathrm{e}^{i \phi}\left((1-\lambda)\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z^{2}\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}\right)\right)}{(1-\mu) R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(R_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}\end{array}\right\} \geq \alpha$

3. HADAMARD PRODUCT

Theorem : $\mathrm{f}(\mathrm{z})=\mathrm{z}-\sum_{n=2}^{\infty} a_{n} z^{n}$ and $\mathrm{g}(\mathrm{z})=\mathrm{z}-\sum_{n=2}^{\infty} b_{n} z^{n}$
belong to $\operatorname{WR}(\lambda, \beta, \alpha, \mu, \theta)$
afterward effective Hadamard product of f and g is given
by $\mathrm{f} * \mathrm{~g}(\mathrm{z})=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z)$

Proof:
Since f and $\mathrm{g} \in W R(\lambda, \beta, \alpha, \mu, \theta)$
We have
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \mathrm{b}_{n}}{1-\alpha}\right] a_{n} \leq 1$
And
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \mathrm{a}_{n}}{1-\alpha}\right] b_{n} \leq 1$ and by applying the Cauchy-Schwarz ineuqality, we have
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \sqrt{a_{n} b_{n}}}{1-\alpha}\right] \sqrt{a_{n} b_{n}}$
$\leq\left(\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \mathrm{b}_{n}}{1-\alpha}\right] a_{n}\right)^{1 / 2}$
$\times\left(\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \mathrm{a}_{n}}{1-\alpha} b_{n}\right)^{1 / 2}\right.$
Consequently we attain
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \sqrt{a_{n} b_{n}}}{1-\alpha}\right] \sqrt{a_{n} b_{n}} \leq 1$
Now we want to prove
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta)}{1-\alpha}\right] a_{n} b_{n} \leq 1$
Since
$\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta)}{1-\alpha}\right] a_{n} b_{n}$
$=\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\alpha+\beta)] \mathrm{k}(\mathrm{n}, \mu, \theta) \sqrt{a_{n} b_{n}}}{1-\alpha}\right] \sqrt{a_{n} b_{n}}$
thus we search out the consequence.

4. WEIGHTED MEAN AND ARITHMETIC MEAN

Lemma 4.

If Re $w \geq \gamma|w-1|+k$, where $0 \leq k \prec 1, \gamma \geq 0$.
Then $|w| \geq \frac{\gamma+k}{\gamma+1}$
Proof: Let $\operatorname{Re} \mathrm{w} \geq \gamma|w-1|+k$, as $|w| \geq \operatorname{Re}$,
we acquire
$|w| \geq \gamma|w-1|+k$, or equivalent $|w|(1+\gamma) \geq \gamma+k$,
subsequently $|w| \geq \frac{\gamma+k}{\gamma+1}$
Defination 2. Allow $f(z)$ and $g(z)$ belong to R. subsequently the weighed mean $h_{j}(z)$ of $f(z)$ and $g(z)$ is given by
$\mathrm{h}_{\mathrm{j}}(\mathrm{z})=\frac{1}{2}[(1-j) f(z)+(1+j) g(z)]$
Definition 3. The arithmetic mean of f_{j}
$(j=1,2, \ldots, q)$ is
clear within $\mathrm{W}(\mathrm{z})=\frac{1}{q} \sum_{j=1}^{q} f_{j}(z)$
In the next theorem we will show the weighted mean and arithmetic mean in the class

Theorem.

If $\mathrm{f}(\mathrm{z})$ and $\mathrm{g}(\mathrm{z})$ are in the class $\mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$ Afterward the weighted mean defined by Definition 2 is in the class
$\mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$, where
$f(z)=z-\sum_{n=2}^{\infty} c_{n} z^{n}, \quad \mathrm{~g}(z)=z-\sum_{n=2}^{\infty} d_{n} z^{n}$

Proof: By definition 2, we attain

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{i}}(\mathrm{z} \mathrm{z}= \\
& \frac{1}{2}\left[(1-j)\left(z-\sum_{n=2}^{\infty} c_{n} z^{n}\right)+(1+j)\left(z-\sum_{n=2}^{\infty} d_{n} z^{n}\right)\right] \\
& \quad=z-\sum_{n=2}^{\infty} \frac{1}{2}\left[(1-j) c_{n}+(1+j) d_{n}\right] z^{n}
\end{aligned}
$$

We necessity explain so as to $\mathrm{h}_{\mathrm{j}}(\mathrm{z})$ so by lemma 2 we get

$$
\begin{aligned}
& \sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta) \\
& X\left[\frac{1}{2}(1-j) c_{n}+(1+j) d_{n}\right] b^{n} \\
& \sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta)\left[\frac{1}{2}(1-j)\right] c_{n} b_{n} \\
& +\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta)\left[\frac{1}{2}(1+j)\right] d_{n} b_{n}
\end{aligned}
$$

$$
\leq[(1-j)+(1+j)](1-\alpha)=1-\alpha
$$

The proof is complete.
Thorem: Let $\mathrm{f}_{\mathrm{j}}(\mathrm{z})$ clear with
$f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad\left(\mathrm{a}_{n, j} \geq 0, j=1,2, \ldots \ldots \mathrm{q}\right)$
$\left|\frac{z\left(\mathbf{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(\mathbf{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{\left.(1-\lambda) \mathrm{R}_{\mu}^{\theta}(\mathrm{f} * \mathrm{~g})(\mathrm{z})\right)+\lambda z\left(\mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}\right| \geq \frac{\beta+\alpha}{\beta+1}$
Proof: Commencing (8) and (9) we container inscribe

$$
\begin{aligned}
\mathrm{W}(\mathrm{z}) & =\frac{1}{q} \sum_{j=1}^{q}\left(z-\sum_{n=2}^{\infty} a_{n, j} z^{n}\right) \\
& =z-\sum_{j=1}^{q}\left(\frac{1}{q} \sum_{n=2}^{\infty} a_{n, j}\right) z^{n}
\end{aligned}
$$

because $\mathrm{f}_{\mathrm{j}}(\mathrm{z}) \in \mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$ for every $(\mathrm{j}=1,2, \ldots \ldots \mathrm{q})$, so by using the theorem we get
$\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta)\left[\frac{1}{q} \sum_{n=2}^{q} a_{n, j}\right] b_{n}$
$=\frac{1}{q} \sum_{n=2}^{q}\left[\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] k(n, \mu, \theta) a_{n, j} b_{n}\right]$
$\leq \frac{1}{q} \sum_{n=2}^{q}(1-\alpha)=(1-\alpha)$
This is the absolute verification.

Theorem:

Let $\mathrm{f}(\mathrm{z})$ clear with (1) be in the class $\mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$
.Then
$\left|\frac{z\left(\mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(\mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{(1-\lambda) \mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(\mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}}\right| \geq \frac{\beta+\alpha}{\beta+1}$
Proof: As $\mathrm{f}(\mathrm{z}) \in \mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$.after that by lemma 4
,we achieve
$\left|\frac{z\left(\mathbf{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime}+\lambda z^{2}\left(\mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))\right)^{\prime \prime}}{(1-\lambda) \mathrm{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))+\lambda z\left(\mathbf{R}_{\mu}^{\theta}((\mathrm{f} * \mathrm{~g})(\mathrm{z}))^{\prime}\right.}\right| \geq \frac{\beta+\alpha}{\beta+1}$

The verification is comprehensive.

5. CONCLUSION

Using Hadamard product with Rafid Operator, we obtained coefficient bounds, extreme points of the class $\mathrm{WR}(\lambda, \beta, \alpha, \mu, \theta)$, Also described weighted mean, arithmetic mean and some results.

REFERENCES

1) E. S. Aqlan, Some Problems Connected with Geometric Function Theory, Ph.D. Thesis, Pune University, Pune (unpublished), (2004).
2) S. Owa, On the distortion theorems, Kyungpook Math. J., 18: 53-59, 1978.
3) H. M. Srivastava and R. G. Buschman, Convolution integral equation with special function kernels, John Wiley and Sons, New York, London, Sydney and Toronto, 1977.
4) H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon,29:384-389, 1984.
5) H. M. Srivastava and S. Owa, (Editors), Univalent Functions, Fractional Calculus and Their Applications, Halsted press (Ellis Harwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
6) W.G. Atshan and R.H. Buti , Fractional Calculus of a Class of UnivalentFunctions With Negative

Coefficients Defined By Hadamard Product WithRafid -Operator, European J. Of Pure And Applied Math. 4(2), 2011,162-173
7) M.K. Aouf, A. Shamandy and M.F. Yassen, Some applications of fractional calculus operators to certain subclass of univalent functions, Soochow Journal Of Mathematics, 21(1)(1995), 139-144.
8) G.L. Reddy and K.S. Padmanabhan , Some properties of fractional integrals and derivatives of univalent functions, Indian J. pure appl. Math.16(3) (1985) , 291-302.

