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Abstract - In the present paper, we have studied a class 

WR(λ,β,α,μ,θ) which consist of analytic and univalent 

functions with negative coefficients in the open disk    U = 

*    | |   + defined by Hadamard product with Rafid 

Operator,we obtain coefficient bounds , extreme points for 

this class ,Also weighted mean , arithmetic mean and some 

results. 
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Definition1. A function f(z) R , z U is said to be 

in the class WR( , , , , )     

 

if and only if satisfies the inequality  
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Lemma 2.  Let w = u+iv. Then Re w   iff 

                 |  (   )|  |  (   )| 

Lemma 3.  Let w = u+iv and                        

     Re w  |   |+  if and only if 

 Re  (1 )i iw e e       

We endeavor to study the coefficient bounds, extreme 
points, Hadamard product of the class WR(λ,β,α,μ,θ) , 
wighted mean, arithmetic can and some results. 

2. COEFFICIENT BOUNDS AND EXTREME POINTS: 

We acquire the essential and satisfactory circumstance 

and extreme points for the functions f(z) in the class 

WR(λ,β,α,μ,θ). 
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Proof;  By clarification (1),we get 
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3. HADAMARD PRODUCT
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4. WEIGHTED MEAN AND ARITHMETIC MEAN 
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because fj(z) WR( , , , , )     for every 

 (j=1,2,......q), so by  using the theorem  we get 
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This is the absolute verification. 

Theorem: 

Let f(z) clear with (1) be in the class WR( , , , , )    

.Then 

, 2 ,,

,

(R ((f g)(z))) (R ((f g)(z)))
     (10)

(1 ) R ((f g)(z)) (R ((f g)(z))) 1

z z

z

 

 

 

 

  

  

   


    

Proof: As f(z) WR( , , , , )      after that by lemma 4 

,we achieve 

, 2 ,,

,

(R ((f g)(z))) (R ((f g)(z)))
 

(1 ) R ((f g)(z)) (R ((f g)(z))) 1

z z

z

 

 

 

 

  

  

   


    
 

The verification is comprehensive. 

obtained coefficient bounds, extreme points of the class 

WR(λ,β,α,μ,θ), Also described weighted mean, arithmetic 

mean and some results.  
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5. CONCLUSION 
 
Using Hadamard product with Rafid Operator, we 


