
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 10 | Oct 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 322

Self Driving RC Car using Behavioral Cloning

Aliasgar Haji1, Priyam Shah2, Srinivas Bijoor3

1Student, IT Dept., K. J. Somaiya College of Engineering, Mumbai.
2Student, Computer Dept., K. J. Somaiya College of Engineering, Mumbai.

3Student, Startup School India, K. J. Somaiya College of Engineering, Mumbai.
--***---
Abstract - Self Driving Car technology is a vehicle that
guides itself without human conduction. The first truly
autonomous cars appeared in the 1980s with projects
funded by DARPA(Defense Advance Research Project
Agency). Since then a lot has changed with the
improvements in the fields of Computer Vision and
Machine Learning. We have used the concept of behavioral
cloning to convert a normal RC model car into an
autonomous car using Deep Learning technology.

Key Words: Self Driving Car, Behavioral Cloning. Deep
Learning, Convolutional Neural Networks, Raspberry Pi,
Radio-controlled (RC) car

1. INTRODUCTION

Traveling by car is currently one of the most dangerous
forms of transportation, with over a million deaths
annually worldwide. As nearly all car crashes
(particularly fatal ones) are caused by driver error,
driverless cars would effectively eliminate nearly all
hazards associated with driving as well as driver
fatalities and injuries. A self-driving car is a vehicle
equipped with an autopilot system and is capable of
driving from one point to another without aid from a
human operator. Self-driving car technology was built
initially using the robotics approach. But with the
advancement in the field of computer vision and
machine learning, we can use the deep learning
approach. Major contests are conducted in the US for
self-driving car technology to make it available to the
world. Some of the well-known projects are EUREKA
Prometheus Project (1987-1995) ARGO Project, Italy
(2001) DARPA Grand Challenge (2004-2007) European
Land-Robot Trial (2006-2008). There are several
challenges are needed to be met before implementing
the self-driving car in the real world. It has to navigate
through desert, flat and mountainous terrains and
handle obstacles like bridges, underpasses, debris,
potholes, pedestrians and other vehicles.

1.1 Neural Network

Neural networks are a set of algorithms, modeled loosely
after the human brain, that is designed to recognize
patterns. They can predict the output over a set of new
input data through a kind of machine perception,
labeling or clustering raw input as they learn to
recognize and interpret pattern.

1.2 Convolutional Neural Networks (CNNs /
ConvNets)

Convolutional Neural Networks as they are made up of
neurons that have learnable weights and biases are
similar to ordinary Neural Networks. [1] Each neuron
receives some inputs, performs a dot product and
optionally follows it with a non-linearity activation
function. The overall functionality of the network is like
having an image on one end and class as an output on
the other end. They still have a loss function like
Logarithmic loss/ Softmax on the last (fully-connected)
layer and all ideas developed for learning regular Neural
Networks still apply. In simple words, images are sent to
the input side and the output side to classify them into
classes based on a probability score, whether the input
image applied is a cat or a dog or a rat and so on.

1.3 Behavioral Cloning

[2]Behavioral cloning is a method by which sub-
cognitive skills like -recognizing objects, experience
while performing an action can be captured and
reproduced in a computer program. The skills performed
by human actors are recorded along with the situation
that gave rise to the action. The input to the learning
program is the log file generated from the above data
collection. The learning program outputs a set of rules
that reproduce skilled behavior. The application of this
method can be to construct automatic control systems
for complex tasks for which classical control theory is
inadequate.

2. Literature review

[3] NVIDIA has used convolutional neural networks
(CNNs) to map the image from a front-facing camera to
the steering commands for a self-driving car. The end-to-
end approach is powerful because, with minimum
training data from humans, the system learns to steer,
with or without lane markings, on both local roads and
highways.

The system is designed using an NVIDIA DevBox running
Torch 7 for training. An NVIDIA DRIVE PX self-driving
car computer, also with Torch 7, was used to determine
where to drive—while operating at 30 frames per
second (FPS). The automation in the training of the
system to learn the representations of necessary

https://devblogs.nvidia.com/deep-learning-self-driving-cars/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 10 | Oct 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 323

processing steps, such as detecting useful surrounding
features, with only the human steering angle as the
training feature. NVIDIA never explicitly trained its
system to detect, the outline of roads and other
obstructions. It learned using the explicit decomposition
of the problem, such as lane marking detection, path
planning, and control, our end-to-end system optimizes
all processing steps simultaneously.

It is believed that end-to-end learning leads to better
performance over part by part learning models. Better
performance is achieved due to the internal components
which self-optimize to maximize overall system
performance, instead of optimizing human-selected
intermediate criteria, (e. g., lane detection). Using end-to-
end learning can lead to smaller networks possible
because the system learns to solve the problem with the
minimal number of processing steps.

Hardware Design

Nvidia implemented Behavioral Cloning using its Drive
PX Graphics Processing Unit. (Fig - 1)

● The hardware consists of 3 cameras.

● The vehicle’s Controller Area Network (CAN)
bus provides steering commands.

● Nvidia's Drive PX onboard computer with GPUs.

● In order to make the system independent of the
car geometry, the steering command is 1/r,
where r is the turning radius in meters.

Fig - 1: Hardware Design of NVIDIA Drive PX

Software Design

(Fig - 2) The input to the CNN model is an image and
output is steering command. The resultant command is
compared to the required command for that image, and
the weights of the CNN are adjusted to bring the output
closer to the required output. The weight adjustment is
accomplished using backpropagation. The network is

able to generate steering commands from the video
images of a single-center camera after being trained.

Fig - 2: Software Design of NVIDIA Drive PX

3. Our Implementation

(Fig-3) Our implementation comprises of Hardware
stack which consists of the RC Car, Raspberry Pi model
3B, Pi Camera, jumper wires and the Software Stack
consists of Raspbian OS, Keras, CV2 and gpio library of
python.

Fig -3: Our Implementation

3.1 Hardware Implementation:

We bought a normal RC car, which is controlled
wirelessly using the remote. We reverse-engineered its
remote and soldered the-forward, reverse, right and left
pins with male to female jumper wires such that it can be
connected with the appropriate gpio pins of the
Raspberry Pi. After this, we connected the Raspberry Pi
with the PC and stored the weight file for prediction. The
Pi Camera is placed on the car and the images are sent to
the Raspberry Pi. The Pi then signals the next command-
straight, right and left according to the prediction of the
Deep Learning model.

3.2 Software Implementation:

The Software Implementation is divided into three main
sections data generation, training phase, and testing
phase.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 10 | Oct 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 324

3.2.1 Data Generation

The Pi Camera module records video feed and generates
images of resolution 648 X 648. A .csv data file is
generated along with the steering details (0:straight, 1-
right and -1: left) with respect to images in each frame.

Fig - 4: Generated Dataset

3.2.2 Training phase

The video feed recorded by the camera was of resolution
648 X 648. For training, we kept the batch size to 32. We
used CNN sequential layers for training (Fig - 5) and
compiled the model file. Sequential layers are basically a
linear stack of layers. The first layer added to sequential
layer used is a two-dimensional convolution layer. We
also used the activation function called “elu” to the first
layer. ELU is very similar to RELU except for negative
inputs. The second layer added was a MaxPooling layer.
The pooling layer basically reduces computation by
sending inputs with fewer parameters. The third layer
was to flatten the inputs from previous layers. The
fourth, fifth, sixth layers are dense layers. For the third
and fourth layers we used ReLu activation function. For
the fifth layer, Softmax activation function was used for
multi-class classification. We split the dataset using
pandas and sklearn libraries of python. The dataset split
was of the ratio 80/20 where 80% is for training and
20% for testing. We also used a Adam optimizer during
the training process and used “mean-square error”
method to reduce the loss, as a loss function. We set
epoch as 20 and a batch size of 8 for training.

Fig - 5: Architecture of Network

3.2.3 Testing Phase

The model pickle file generated after the training step is
used for testing, with real-time images and we got
results as shown below.

Fig - 6: Output: Forward

Fig - 7: Output: Left

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 10 | Oct 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 325

Fig - 8: Output: Right

4. Result and Observations

The main aim was to check how feasible it is to train a
car using behavioral cloning so that it can drive
autonomously in a given environment, instead of using
other complex and computationally expensive methods
like reinforcement learning. The model is trained over
the labelled images captured while driving the RC car
manually. The images clicked are mapped with the
commands of- left, right or straight using the RPI-gpio
package of the RaspberryPi to the remote and eventually
to the RC car. This makes it possible for the car to make
appropriate decisions when driven in the autonomous
mode. We got a test accuracy of 84.5% after testing the
Self Driving car in similar driving conditions.

[4]The main advantage of using behavioral cloning is
that a lot of training data is not required. After driving
the car for approximately thirty minutes and collecting
about 200 images. We were successful in training our
model to obtain a reasonable accuracy. Also, by using
data augmentation one can increase the dataset and
improve the model.

[5]However, this approach has two major disadvantages:
one is that it needs an expert human driver so that the
model gets trained properly. The other is that this
approach cannot deal with dynamically changing
scenarios. For example, if there are moving obstacles on
the path or drastic change in the road structure, the
model would fail. We can use DAgger (Dataset
Aggregation algorithm) method for generalizing and
solving these two problems.

5. Conclusion

Our car performed satisfactorily. But there was an
observable lag due to the low-computing capability of
Raspberry Pi model 3b. Hence, the steering decisions
made by the car, although correct were not made in a
suitable time frame. Thus, this method is suitable for

training and implementing an autonomous car for a set
environment, that does not change unpredictably.

6. Future Scope

To improve the current implementation we suggest
using an advanced algorithm for Image processing. A
GPU(Graphic Processing Unit) can be used for faster
processing. Path navigation with GPS guidance Vehicle
and Object detection features can be added. We can
apply sensor fusion techniques, localization, and control
features to improve the autonomous behavior of the
vehicle.

REFERENCES

[1] Stanford, “CS231n Convolutional Neural Networks
for Visual Recognition”.

[2] Claude Sammut, Geoffrey I. Webb, “Encyclopedia of
Machine Learning”, Springer, 2011.

[3] NVIDIA developer, “End-to-End Deep Learning for
Self-Driving Cars”, NVIDIA, 2016.

[4] Paichun Jim Lin, Medium, “Behavioral Cloning and
Imitation Learning for Autonomous Driving”,2017.

[5] An Nguyen, Medium, “You don’t need lots of data!
(Udacity Behavioral Cloning)”, 2017.

https://medium.com/@paichul/building-driving-assist-system-part-1-f7fb9278670c
https://medium.com/@fromtheast/you-dont-need-lots-of-data-udacity-behavioral-cloning-6d2d87316c52
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://books.google.co.in/books?id=i8hQhp1a62UC&pg=PT119&lpg=PT119&dq=%22Behavioral+cloning+is+a+method+by+which+human+sub-cognitive+skills+can+be+captured+and+reproduced+in+a+computer+program.%22&source=bl&ots=90p7zqbGbJ&sig=ACfU3U1o6WKOzOsXoIJRwo3OqJSW_6chvQ&hl=en&sa=X&ved=2ahUKEwjYuLPD4oXlAhVn7HMBHQpGDaUQ6AEwAHoECAAQAQ#v=onepage&q=%22Behavioral%20cloning%20is%20a%20method%20by%20which%20human%20sub-cognitive%20skills%20can%20be%20captured%20and%20reproduced%20in%20a%20computer%20program.%22&f=false
https://books.google.co.in/books?id=i8hQhp1a62UC&pg=PT119&lpg=PT119&dq=%22Behavioral+cloning+is+a+method+by+which+human+sub-cognitive+skills+can+be+captured+and+reproduced+in+a+computer+program.%22&source=bl&ots=90p7zqbGbJ&sig=ACfU3U1o6WKOzOsXoIJRwo3OqJSW_6chvQ&hl=en&sa=X&ved=2ahUKEwjYuLPD4oXlAhVn7HMBHQpGDaUQ6AEwAHoECAAQAQ#v=onepage&q=%22Behavioral%20cloning%20is%20a%20method%20by%20which%20human%20sub-cognitive%20skills%20can%20be%20captured%20and%20reproduced%20in%20a%20computer%20program.%22&f=false
https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://medium.com/@paichul/building-driving-assist-system-part-1-f7fb9278670c
https://medium.com/@paichul/building-driving-assist-system-part-1-f7fb9278670c
https://medium.com/@fromtheast/you-dont-need-lots-of-data-udacity-behavioral-cloning-6d2d87316c52
https://medium.com/@fromtheast/you-dont-need-lots-of-data-udacity-behavioral-cloning-6d2d87316c52

