
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2452

Software Architecture and Software Design

Manishaben Jaiswal

Researcher and IT Consultant, MD, USA, Pursuing Ph.D. University of Cumberland, KY, USA, IT Consultant, MD, USA
---***--
Abstract - Software architecture defined as strategic design of
an activity concerned with global requirements and its
solution is implemented such as programming paradigms,
architectural styles, component-based software engineering
standards, architectural patterns, security, scale, integration,
and law-governed regularities. Functional design, also
described as tactical design, is an activity concerned with local
requirements governing what a solution does such as
algorithms, design patterns, programming idioms, refactoring,
and low-level implementation. In this paper I would like to
introduce some concepts of software architecture, and
software design as well as relationship between them.

Key Words: Architecture, Design, Components, Element,
Principle, Serverless

1. Introduction

Architecture is driven by non-functional requirements, while
functional design is driven by functional requirements.
Pseudo-code belongs in the detailed design document. UML
component, deployment, and package diagrams generally
appear in software architecture documents; UML class,
object, and behavior diagrams appear in detailed functional
design documents.so, ultimately both are dependent on each
other. Some important stage of the software architecture is
as follows. Firstly, what is software architecture and the
characteristics of it. Secondly, what is software design and
its principle, and finally relationship between software
architecture and software design.

1. Software Architecture

Architecture is a blueprint for a system. It provides an
associate abstraction to manage the system complexness and
establish a communication and coordination mechanism
among elements. It defines a structured resolution to fulfill
all the technical and operational necessities, whereas
optimizing the common quality attributes like performance
and security. Further, it involves a collection of serious
selections regarding the organization associated with
software system development and each of those selections
will have a substantial impact on quality, maintainability,
performance, and the overall success of the ultimate product.

1.1Characteristic of the Software Architecture:

Characteristics describe the expectations of code in
operational and technical levels. The performance and low
fault tolerance, quantifiability, and responsibility of area unit
are the key of characteristics. It is also referred as quality
attribute or patterns. Microservices is one in all several
different code design patterns Event-Driven Pattern, Serverless

Pattern and lots of additional. The Microservices pattern
received its name when being adopted by Amazon and Netflix
and showing its nice impact.

1.2. Serverless Architecture

Serverless Architecture is alienated into two main groups.
The first is “Backend as a service” which is known as ‘Baas’.
Other is “Functions as a Service (FaaS).” Which is known as
FaaS. The serverless architecture will help you save a lot of
time taking care and fixing bugs of deployment and servers
regular tasks.

1.3 Event-Driven Architecture

This architecture is reckoning on Event Producers and Event
customers. The most plan is to decouple your system’s
components and every half are going to be triggered once a
remarkable event from another half possesses triggered. As
an example, an internet store system has two components.
First a sale module and second a merchant module. If a client
makes a sale, the acquisition module would generate an
occasion of “order Pending” Since the seller module is
attention-grabbing within the “order Pending” event, it'll be
listening, just in case one is triggered. Once the seller module
gets this event, it'll execute some tasks or even fireplace
another event to order a lot of the merchandise from a
merchant.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2453

1.4 Microservices Architecture

Microservices architecture is a famous architecture now a
days it depends on developing tiny, freelance standard
services wherever every service solves a downside or
performs a singular task and these modules communicate
with one another through well-defined API to serve the
business goal.

Fig -1: Name of the figure

2. Software Design

Software architecture is in authority for the skeleton and the
high-level infrastructure of a software, the software design is
responsible for the code level design such as, what each
module is doing, the classes scope, and the functions
purposes, etc. Every structure contains code parts, relations
among them, and properties of each part and relations. The
design of a system depicts the system organization or
structure and provides an evidence of how it behaves. A
series of design selections are impact of quality,
performance, maintainability, and overall success of the
system. A system represents the gathering of elements which
accomplish a set of functions.

A computer code design is an associate abstraction of the
run-time components of a package throughout some part of
its operation. Elements like components and data
constrained in their relationships to realize the desired set of
properties.

Elements: An element is the associate abstract unit of
computer code directions and internal state that gives a
transformation of information via its interface. For example,
transformations embrace loading into memory from
auxiliary storage, playing some calculation, translating to a
special format, encapsulation with alternative knowledge,
etc.

Components: Components are the foremost simply
recognized side of computer code design which embrace
process, data, and connecting components

Data-A data point is a data that is transferred from a
component, or received by an element, via an
instrumentality. Examples embrace byte-sequences,
messages, marshaled parameters, and serialized objects,

however, don't embrace info that's for good resident or
hidden among an element.

It is working on several principal which are as follows.

2.1 Single responsibility principle: It indicates that each
class must have one single purpose, a concern and a
reason to change.

2.2 Open closed principle: It is open for extension but
closed for adjustment. It indicates that, designer will be
able to add more functionality to the class but do not edit
current functions in a way that breaks existing code that
uses it.

2.3 Liskov substitution principle:

This principle guides the developer to use inheritance in
an exceeding method which will not break the appliance
logic at any purpose. Thus, if a toddler category referred
to as “XyClass” inherits from a parent category “class”,
the child category shall not replicate the practicality of
the parent category in an exceedingly method that
changes the behavior parent category. thus, you'll be
able to simply use the article of Class rather than the
article of complexity while not breaking the appliance
logic.

2.4 Interface segregation principle:

We can implement multiple interfaces, then structure
your code in an exceedingly manner that a category can
ne'er be forced to implement a perform that's not
necessary to its purpose. So, we can categorize interfaces.

2.5 Dependency inversion principle:

If you ever followed TDD for your application
development, then you recognize however decoupling
your code is vital for testability and modularity. In
alternative words, If a definite category “ex: Purchase”
depends on the “Users” category then the User object
internal representation ought to return from outside
the “Purchase” category.

3. Relationship between software architecture and
software design

Software design exposes the structure of a system
whereas activity the implementation details. The design
additionally focuses on however the weather and parts
at intervals a system moves with each other. package
style delves deeper into the implementation details of
the system. style issues exemplify the choice of
knowledge structures and algorithms or the
implementation details of individual parts. Architecture
and style issues typically overlap. Instead of using
laborious and quick rules to tell apart between design
and style, it is sensible to mix them. In some cases,
selections square measure clearly a lot of study in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2454

nature. In alternative cases, selections focus heavily on
style and the way it helps to comprehend that design.

4. Conclusion

According to my research on and the points as we
discussed above, conclusion is there is no any specific
rules and regulation applied on software design. An
important detail to notice is that design is style,
however not all style studies. In observe, the designer
is that the one United Nations agency attracts the road
tween package design (architectural style) and
elaborated design (non-architectural design). There
aren’t any rules or tips that work all cases, although,
there are tries to formalize the excellence.

References

[1] (Evelyn J. Barry et. al. 2003) Evelyn J. Barry, Chris F.
Kemerer, Sanda A. Slaughter, On the Uniformity of
Software Evolution Patterns, IEEE, 2003, pp. 106 – 113

[2] (Kruchten 2000) Philippe Kruchten, “Rational Unified
Process – An Introduction”, Addison-Wesley, 2000.

[3] Software Engineering by M.Jaiswal, and S. J. Patel ,
Thakur publisher, ED 2014, chapter Design Concepts;
and Architectural Design pg.100-108, Component-Level
design.pg. 122-126.

[4] (Kruchten 1995) Philippe Kruchten, The 4+1 View
Model of Architecture, IEEE, 1995, pp. 42 – 50

[5] https://www.sciencedirect.com/topics/computer-
science/software-architecture.

Biographies

 Manishaben is an author,
researcher as well as IT consultant.
She published books, about
“software Engineering”, 2014 and
Computer Concepts and
Application- lI, 2019. Published
papers in state, National
Conferences, and active in online
journals publication. Pursuing ph.
D in Information Technology and
working as IT consultant in well-
known software company, USA.

https://www.sciencedirect.com/topics/computer-science/software-architecture
https://www.sciencedirect.com/topics/computer-science/software-architecture

