

Strength and Behaviour of Geopolymer Concrete using Low-Calcium Flyash and Calcium Hydroxide Cured at Ambient Temperature

Harshini N S¹, K P Shivananda²

¹Department of Civil Engineering Siddaganga Institute of Engineering and Technology, Tumakuru ²Principal, Siddaganga Institute of Engineering and Technology, Tumakuru ***

Abstract - The present study reports the mechanical and durability properties of Geopolymer concrete (GPC) using calcium hydroxide as fly ash replacement. Calcium hydroxide because of its fineness and size it can be effectively used as a replacement of fly ash. Fly ash is abundantly available in the form of industrial waste. In this study, calcium hydroxide was replaced at different replacement levels (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%). Class F Fly ash is used as geopolymer binder. Sodium silicate (Na₂SiO₃) and sodium hydroxide (8M, 10M, 12M) has been used as a alkali activator. Specimens for compressive strength, Split tensile strength and flexural strength were cast and tested at 28 and 60days maintain an ambient curing. From the result it is revealed that studied mechanical properties were increased with the increasing replacement level of calcium hydroxide up to 2.0% and there is strength decrements were observed after 2.5% replacement level. It is concluded that the optimum percentage replacement for fly ash with calcium hydroxide is 2.0%.

Key Words: Geopolymer concrete, calcium hydroxide, Fly ash, alkali activator, ambient curing.

1. INTRODUCTION

The consumption of concrete stands second globally after water. As the demand for concrete increases it also increases the demand for Portland cement. On the other hand, the climate change due to global warming has become a major concern. Global warming is caused by the emission of greenhouse gases, such as carbon dioxide (CO2) to the atmosphere by human activities. The cement industries are held responsible for some of the CO2 emissions, because the production of one ton of Portland cement emits approximately one ton of CO2 into the atmosphere.

Several efforts are in progress to supplement the use of Portland cement in concrete in order to address the global warming issues. These include the utilization of supplementary cementing materials such as fly ash, silica fume, granulated blast furnace slag, rice-husk ash and metakaolin as the alternative binders to Portland cement.

In this respect, the geopolymer technology shows considerable promise for application in concrete industry as an alternative binder to the Portland cement. In terms of global warming, the geopolymer technology could significantly reduce the CO2 emission to the atmosphere caused by cement industries.

This "Geopolymer" was developed in the mid 1970 by Davidovits and it had geopolymeric alumino-silicate gel performing the role of binder. Recently, Ragan and Hardjito (2005) also exploited silica (SiO2) and alumina (Al2O3) of fly ash to synthesize geopolymeric binder which was found to be useful to prepare structural grade concretes.

Wastes can be used to produce new products or can be used as admixtures so that natural resources are used more efficiently and the environment is protected from waste efficiently.

2. OBJECTIVES

The major objective of this project stand the use of calcium hydroxide as fly ash in different variations in low calcium fly ash based geopolymer concrete to evaluate its mechanical properties and also studying the durability properties of it.

3. MATERIALS USED

3.1 Cement

In present studies, Zuari cement of 53 grade confirming to grade IS 12269-2013 was used and cement sample was tested as per IS 4031-1988 part 4 and IS 4031-1988 part 5. Physical properties like specific gravity, standard consistency, initial setting time and final setting time of cement were determined by using the codes (IS: 4031-1988).

Property	Test Results
Normal	
Consistency	
Specific Gravity	Font
Initial Setting Time	Heading
Final Setting Time	Spacing

Table - 1: Properties of cement

3.2 Coarse aggregate

Crushed granite stones of size 20mm down aggregates were used as the coarse aggregates in the concrete mixtures. Properties of coarse aggregates were determined as per IS 2386-1997 part III guidelines.

Table - 2: Properties of Coarse aggregate

Property	Test Results
Specific Gravity	2.67
Water absorption	0.2%
Bulk density	1450 kg/m ³

3.3 Fine aggregate

In the present Work crushed stone aggregates was used as fine aggregate and test were conducted as per IS: 2386-1997 Part-III and IS:383-1970.

Property	Test Results
Specific Gravity	2.66
Water absorption	2.1%
Fineness modulus	2.9
Bulk density	1670 kg/m ³
Grading Zone	II

Table - 3: Properties of Fine aggregate

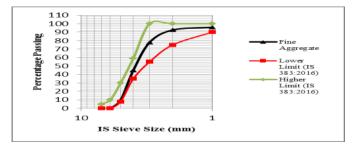


Fig-1: Sieve analysis of Fine aggregate

3.4 Fly ash

Fly ash of Class F grade collected from Raichur thermal power plant (RTPS) was used in the present work. From test Specific gravity of the fly ash was found to be 2.33.

3.5 ALAKALIA ACTIVATOR

Fly ash of Class F grade collected from Raichur thermal power plant (RTPS) was used in the present work. From test Specific gravity of the fly ash was found to be 2.33.

4. EXPERIMENTAL PROCEDURE

Six mixes casted were fly ash was replaced with 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5% calcium hydroxide by weight respectively and are given below.

N		Mass (Kg/m3)					
Mater	als	CH0	CH0.5	CH1.0	CH1.5	CH2.0	CH2.5
Coarse agg	regate	1294	1294	1294	1294	1294	1294
Fine aggregate	Sand	554.4	554.4	554.4	554.4	554.4	554.4
Flyash (ClassF)		409	406.95	404.91	402.87	400.82	398.8
Calcium hydroxide Ca(OH ₂)		0	2.045	4.09	6.13	8.18	10.23
Sodium hydroxide solution		72	72	72	72	72	72
Sodium silicate solution		72	72	72	72	72	72
Extra water		90	90	90	90	90	90
Alkaline solution/Flyash		0.35	0.35	0.35	0.35	0.35	0.35
Water/Geopolymer solids		0.17	0.17	0.17	0.17	0.17	0.17
NaOH/Na	12Sio3	1.0	1.0	1.0	1.0	1.0	1.0

Table - 4: Mix proportions of concrete

Table 3.4 Geopolymer concrete mix proportions

4.1 Preparation of Alkaline Liquid

Sodium hydroxide flakes were dissolved in distilled water to make a solution of 10M. Sodium silicate solution and sodium hydroxide solution of 10M were mixed together at room temperature. When both solutions were mixed together it starts to react i.e. "polymerization" takes place this liberates large amount of heat. So, it is recommended to leave it for about 24 hours.

Fig-3: Prepared alkaline liquid before casting

4.2Preparation of Geopolymer Concrete Mixtures

Preparation of geopolymer concrete is similar to that of cement concrete. Coarse aggregates, two types of fine aggregate like sand and granite powder and fly ash were mixed in dry state. Then alkaline solution which is prepared 24hrs prior to mixing were added along with extra water based on water to geopolymer binder ratio and mixed thoroughly for 3 to 4 mins so as to obtain homogeneous mix.

4.3 Specimen Casting and Curing

For each concrete mixture, 150mm cubes, 150mm X 300mm cylinders, 100mm X 100mm X 500mm prisms, 100mm X 50mm cylinders were cast. 150mm cubes were used to determine the compressive strength, 150mm X 300mm cylinders were used to evaluate the split tensile strength, 100mm X 100mm X 500mm prisms were used to evaluate flexural strength and 100 mm X 50 mm cylinders were used to evaluate the water absorption, chloride ion permeability and sorptivity value of the concrete specimen.

The specimens were compacted using vibration table.

After 24hrs of casting all moulds were demoulded and then placed in room temperature for ambient curing till the time of testing.

Fig-4: Casting of the concrete specimen

Fig-5: Curing of the concrete specimen

4.4 Specimen testing

After the curing period of 28 days and 60days, specimens are taken out for testing. Test will be conducted for compression test for cubes (150x150x150mm), split tensile test for cylinders (150mm diax300mm height) and flexural test for beams (100x100x500mm) as per IS:516-1959.Sorptivity test for durability using cylinders (150mm dia and 50mm height).

Fig-6: Compressive strength test setup

Fig-7: Split tensile strength test setup

Fig-8: Flexural strength test setup

5. TEST RESULTS

5.1 Workability of concrete

Workability was measured using slump cone test. Results show that geopolymer concrete has given below and the degree of workability is medium.

Concrete Type	Slump values(mm)
GPC (8M)	40
GPC (10M)	50
GPC (12M)	65

5.2 Mechanical Properties of Concrete

Table 5 shows the compressive strength, split tensile strength and flexural strength of GPC mixes as well as normal concrete mix at different curing periods.

	AGE	СНО	СН0.5	CH1.0	CH1.5	CH2.0	CH2.5
	AGE	СПО	CHU.5	CH1.0	СП1.5	CH2.0	СП2.5
Compressive	28	30.07	32.4	34.73	36.87	39.21	36.12
strength (MPa)	60	35.03	38.1	41.27	44.27	46.00	41.27
Split tensile	28	1.05	1.32	1.43	1.58	1.65	1.49
strength (MPa)	60	1.31	1.48	1.56	1.67	1.75	1.56
Flexural	28	1.24	1.32	1.40	1.49	1.61	1.47
strength (MPa)	60	1.38	1.52	1.62	1.69	1.78	1.58

Table - 6: Mechanical properties of GPC for (8M)

Table - 7: Mechanical properties of GPC for (10M)

	AGE	CH0	CH0.5	CH1.0	CH1.5	CH2.0	CH2.5
Compressive	28	32.59	34.33	35.71	37.87	39.67	33.89
strength (MPa)	60	36.83	39.35	43.04	46.23	47.81	39.56
Split tensile	28	1.26	1.51	1.58	1.66	1.83	1.57
strength (MPa)	60	1.54	1.59	1.61	1.75	1.89	1.64
Flexural strength	28	1.57	1.68	1.81	1.92	2.03	1.85
(MPa)	60	1.82	1.96	2.08	2.26	2.43	2.12

Table - 8: Mechanical properties of GPC for (12M)

	AGE	CH0	CH0.5	CH1.0	CH1.5	CH2.0	CH2.5
Compressive	28	34.54	36.80	38.40	39.77	41.84	37.93
strength (MPa)	60	39.63	42.56	44.69	48.64	49.37	41.29
Split tensile	28	1.47	1.86	1.99	2.15	2.37	2.10
strength (MPa)	60	1.75	2.11	2.29	2.59	3.05	2.46
Flexural	28	1.84	1.96	2.14	2.45	2.78	2.51
strength (MPa)	60	2.19	2.28	2.48	2.75	3.13	2.8

5.2.1 Compressive strength test

In the present study, 6 cubes for each mix proportion were tested and average of 3 cubes was taken as compressive strength of concrete. The compressive strength of concrete can be seen in Fig. Above results shows that there will be increase in compressive strength of geopolymer concrete when it is replaced with calcium hydroxide up to 2.0%. As the calcium hydroxide variation increases after that the compressive strength gets decreased.

International Research Journal of Engineering and Technology (IRJET)e-IVolume: 06 Issue: 11 | Nov 2019www.irjet.netp-I

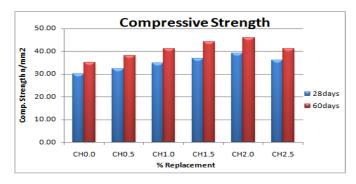


Fig-9: 28 & 60days compressive strength (8M)

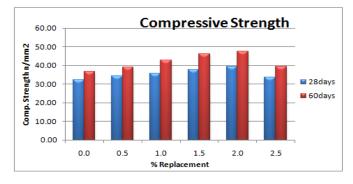


Fig-10: 28 & 60days compressive strength (10M)

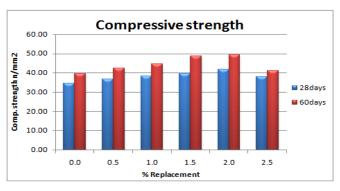
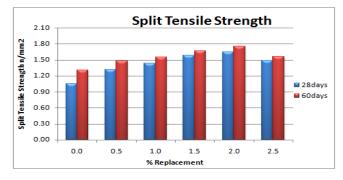
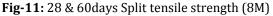




Fig-10: 28 & 60 days compressive strength (12M)

5.2.2 Split tensile strength test

Split tensile strength of concrete was tested on 150mm X 300mm cylinder at the age of 28 and 60 days. Test results are shown in the Fig. Splitting tensile strength of GPC mixes with calcium hydroxide increases up to 40%. But at CH2.5% mix the splitting tensile strength decreases.

International Research Journal of Engineering and Technology (IRJET)e-ISSVolume: 06 Issue: 11 | Nov 2019www.irjet.netp-ISS

e-ISSN: 2395-0056 p-ISSN: 2395-0072

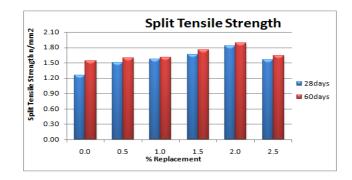


Fig-12: 28 & 60days Split tensile strength (10M)

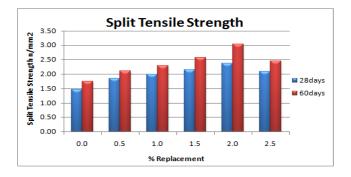


Fig-13: 28 & 60days Split tensile strength (12M)

5.2.3 Flexural strength test

Flexural strength of concrete was tested on 100mm X 100mm X 500mm prisms at the age of 28 and 60 days. Test results are shown in the Fig. The test results show that there will be increase in the flexural strength as the percentage of calcium hydroxide increases.

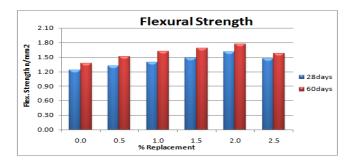


Fig-14: 28 & 60days Flexural strength (8M)

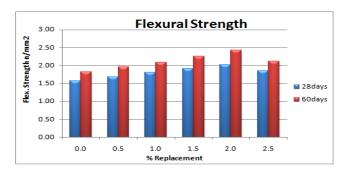


Fig-15: 28 & 60 days Flexural strength (10M)

Int IRJET Volu

International Research Journal of Engineering and Technology (IRJET)

Volume: 06 Issue: 11 | Nov 2019

www.irjet.net

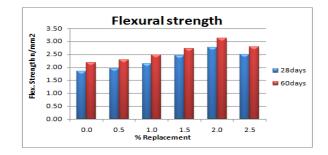


Fig-16: 28 & 60days Flexural strength (12M)

5.3 Durability properties of concrete

5.3.1 Sorptivity

Sorptivity has been tested on both geopolymer concrete with replacement of calcium hydroxide. This test was conducted on 100mm X 50mm size specimen after 28 days of curing. The dry weights of the specimen are noted and its wet weights are noted at 30 min interval. Table 9 gives Sorptivity values of geopolymer concrete with different percentage of calcium hydroxide. The result shows that, in geopolymer concrete the Sorptivity will goes on decreasing when the percentage of calcium hydroxide increases.

	For 8M							
Type of concrete	No. of specimen	Dry weight W1 (kg)	Wet weight W2 (kg)	Sorptivity values in 10-6	Avg. Sorptivity value			
	1	0.862	0.912	1.163				
CH0	2	1.01	1.064	1.256	1.202			
	3	0.936	0.987	1.186	1			
	1	0.962	1.01	1.116				
CH0.5	2	1.023	1.075	1.209	1.295			
	3	0.989	1.056	1.558				
	1	0.862	0.912	1.163				
CH1.0	2	1.062	1.136	1.721	1.349			
	3	0.965	1.015	1.163				
	1	0.915	0.995	1.860				
CH1.5	2	1.015	1.064	1.140	1.488			
	3	0.987	1.05	1.465				
	1	0.865	0.899	0.791				
CH2.0	2	0.789	0.85	1.419	1.109			
	3	0.801	0.849	1.116				
	1	0.802	0.895	2.163				
CH2.5	2	0.801	0.831	0.698	1.008			
	3	0.798	0.805	0.163				

Table – 9: Sorptivity test values	Table - 9): Sor	ptivitv	test val	ues
-----------------------------------	-----------	--------	---------	----------	-----

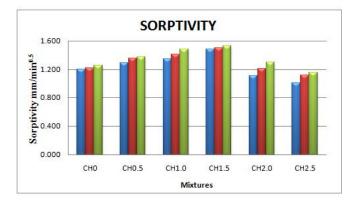


Fig-17: Sorptivity values of GPC

3. CONCLUSIONS

Study was given on GPC's mechanical features and durability features when partially replaced with calcium hydroxide. Maj or conclusions could be drawn from this study as follows,

- The usage of waste materials like fly ash can reduce the environmental pollution and also disposal problem.
- \geq Addition of super plasticizer increases the workability of geopolymer concrete.
- Geopolymer concrete attains its maximum strength in 60 days. This is because polymerization process will attain \triangleright slowly at ambient temperature.
- \triangleright Compressive strength and divided tensile strength of GPC mixes up to 2.0 percent replacement level of calcium hy droxide were observed as a increasing trend. And both characteristics had a downward trend at 2.5 percent of calc ium hydroxide replacement rate.
- \geq Flexural strength improves as the proportion of calcium hydroxide replacement rises as fly ash in geopolymer concrete rises.
- It is concluded that a 2.0 percent replacement of calcium hydroxide is considered to be the optimum \geq amount of replacement. And it seems that calcium hydroxide act as filling material and makes the concrete thick.
- Sorptivity of GPC is less. That means the rate of absorption of geopolymer concrete is unsubstantial.
- The effect of curing hours on the geopolymer concrete when it is replaced with optimum percentage of calcium hydroxide increase as there is increase in curing hours.

ACKNOWLEDGEMENT

It gives me immense pleasure to extend my heartfelt gratitude towards Dr. K. P. Shivananda, Principal Siddaganga Institute of Technology, Tumakuru.

REFERENCES

- [1] Davidovits J "Geopolymers Man-made geosynthesis and the resulting development of very early high strength cement" Journal of material education Vol. 16, pp 91-139, 1994.
- [2] M Mustafa Al Bakri et al "The effect of curing temperature on physical and chemical properties of geopolymer" physical procedia Vol. 22, pp 286 -291, 2011.
- [3] Benny Joseph George Mathew "Influence of aggregate content on the behavior of fly ash based geopolymer" Scientia Iranica Transaction A, Vol. 9, pp 1188 -1194, 2012.
- [4] Eliyas Badsha shaik Sreenivasalu Reddy "Geopolymer concrete with the replacement of granite aggregate as fine aggregate" International journal of scienece and research, Vol. 4, Issue 9, September 2015.
- [5] Davidovits J "Geopolymers Man-made geosynthesis and the resulting development of very early high strength cement" Journal of material education Vol. 16, pp 91-139, 1994.
- [6] Andi Arham dam Horianto, "The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar" Procedia Engineering Vol. 95, pp 410 -414, 2014.
- [7] Salmabanu Luhar, Urvashi Khandelwal, "Durability studies of fly ash based geopolymer concrete" Engineering research and applications, Vol. 5, Issue 8 (Part-4), pp 17-32, August 2015.
- [8] Subhash V Patankar, "Mix design of fly ash based geopolymer concrete" Research gate April 2015.
- [9] Pradip Natha, Prabir Kumar Sarkera, Vijaya B Rangana, "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing" International Conference of Euro Civil Engineering Forum, Vol.125, pp 601-607, 2015.
- [10] Pawan Kumar K R, Surendra B V, " Study on strength of geopolymer concrete with ambient temperature curing and low alkali content" Research journal of engineering and technology, Vol. 3, Issue 5, May 2016.
- [11] Bhavik Kumar B patel, Dr. Jayesh Kumar pitroda, "A review of geopolymer concrete by using various industrial waste materials" Constructive research in civil engineering Vol.3, Issue 4, pp 121-131, 2017.
- [12] Gururaj Hadimani, Sundip Shenoy," A study on performance of concrete with granite powder as fine aggregate replacement" Science and advance research in technology Vol.4, Issue 5, May 2018.