Planning, Analysis and Designing of Cantilever Residential Building

M. Balachandran ${ }^{1}$, A. Anthonisamy ${ }^{\mathbf{2}}$, V. Manikandan ${ }^{\mathbf{3}}$
1,2,3Student, Department of Civil Engineering, Panimalar Engineering College, Tamil Nadu, India.

Abstract

The project is about planning, analysis and designing of cantilever residential building. It is a framed structure, the residential building is located near to ooty. The total area of building is 100.3 sq.m. The plan and reinforcement details drawn by using Auto-CADD. Analysis done by Manual Calculation. Design are worked by referring code books.

Key Words: Ground Floor size :100.35 sq.m, First Floor area : $\mathbf{1 0 0 . 3 5}$ sq.m, No of Floors :G+1

1. INTRODUCTION

The basics needs of human existences are food, clothing and shelter. From times immemorial man has been making efforts in improving their standard of living. The point of his efforts has been to provide an economic and efficient shelter. Every human has an inherent like on a peaceful environment for his pleasant living this objective is achieved by having a place for living, situated at a safe and convenient location. Such a place for comfortable and pleasant living is required to all. Construction is the important aspects of civil engineering. Mankind has been evolving different kinds of environment with the change in civilization and time.

2. METHODOLOGY

Plan of the Building
Design of Cantilever Slab
Design of Cantilever Beam
Design of Column
Design of Footing
Design of Staircase
Conclusion

2.1 Plan of the building

Ground Floor Plan

ALL DIMENSION ARE IN m

First Floor Plan

2.2 Design of Cantilever Slab

Span $=3 \mathrm{~m}$
Live Load $=3 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
M20 \& Fe 415 grade
Calculation of Depth of Slab:
$\mathrm{d}=$ Span $/ 7$
$=3000 / 7$
$\mathrm{d}=428.57 \mathrm{~mm}=460 \mathrm{~mm}$
Over all Depth = Depth of Slab + Cover
Assume Cover $=20 \mathrm{~mm}$
D $=480 \mathrm{~mm}$

Load Calculation:

Self Weight of Slab $=0.2 \times 25=5 \mathrm{KN} / \mathrm{m}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}$
Live Load $=3 \mathrm{KN} / \mathrm{m}$
Total Load $=9 \mathrm{KN} / \mathrm{m}$
Ultimate Load $=13.5 \mathrm{KN} / \mathrm{m}$
Maximum Bending Moment,
$\mathrm{Mu}=\mathrm{Wu} \mathrm{l}^{2} / 2$
$=70.42 \mathrm{KN} . \mathrm{m}$
Maximum Shear Force,
$\mathrm{Vu}=\mathrm{Wu} \mathrm{l}=43.60 \mathrm{KN}$

Calculation of Limiting Moment of Resistance:

Mu limit $=0.138 \mathrm{fck} \mathrm{bd}^{2}$
$=584.01 \mathrm{KNm}$
$\mathrm{Mu}<\mathrm{Mu}$ limit
Hence it is Under Reinforced Section

Calculation of Area of Steel:

$\mathrm{Mu}=0.87$ fy Ast d (1 - fy Ast / fck bd)
$70.42 \mathrm{X} 10^{\wedge} 6=0.87 \mathrm{X} 415 \mathrm{XAstX} 460$ (1-
415Ast/20X1000X460
Ast $=432.43 \mathrm{~mm}^{2}$

To Find Main Ast Provided:

No of bars = Ast / ast
Assume dia $=10 \mathrm{~mm}$ So ast $=78.53 \mathrm{~mm}^{2}$
So No of bars $=6$ Nos
Ast Provided $=6 \mathrm{X} \pi / 4 \times 10^{2}$
$=471.23 \mathrm{~mm}^{2}$
Ast Req < Ast Pro
Hence Safe

Calculate Spacing of Steel:

Spacing $=1000$ Ast Of 1 bar / Area of Steel
Area of 1 bar $=\pi / 4 \mathrm{x} \mathrm{d}^{2}$
Assume dia $=10 \mathrm{~mm}=78.53 \mathrm{~mm}^{2}$
Spacing $=190 \mathrm{~mm}$

Check for Spacing:

1) 300 mm
2) $3 \mathrm{~d}=3 \mathrm{x} 460=1380 \mathrm{~mm}$
3) 190 mm

Hence Provide 8 mm dia bars @ $190 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Check Distribution Area of Steel:

$=0.12 \%$ of gross area
$=552 \mathrm{~mm}^{2}$

To Find Distribution Ast Provided:

No of bars = Ast / ast
Assume dia $=8 \mathrm{~mm}$ So ast $=50.26 \mathrm{~mm}^{2}$
So No of bars $=12$ Nos
Ast Provided $=12 \mathrm{X} \pi / 4 \times 8^{2}$
$=603.16 \mathrm{~mm}^{2}$
Ast Req < Ast Pro
Hence Safe

Calculate Spacing of Steel:

Spacing = Area of one bar / Area of steel $=90 \mathrm{~mm}$

Check for Deflection:

(L/d)max > (L/d)pro
(L/d)max = B.V X Kt X Kc
= 9.59
(L/d)pro = Span / Eff depth
$=7.02$
$9.59>7.02$
Hence Safe

2.3 Design of Cantilever Beam

To Find Over all Depth:

Length of cantilever $=3 \mathrm{~m}$
M.F = 1
eff depth $=$ span $/ 7 \times$ MF
= 3000/7 x 1
$=428 \sim 430 \mathrm{~mm}$
effective cover $=25 \mathrm{~mm}$
Overall depth of beam $=430+25$
$=455 \mathrm{~mm}$

To Find Effective Depth:

Provide an overall depth of 460 mm
Effective depth d=460-25
$=435 \mathrm{~mm}$

To Find Dead Load Moment:

Let the section of cantilever be, $230 \mathrm{~mm} \times 435 \mathrm{~mm}$ at fixed end
$2 / 3 \times d=2 / 3 \times 435$
$=290 \mathrm{~mm}$
$230 \mathrm{~mm} \times 290 \mathrm{~mm}$ at free end
D.L of the cantilever $=(0.435+0.29 / 2) \times 0.23 \times 3 \mathrm{x}$

25000
$=6253.13$
Load acts at a distance $=\{(0.435+2 \times 0.29) /(0.435$
$+0.29)\} \times 3 / 3$
$=1.4 \mathrm{~m}$ from fixed end
D.L moment $=6253.13 \times 1.4$
$=8754.4 \mathrm{Nm}$

To Find Live Load Moment: From Wall:

Live load $=3 \times 0.23 \times 2$
$=13.8 \mathrm{KN} / \mathrm{m}$
Total live load $=13.8+15.93$
$=29.73 \mathrm{KN} / \mathrm{m}$
Live load moment= wl2/2
$=29.73 \times 32 / 2=133.78 \mathrm{KNm}$

To Find End Load Moment:

End point load $=2.5+1.75$
$=4.25 \times 0.35 \times 25=37.18 \mathrm{KN} / \mathrm{m}$
End load moment= W.L
$=37.18 \times 3=111.56 \mathrm{KN} / \mathrm{m}$
Total moment $=$ E.M + L.L.M + D.L.M
$=111.56+133.78+8.75$
$=254.09 \mathrm{KNm}$

To Find Limiting Moment:

Total load $=(29.73+8.75) \times 3+37.18$
$=152.62 \mathrm{KN}$
$\mathrm{Mu}=254.09 \times 1.5$
$=381.135 \mathrm{KNm}$
Mu limit $=2.76$ bd2
$=2.76 \times 230 \times 4602=134.32 \mathrm{KNm}$

To Find Area of Tension \& Compression

Reinforcement:

Percentage of steel required,
$\mathrm{Pt}=25 / 460$
$=0.05$
$\mathrm{Mu} / \mathrm{bd} 2=381.135 / 0.23 \times 0.462$
$=6.35$

Tension zone:

Ast $=2.002 / 100 \times 230 \times 4602$
$=974.3 \mathrm{~mm} 2$
Asc $=1.091 / 100 \times 230 \times 4602$
$=530.91 \mathrm{~mm} 2$

To Find No of Bars:

No of bars use 20 dia bars,
Use 4 Nos of 20 dia @ tension zone
No of bars at compression zone
Use 16 mm dia
No of bars $=530.91 /(\pi / 4 \times 162)$
$=2.67 \sim 3$ Nos

To Find Check for Shear:

```
\(\tau v=V u / b d\)
\(\mathrm{Vu}=(152.62 \times 103) / 230 \times 460\)
\(=1.53 \mathrm{~N} / \mathrm{mm} 2\)
\(\tau c=100\) Ast/bd
\(=(100 \times 974.3) /(230 \times 460)\)
\(=0.597 \mathrm{~N} / \mathrm{mm} 2\)
\(\mathrm{K} \mathrm{\tau c}=1 \times 0.59\)
\(=0.59 \mathrm{~N} / \mathrm{mm} 2\)
\(\tau \mathrm{cmax}=2.8 \mathrm{~N} / \mathrm{mm} 2\)
\(\tau v<\) K cc < \(\tau\) cmax
Hence Safe
```


2.4 Design of Column

To Find Axial Load:

```
\(B=300 \mathrm{~mm}\)
\(\mathrm{D}=400 \mathrm{~mm}\)
\(\mathrm{L}=3.5 \mathrm{~m}\)
\(\mathrm{Mu} 1=\mathrm{Wlx}^{2} / 12=27.68 \times 3.5^{2} / 12=37.44 \mathrm{KNm}\)
\(\mathrm{Mu} 2=\mathrm{Wlx}^{2} / 12=18.68 \mathrm{x}^{2} / 12=14.01 \mathrm{KNm}\)
\(\mathrm{Mu}=\mathrm{Mu} 1+\mathrm{Mu} 2=51.45 \mathrm{KNm}\)
\(51.45=\mathrm{Wl}^{2} / 8=\mathrm{Wu} \times 6.5^{2} / 8\)
\(\mathrm{Wu}=9.74 \mathrm{KN} / \mathrm{m}\)
\(\mathrm{Pu}=9.74 \mathrm{x} 6.5=63.32 \mathrm{KN}\)
```


To Find Non-Dimensional Parameters:

$\mathrm{d}^{\prime}=40 \mathrm{~mm}$
$\mathrm{D}=400 \mathrm{~mm}$
$=0.1$
From chart - 32,
$\mathrm{Mu} /$ fck b $\mathrm{D}^{2}=51.45 \times 10^{\wedge} 6 /\left(20 \mathrm{x} 300 \mathrm{x} 400^{2}\right)=0.05$

Pu/fck b D $=63.32 \times 10^{\wedge} 3 /(20 x 300 x 400)=0.026$
$\mathrm{P} /$ fck $=0.2, \mathrm{P}=4$

To Find Reinforcement:

$\mathrm{As}=\mathrm{pbD} / 100=4 \mathrm{x} 300 \times 400 / 100=4800 \mathrm{~mm}^{2}$
Adopt 25 mm dia
$n=4800 /\left(\pi / 4 \times 25^{2}\right)=8$ Nos

To Provide Lateral Ties:

Condition:

Diameter:
5) $1 / 4 \times 25=6.25=6 \mathrm{~mm}$
6) Less than 16 mm

Spacing:
7) $\mathrm{LLD}=300 \mathrm{~mm}$
8) $16 \times 25=400 \mathrm{~mm}$
9) 300 mm

Take Spacing minimum value
S = 300 mm

2.5 Design of Footing

To Find Loads:

Total load $=383.91 \mathrm{kN}+[0.3 \times 0.4 \times 3 \times 25]$
$=392.91 \mathrm{kN}$
For 2 floor $=2 \times 392.91$
$\mathrm{P}=785.82 \mathrm{kN}$
$\mathrm{Pu}=785.82 \times 1.5$
$=1177.73 \sim 1200 \mathrm{Kn}$

To Find Area of Footing:

SBC $=300 \mathrm{kN} / \mathrm{m}^{2}$
Area of footing $=1200 / 300$
$=4 \mathrm{~m}^{2}$

To Find Size of Footing:

$4 x \times 3 x=4$
$x^{2}=0.33$
$x=0.577 \mathrm{~m}$
$4 x=4 \mathrm{x} 0.577$
$=2.3 \mathrm{~m}$
$3 x=3 \mathrm{x} 0.577=1.73 \sim 1.75 \mathrm{~m}$
Size of footing $=2.3 \times 1.75 \mathrm{~m}$
Area $=2.3 \times 1.75$
$=4.025 \mathrm{~m}^{2}$

To Find Net Upward Soil Pressure:

Net upward soil pressure(q)
q=load on footing/A
$=1200 / 4.025$
$\mathrm{q}=298.13 \mathrm{kN} / \mathrm{m}^{2}<300 \mathrm{kN} / \mathrm{m}^{2}$

To Find Moment:

Factored moment (Mud)
Mmax occur at the face to the column for design purpose
Consider only one overhang portion,
Mud=1.5
[Upward soil pressure x hatched x distance between C.G for end and
Face to column]
$=1.5[300 \times(0.95 \times 1.75) \times 0.475]$
$=355 \mathrm{kN} . \mathrm{m}$

To Find Depth Upward for Moment:

Equate Mud to Mulimit
For M20 \& Fe 415
From sp16 pg : 10, Table D
Mulimit=2.76 bd ${ }^{2}$
$355 \times 10^{\wedge} 6=2.76 \times 1750 \mathrm{x} \mathrm{d}^{2}$
$\mathrm{d}^{2}=73573$
$\mathrm{d}=271.24 \mathrm{~mm}$
$\mathrm{D}=271.24+50$
$\mathrm{D}=321.24 \mathrm{~mm} \sim 400 \mathrm{~mm}$
$\mathrm{d}=400-50$
$=350 \mathrm{~mm}$
Mulimit=2.76x1750x3502
$=591.67 \mathrm{kN} . \mathrm{m}$
Mulimit >Mud
It is under reinforced section

To Find Area of Main Reinforcement:

Mud=0.87 x fy x Ast x[d-fy x Ast / fck x b]
$355 \times 106=126367.5$ Ast-4.28 Ast2
Ast $=3144.09 \mathrm{~mm} 2$

To Find Area of Distribution Reinforcement:

Astmin $=0.12 \%$ CSA
$=0.12 / 100 \times 350 \times 1750$
Astmin $=735 \mathrm{~mm} 2$

To Find Spacing:

Use 20 mm dia of bar
S=ast/Ast x 1000
$=(\pi / 4 \times 202) / 3144 \times 1000$
$\mathrm{S}=170 \mathrm{~mm}$
Provide 20 mm dia bar @ 170 mm C/C in both direction

Check for Shear:

Check for One Way Shear:
$\mathrm{Vu}=1.5$ [$\mathrm{q} \times$ hatched area]
$=1.5[300 \times 1.75 \times 0.55$]
$\mathrm{Vu}=433.12 \mathrm{kN}$
Resisting area for shear $=\mathrm{bx} \mathrm{d}$
$=1750 \times 550$
$=962500 \mathrm{~mm} 2$
$\tau v=\mathrm{Vu} / \mathrm{bd}$
$=433.12 \times 103 / 1750 \times 550$
$=0.38 \mathrm{~N} / \mathrm{mm} 2$
Astp =ast/s x 1750
$=(\pi / 4 \times 202) / 170 \times 1750$
$=3233.99 \sim 3234 \mathrm{~mm} 2$
Pt = 100 Astp / bd
$=100 \times 3234 /(1750 \times 550$
$\mathrm{Pt}=0.336$
$\tau c=0.40$
$\mathrm{k}=1$
$\mathrm{ktc}=0.40$
$\tau \mathrm{v}<\mathrm{k} \tau \mathrm{c}$
$0.38<0.40$
Hence it is safe.
Check for Two Way Shear:
(Or)
Punching Shear:
Side length of critical plane $=$ size of column $+d / 2+$
d/2
Short side $=300+300 / 2+300 / 2$
$=600 \mathrm{~mm}$
Long side $=400+400 / 2+400 / 2$
$=800 \mathrm{~mm}$
Punching critical plane,
$=2(600)+(800)$
$=2800 \mathrm{~mm}$
$\mathrm{Vu}=\mathrm{q} \times$ hatched area $\times 1.5$
$=300 \times[(2.3 \times 1.75)-(0.6 \times 0.8)] \times 1.5$
$\mathrm{Vu}=1595.25 \mathrm{kN}$
$\tau v=\mathrm{Vu} / \mathrm{bd}$
$=1595 \times 103 / 2300 \times 400$
$=1.04 \mathrm{~N} / \mathrm{mm} 2$

Permissible Shear Stress:

$\beta c=$ short side / long side
$=300 / 400$
$\beta c=0.75$

2.6 Design of Staircase

Design size $=2 \times 3 \mathrm{~m}$
Height of each flight $=3 / 2=1.5 \mathrm{~m}$
Assume $=150 \mathrm{~mm}$ (Rise) Tread $=300 \mathrm{~mm}$
Width of landing $=400 \mathrm{~mm}$
M20 @ Fe250
No.of rise $=(1500 / 150)=10$
No. Of treads of each flight $=$ no.of rise $-1=9$
Assume width of landing $=400 \mathrm{~mm}$
Live load $=3 \mathrm{KN} / \mathrm{m}$

To Find Effective Span:

$l_{e}=(9 \times 300)+(400 / 2)+(400 / 2)+(230 / 2)$
$\mathrm{l}_{\mathrm{e}}=3.125 \mathrm{~m}$

To Find Depth of Waist Slab:

Depth of wist slab $=($ effctive span $/ 20)$
$=3125 / 20=156.25 \mathrm{~mm} \sim 160 \mathrm{~mm}$
$\mathrm{D}=160 \mathrm{~mm}$

To Find Load Calculation:

DL of slab (on slope) $=0.16 \times 1 \times 25=4 \mathrm{KN} / \mathrm{m}$
DL of slab on horizondal span $=\mathrm{Ws} \sqrt{ }\left(\mathrm{R}^{2}+\mathrm{T}^{2}\right) / \mathrm{T}$
$=4 \sqrt{ }\left(0.15^{2}+0.3^{2}\right) / 0.3=4.47 \mathrm{KN} / \mathrm{m}$
DL. of one step $=(1 / 2) \times$ rise \times tread $=(1 / 2) \times 0.15 \times 0.3$ $=0.563 \mathrm{KN} / \mathrm{m}$
Load of steps per m length $=0.563 \times 1 /(1000 / 300)$
$=1.875 \mathrm{KN} / \mathrm{m}$
Load due to floor finish $=0.6 \mathrm{KN} / \mathrm{m}$
Total DL $=4.47+1.875+0.6+3=9.945 \mathrm{KN} / \mathrm{m}$
Total ultimate load $=9.945 \times 1.5=14.91 \mathrm{KN} / \mathrm{m}$

To Find Bending Moment:

Maximum bending moment @ center in ultimate BM
$\mathrm{Mu}=\mathrm{Wux} \mathrm{leff}^{2} / 8=14.91 \times 3.125^{2} / 8$
$=18.20 \mathrm{KN} / \mathrm{m}$

Check for Depth:

$\mathrm{Mu}=0.149 \mathrm{xfck} \mathrm{xbxd}^{2}$
$=0.149 \times 15 \mathrm{x} 1000 \mathrm{x} / \mathrm{d}^{2}$
d req $=90 \mathrm{~mm}$
d req <d pro

To Find Ast for Main Reinforcement:

$\mathrm{Mu}=0.87 \mathrm{xfyxAstxd}((1-\mathrm{fyxAst}) /(\mathrm{fckxbxd}))$
$18.20 \times 10^{6}=29145$ Ast -3.62 Ast 2
Ast $=684.76 \mathrm{~mm}^{2}$

To Find Spacing:

Use $12 \mathrm{~mm} \phi$
Spacing $=(1000$ xast $/$ Ast $)=165.15 \mathrm{~mm} \sim 170 \mathrm{~mm}$
Provide $12 \mathrm{~mm} \phi$ @spacing 170 mm c/c

To Distribution Reinforcement:

Ast min $=0.15 \% x b x D$
$=(0.15 / 100) \times 1000 \times 160$
Ast min $=240 \mathrm{~mm}^{2}$
Spacing $=(1000$ ast $/$ Ast $)$
$=(1000 \times 78.53 / 240)$
Spacing $=300 \mathrm{~mm}$

3. CONCLUSION

At the end of the site visit and experiencing real workingspace and the environment of construction, I realized that working at construction site is much more different and also more difficult, because of the weather conditions and the risks exit.This site visit gave me a chance to experience and learn what cannot be gained during lectures or tutorials. One of the first things that I have learnt is understanding the importance of safety which is a basic of construction, because of all dangers exist on site.Finally, this site visit helped for better understanding what I am going to face in future as a Quantity surveyor, and also giving me better understanding about construction to help me in my studying, especially for taking off in measurement. In overall, it was a great experience for me.

REFERENCES

[1] IS 456-2000 Plain and reinforced concrete code
[2] SP 16 Design Aids for reinforced concrete
[3] IS 875 part-II Code of practice for design loads for buildings and structures
[4] Dr.P.Purushotama raj on "Design of reinforced concrete elements" by Lakshmi publications.

BIOGRAPHIES

Author 1: M.Balachandran
Studying B.E Civil
Panimalar Engineering College Chennai.

Author 2: A.Anthonisamy
Studying B.E Civil
Panimalar Engineering College Chennai.

Author 3: V.Manikandan
Studying B.E Civil
Panimalar Engineering College Chennai.

