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ABSTRACT - In this article we introduce and study 
Weakly minimal closes sets of Type1-R0 spaces, Weakly 
minimal g-closed sets of Type1-R0 spaces,  Weakly minimal 
closed sets of Type1-i-R0 spaces, Weakly minimal closed sets 
of Type1-d-R0 spaces, Weakly minimal closed sets of Type1-
b-R0 spaces, and also discuss the inter-relationships among 
separation properties along with several counter examples.  
 
Key Wards: minimal open sets, minimal g-open sets, 
minimal open sets of Type1, minimal g-open set of Type1. 
 

1. INTRODUCTION.  
  
 L.Nachbin[6] Topology and order, D.Van Nostrand 
Inc., Princeton, New Jersy  studied increasing [resp. 
decreasing, balanced] open sets in 1965. K. Bhagya 
Lakshmi, J. Venkateswara Rao[13] studied W-R0 Type 
spaces in topological ordered spaces in 2014.  
G.Venkareswarlu, V.Amarendra Babu, and M.K.R.S Veera 
kumar [11] introduced and studied minimal open sets of 
Type1 sets, minimal g-open sets of Type1 sets in 2016. 
G.Venkateswarlu, V.Amarendra Babu, K. Bhagya Lakshmi 
and V.B.V.N. Prasad [14] studied W-C0 Spaces in 2019. 
 
          In this article we introduce new separation axioms of 
type  Weakly- minimal closed sets Type1-R0 spaces, 
Weakly minimal g-closed sets of Type1-R0 spaces, Weakly 
minimal g- closed sets of Type1-i-R0 spaces, Weakly 
minimal g- closed sets of Type1-d-R0 spaces, Weakly 
minimal g- closed sets of Type1-b-R0 spaces, and discuss 
the inter-relationships among separation properties along 
with several counter examples.  
 

2. PRELIMINARIES. 

DEFINITION 2.1[11]:  In a topological space (X, Ƭ), an 
open sub set U of X is called a minimal open sets   of Type! 
If ∃ at least one non-empty closed set F such that F⊆U or U 
= Ф. 
 
DEFINITION 2.2[11]: In a topological space (X, Ƭ), an 
open sub set U of X is called a minimal g- open sets of 
Type! If ∃ at least one non-empty g- closed set F such that 
F⊆U or U = Ф. 
 
 
 

3. MAIN RESULT: 
 
Now we state and prove our first main result. Before that 
we first introduce the following definitions and notations. 
 
Note:  
 
The collections of all increasing Weakly-minimal closed 
sets of Type1, increasing Weakly-minimal g-closed sets 
Type1 is denoted by W-i-mi

cl(Z, T1), W-i-mi-gcl(Z, T1). 
[resp. decreasing and balanced is denoted by W-d-mi

cl  

(Z, T1), W-d-mi-gcl(Z, T1), W-b-mi
cl(Z, T1), W-b-mi-gcl  

(Z, T1)]. Topological ordered space is denoted by TOS, 
Weakly-Minimal closed sets of Type 1, Weakly-Minimal  
g-closed sets of Type 1, set is denoted by W- mi

cl(Z, T1),  
W-mi-gcl (Z, Τ1) and α-closed, β-closed, Ψ-closed is 
denoted by αcl,βcl, Ψcl.   
 
WE INTRODUCE THE FOLLOWING DEFINITIONS: 

DEFINITION 3.1: In a topological space (Z, Ƭ), a non 
empty closed subset F of Z is called a minimal closed sets 
of Type1 if ∃ at least one nom-empty open set U such that 
F⊆U or U=Z. 

DEFINITION 3.2: In a topological space (Z, Ƭ), a non 
empty g- closed subset F of Z is called a minimal g- closed 
sets of Type1 if ∃ at least one nom-empty g- open set U 
such that F⊆U or U=Z. 

DEFINITION 3.3: A space (Z, Ƭ) is called a minimal closed 
sets of Type1 R0-space if mi

cl{x} contained in G where G is 
Minimal closed sets of Type1( brifly mi

cl{x}) and xϵGϵƬ 

DEFINITION 3.4: A space (Z, Ƭ) is called a minimal g-
closed sets of Type1  R0-space if mi-gcl{x} contained in G 
where G is Minimal g-closed sets of Type1( brifly mi-gcl{x}) 
and xϵGϵƬ 

DEFINITION 3.5: A space (Z, Ƭ) is called a minimal g-
closed sets of Type1 α-R0-space if for xϵGϵmi-g-O(Z,  Ƭ) 
αmi-gcl{x} contained in G where G is Minimal g-closed sets 
of Type1( brifly mi-gcl{x}) and xϵGϵƬ 

DEFINITION 3.6: A space (Z, Ƭ) is called a minimal g-
closed sets of Type1 Ψ-R0-space if for xϵGϵmi-g-O(Z, Ƭ)  
Ψmi-gcl{x} contained in G where G is Minimal g-closed sets 
of Type1( brifly mi-gcl{x}) and xϵGϵƬ 
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DEFINITION 3.7:  A space (Z, Ƭ) Called Weakly minimal 
closed sets of Type1--R0 if the intersection of micl{x} is 
non-empty set   xϵZ 

DEFINITION 3.8:  A space (Z, Ƭ) Called Weakly minimal g-
closed sets of Type1--R0 if the intersection of mi-gcl{x} is 
non-empty set   xϵZ 

DEFINITION 3.9:  A space (Z, Ƭ) Called Weakly minimal 
closed sets of Type1-i-R0 if the intersection of i-mi

cl{x} ia 
non-empty set   xϵZ 

DEFINITION 3.10:  A space (Z, Ƭ) Called Weakly minimal 
g-closed sets of Type1-i-R0 if the intersection of  i-mi-gcl{x} 
is non-empty set   xϵZ 

DEFINITION 3.11:  A space (Z, Ƭ) Called Weakly minimal 
closed sets of Type1-d--R0 if the intersection of d-mi

cl{x} 
non-empty set   xϵZ 

DEFINITION 3.12:  A space (Z, Ƭ) Called Weakly minimal 
g-closed sets of Type1-d--R0 if the intersection of d-mi-
gcl{x} is non-empty set   xϵZ 

DEFINITION 3.13:  A space (Z, Ƭ) Called Weakly minimal 
closed sets of Type1-b--R0 if the intersection of b-mi

cl{x} 
non-empty set   xϵZ 

DEFINITION 3.14:  A space (Z, Ƭ) Called Weakly minimal 
g-closed sets of Type1-b-R0 if the intersection of b-mi-gcl{x} 
is non-empty   xϵZ 
 
THEOREM 3.15: In a TOS (Z, Ƭ, ≤), every W- mi-gcl(Z, Τ1) – 
R0 space is a W-αR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of  mi-gcl{x} is  empty set    
xϵZ  by fact, every mi-gcl(Z, Τ1)is a mi

cl(Z, T1) and then 
every mi

cl(Z, T1) is  
αcl set Then αcl{x} contained in mi-gcl{x}   x∈Z.  
That implies the intersection of αcl{x} contained in mi-
gcl{x}. But the intersection of mi-gcl{x} empty set  xϵZ 
we get the intersection of αcl{x} is empty set xϵZ. Hence (Z, 
Τ)  is W- αR0 space. 
 
EXAMPLE 3.16:   Let Z = {ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁ } }. 
mi-gcl(Z, Τ1)  are Ф, Z                                               
αcl sets are   Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}                                 
mi-gcl{ζ₁} is Z                                       
mi-gcl{δ₂} is Z                                       
mi-gcl{Ω₃} is Z                                        
The intersection of  mᵢ-gcl{x} is Z   x∈Z                                 
αcl{ζ₁} is Z 
αcl{δ₂} is {δ₂} 
αcl{Ω₃} is {Ω₃} 
The intersection of αcl{x} is empty set not equal to Z   x∈Z 
 
 
 
 

THEOREM 3.17: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-iαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, everyi- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and then 
every i-mi

cl(Z, T1) is  
iαcl set Then iαcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of iαcl{x} contained ini- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of iαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iαR0 space. 
 
EXAMPLE 3.18:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃}  }.  
 ≤4 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (Ω₃, ζ₁), (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {δ₂, Ω₃} 
i-mᵢ-gcl(Z, Τ1) are Ф, Z 
 αcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
iαcl sets are Ф, Z, {δ₂}.                                               
i-mi-gcl{ζ₁} is Z                                       
i-mi-gcl{δ₂} is Z                                        
i-mi-gcl {Ω₃} is Z                                        
The intersection of i- mᵢ-gcl{x} is Z   x∈Z                                 
 iαcl{ζ₁}is Z                                                        
iαcl{δ₂} is {δ₂} 
iαcl{Ω₃} is  Z 
The intersection of iαcl{x} is {δ₂} not equal to Z   x∈Z 
 
THEOREM 3.19: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-dαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dαcl set Then dαcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of dαcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dαR0 space. 
 
EXAMPLE 3.20:   Let Z={ζ₁, δ₂, Ω₃} and T= { Ф, Z, {ζ₁},  
{ζ₁, Ω₃}  }.  
 ≤2 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) },  (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gcl(Z, Τ1) are Ф, Z 
 αcl sets are  Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
 dαcl sets are Ф, Z, {Ω₃}.                                               
d-mi-gcl{ζ₁} is Z                                      
d-mi-gcl{δ₂} is Z                                        
d-mi-g-cl{Ω₃} is Z                                        
The intersection of  d-mi-gcl{x} is Z   x∈Z                     
dαcl{ζ₁} is Z 
dαcl{δ₂} is Z 
dαcl{Ω₃} is {Ω₃} 
The intersection of dαcl{x} is {Ω₃} not equal to Z   x∈Z 
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THEOREM 3.21: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-bαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bαcl set Then bαcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of bαcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bαR0 space. 
 
EXAMPLE 3.22:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {δ₂, Ω₃}  }.   
≤9 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃) } }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф, Z 
 αcl sets are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
bαcl sets are Ф, Z, {ζ₁, Ω₃}.                                               
b-mi-gcl{ζ₁} is Z                                    
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of b-mi-gcl{x} is Z    x∈Z                       
bαcl{ζ₁} is {ζ₁, Ω₃} 
bαcl{δ₂} is Z 
bαcl{Ω₃} is {ζ₁, Ω₃} 
The intersection of bαcl{x} is {ζ₁, Ω₃} not equal to Z    x∈Z 
 
THEOREM 3.23: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-bαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bαcl set Then bαcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of bαcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bαR0 space. 
 
EXAMPLE 3.24:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁} }.  
≤9 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃) } }. 
mi-gcl(Z, Τ1) are Ф, Z 
i-mi-gcl(Z, Τ1) are Ф, Z 
 αcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
b αcl sets are Ф, Z, {δ₂}.                                               
i-mi-gcl{ζ₁} is Z                                       
i-mi-gcl{δ₂} is Z                                        
i-mi-gcl{Ω₃} is Z                                      
The intersection of i-mi-gcl{Zx is Z   x∈Z.                     
bαcl{ζ₁} is Z 
bαcl{δ₂} is {δ₂} 
 bαcl{Ω₃} is Z 
The intersection of bαcl{x} is {δ₂} not equal to Z   x∈Z. 
 

THEOREM 3.25: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-dαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dαcl set Then dαcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of dαcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dαR0 space. 
 
EXAMPLE3.26:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {δ₂}, 
{ζ₁, δ₂}, {ζ₁, Ω₃} }.   
≤1 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃), (δ₂, Ω₃) }  
mi-gcl(Z, Τ1) are Ф, Z, {δ₂}, {Ω₃}, {ζ₁, Ω₃} 
i-mi-gcl(Z, Τ1) are Ф, Z, {Ω₃} 
 αcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
d αcl sets are Ф, Z                                               
i-mi-gcl{ζ₁} is Z                                          
i-mi-gcl{δ₂} is Z                                          
i-mi-gcl{Ω₃} is {Ω₃}                                       
The intersection of  i-mi-gcl{x} is {Ω₃}   x∈Z.                        
dαc;{ζ₁} is Z 
dαcl{δ₂} is Z 
dαcl{Ω₃}is Z 
The intersection of dαcl{x} is Z not equal to {Ω₃}   x∈Z. 
 
THEOREM 3.27: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-iαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iαcl set Then iαcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of iαcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of iαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iαR0 space. 
 
EXAMPLE 3.28:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {δ₂, Ω₃} }.   
≤1 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (ζ₁, Ω₃), (δ₂, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {Ω₃},  {δ₂, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф, Z 
 αcl sets are Ф, Z, {ζ₁},  {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
iαcl sets are Ф, Z, {Ω₃}, {δ₂, Ω₃}                                               
b-mi-gcl{ζ₁} is Z                                      
b-migcl{δ₂} is Z                                        
b-migcl{Ω₃} is Z                                        
The intersection of  b-mi-gcl{x} is Z  x∈Z.                      
 iαcl{ζ₁} is {ζ₁} 
iαcl{δ₂} is {δ₂, Ω₃} 
iαcl{Ω₃} is {Ω₃} 
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The intersection of iαcl{x} is empty set not equal to Z   
x∈Z. 
 
THEOREM 3.29: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-dαR0

  space but not converse. 
Proof. Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dαcl set Then dαcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of dαcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of dαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dαR0 space. 
 
EXAMPLE 3.30:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {δ₂, Ω₃} }.  
 ≤2 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (Ω₃, δ₂) } 
mi-gcl(Z, Τ1) are Ф, Z, {δ₂}, {Ω₃},  {ζ₁, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф,Z 
 αcl sets are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃},  {ζ₁, Ω₃}  
dαcl  sets are Ф, Z, {ζ₁, Ω₃}                                               
b-mi-gcl{ζ₁} is Z                                       
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of b-mi-gcl{x} is Z  x∈Z.                       
dαcl{ζ₁} is {ζ₁} 
dαcl{δ₂} is Z 
dαcl{Ω₃} is {Ω₃} 
The intersection of dαcl{x} is empty set not equal to Z 
 x∈Z. 
 
THEOREM 3.31: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-iαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iαcl set Then iαcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of iαcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of iαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iαR0 space. 
 
EXAMPLE 3.32:   Let Z= { ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃}  }.  
 ≤3 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gci(Z, Τ1) are Ф,Z 
 αcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}  
iαcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.                                               
d-mi-gcl{ζ₁} is Z                                      
d-mi-gcl{δ₂} is Z                                       
d-mi-gcl{Ω₃} is Z                                        
The intersection of d-mi-gcl{Z} is Z  x∈Z                      

iαcl{ζ₁} is Z 
iαcl{δ₂} is {δ₂} 
 iαl{Ω₃} is {Ω₃} 
The intersection of iαcl{x} is empty set  not equal to Z  x∈Z 
 
THEOREM 3.33: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-bαR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bαcl set Then bαcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of bαcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of bαcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bαR0 space. 
 
EXAMPLE 3.34:   Let Z = { ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {ζ₁, Ω₃}  }.   
≤4 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (Ω₃, ζ₁), (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) are Ф, Z, {δ₂}, {Ω₃}, {ζ₁, Ω₃} 
d-mi-gcl(Z, Τ1) are Ф,Z, {ζ₁, Ω₃] 
 αci sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
bαcl sets are Ф, Z                                               
d-mi-gcl{ζ₁} is {ζ₁, Ω₃}                                       
d-mi-gcl{δ₂} is Z                                                
d-mi-gcl{Ω₃} is {ζ₁, Ω₃}                                        
The intersection of  d-migcl{x} is {ζ₁, Ω₃}   x∈Z.                           
bαcl{ζ₁} is Z 
bαcl{δ₂} is Z 
bαcl{Ω₃} is Z 
The intersection of bαcl{x} is Z  not equal to ζ₁, Ω₃}  x∈Z. 
 
THEOREM 3.35: In a TOS (Z, Ƭ, ≤), every W- mi-gcl(Z, Τ1) – 
R0 space is a W-βR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of  mi-gcl{x} is  empty set    
xϵZ  by fact, every mi-gcl(Z, Τ1)is a mi

cl(Z, T1) and then 
every mi

cl(Z, T1) is  
βcl set Then βcl{x} contained in mi-gcl{x}   x∈Z.  
That implies the intersection of βcl{x} contained in mi-
gcl{x}. But the intersection of mi-gcl{x} empty set  xϵZ 
we get the intersection of βcl{x} is empty set xϵZ.  
Hence (Z, Τ)  is W- βR0 space. 
 
EXAMPLE 3.36:   Let Z = { ζ₁, δ₂, Ω₃ } and  T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂} }. 
mi-gcl(Z, Τ1) are Ф, Z                                               
βcl sets are Ф, Z,  {ζ₁}, {δ₂}, {Ω₃},  {δ₂, Ω₃},  {ζ₁, Ω₃}                                 
mi-gcl{ζ₁} is Z                                        
mi-gcl {δ₂} is Z                                       
mi-gcl {Ω₃} is Z                                         
The intersection of mi-gcl{x} is Z   x∈Z.                              
βcl{ζ₁} is {ζ₁} 
βcl{δ₂} is {δ₂} 
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βcl{Ω₃} is {Ω₃} 
The intersection of βcl{x} is empty set not equal to Z  x∈Z. 
 
THEOREM 3.37: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-iβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iβcl set Then iβcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of iβcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of iβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iβR0 space. 
 
EXAMPLE 3.38:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃}  }.  
 ≤4 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (Ω₃, ζ₁), (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) a re Ф, Z 
i-mi-clg(Z, Τ1) are Ф, Z 
 βcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
Iβcl sets are Ф, Z, {δ₂}.                                               
i-mi-gcl{ζ₁} is Z                                       
i-mi-gcl{δ₂} is Z                                        
i-mi-gcl{Ω₃} is Z                                      
The intersection of i-mi-gcl{x} is Z  x∈Z.                     
iβcl{ζ₁} is Z 
iβcl{δ₂} is {δ₂} 
iβcl{Ω₃} is Z 
The intersection of iβcl{x} is {δ₂} not equal to Z   x∈Z. 
 
THEOREM 3.39: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-dβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ by fact, every d- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dβcl set Then dβcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of dβcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dβR0 space. 
 
EXAMPLE 3.40:   Let Z={ ζ₁, δ₂, Ω₃ } and  T= { Ф, Z, {ζ₁} },    
≤4 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (Ω₃, ζ₁), (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gcl(Z, Τ1) are Ф, Z 
 βcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
dβcl sets are Ф, Z, {Ω₃}.                                               
d-mi-gcl{ζ₁} is Z                                      
d-mi-gcl{δ₂} is Z                                        
d-mi-gcl{Ω₃} is Z                                        
The intersection of d-mi-gcl{x} is Z  x∈Z.                      
dβcl{ζ₁} is Z 
dβcl{δ₂} is {δ₂} 
dβcl{Ω₃} is Z 

The intersection of dβck{x} is {δ₂}  not equal to Z  x∈Z. 
 
THEOREM 3.41: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-bβR0

  space but not converse. 
Proof. Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bβcl set Then bβcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of bβcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bβR0 space. 
 
EXAMPLE 3.42:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {δ₂, Ω₃}  }.   
≤9 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃) } }. 
mi-gcl(Z, Τ1) are Ф, Z, {δ₂}, {Ω₃}, {ζ₁, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф, Z, {δ₂} 
 βclsets are  Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
bβcl sets are Ф, Z, {δ₂}, {ζ₁, Ω₃}.                                               
b-mi-gcl{ζ₁} is Z                                         
b-mi-gcl{δ₂} =  {δ₂}                                    
b-mi-gcl{Ω₃} = Z                                         
The intersection of b-mi-gcl{x} is {δ₂}  x∈Z.                        
bβcl{ζ₁} is {ζ₁, Ω₃} 
bβcl{δ₂} is {δ₂} 
bαcl{Ω₃} is {ζ₁, Ω₃} 
The intersection of b-βcl{x} is Ф not equal to{δ₂}  x∈Z. 
 
THEOREM 3.43: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-bβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bβcl set Then bβcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of bβcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bβR0 space. 
 
EXAMPLE 3.44:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {δ₂, 
Ω₃}  }. 
   ≤5 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃), (δ₂, Ω₃) } 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {δ₂, Ω₃} 
i-mi-gcl(Z, Τ1) are Ф,Z,{δ₂, Ω₃} 
 βcl sets are Ф, Z,  {ζ₁}, {δ₂}, {Ω₃}, {ζ₁, δ₂}, {δ₂, Ω₃},  {ζ₁, Ω₃}                                 
bβcl sets are Ф, Z                                               
i-mi-gcl{ζ₁} is Z                                                
i-mi-gcl{δ₂} is {δ₂, Ω₃}                                         
i-mi-gcl{Ω₃} is {δ₂, Ω₃}                                      
The intersection of  i-mi-gcl{Z} is {δ₂, Ω₃}   x∈Z.                          
bβcl{ζ₁} is Z 
bβcl{δ₂} is Z 
bβcl{Ω₃} is Z 
The intersection of bβcl{x} is Z not equal to {δ₂, Ω₃}  x∈Z. 
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THEOREM 3.45: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-dβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dβcl set Then dβcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of dβcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dβR0 space. 
 
EXAMPLE 3.46:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
δ₂}, {ζ₁, Ω₃} }. 
 ≤1 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃), (δ₂, Ω₃)}  
mi-gcl(Z, Τ1) are Ф, Z, {δ₂}, {Ω₃} 
i-mi-gcl(Z, Τ1) are Ф, Z, {Ω₃} 
 βcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}  
dβcl sets are Ф, Z                                               
i-mi-gcl{ζ₁} is Z                                     
i-mi-gcl{δ₂} is Z                                          
i-mi-gcl{Ω₃} is {Ω₃}                                       
The intersection of  i-mi-gcl{x} is {Ω₃}  x∈Z.                      
dβcl{ζ₁} is Z 
dβcl{δ₂} is Z 
dβcl{Ω₃} isZ 
The intersection of dβcl{x} is Z not equal to{Ω₃}  x∈Z. 
 
THEOREM 3.47: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-iβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iβcl set Then iβcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of iβcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
 
EXAMPLE 3.48:   Let Z = { ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {δ₂}, 
{Ω₃}, {δ₂, Ω₃} }.   
≤1 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (δ₂, ζ₁) }, (ζ₁, Ω₃), (δ₂, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {Ω₃},  {δ₂, Ω₃} 
b-mi-gl(Z, Τ1) are Ф, Z 
  βcl sets are Ф, Z,  {ζ₁}, {δ₂}, {Ω₃}, {ζ₁, δ₂},   {ζ₁, Ω₃}                                 
iβcl sets are Ф, Z, {Ω₃}, {ζ₁, Ω₃}                                               
b-mi-gcl{ζ₁} is Z                                       
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of b-mi-gcl{Z} is Z  x∈Z.                      
iβcl{ζ₁} is {ζ₁, Ω₃} 
iβcl{δ₂} is Z 
iβcl{Ω₃} is {Ω₃} 
The intersection of i-βcl{Z} is {Ω₃} not equal to Z  x∈Z. 
 

THEOREM 3.49: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-dβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dβcl set Then dβcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of dβcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of dβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-dβR0 space. 
 
EXAMPLE 3.50:   Let Z={ ζ₁, δ₂, Ω₃ } and  T= { Ф, Z, {ζ₁}, {ζ₁, 
δ₂}  }. 
  ≤10 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (Ω₃, ζ₁) }, (δ₂, Ω₃), (δ₂, ζ₁) }. 
mi-gcl(Z, Τ1) are Ф, Z 
b-mi-gcl(Z, Τ1) are Ф,Z 
 βcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃} }  
dβcl sets are Ф, Z, {ζ₁, Ω₃}                                               
b-mi-gcl{ζ₁} is Z                                       
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of  b-mi-gcl{x} is Z  x∈Z.                      
dβcl{ζ₁} is Z 
dβcl{δ₂} is {δ₂} 
dβcl{Ω₃} are {δ₂, Ω₃} 
The intersection of d-βcl{x} is {δ₂} not equal to Z  x∈Z. 
 
THEOREM 3.51: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-iβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iβcl set Then iαcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of iβcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of iβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iβR0 space. 
 
EXAMPLE 3.52: Let Z = { ζ₁, δ₂, Ω₃ } and  T= { Ф, Z, {Ω₃}, 
{δ₂, Ω₃}  }, ≤7 = {(ζ₁, ζ₁), (δ₂, Ω₃), (Ω₃, Ω₃), (δ₂, ζ₁) } }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gcl(Z, Τ1) are Ф,Z 
 βclsets are Ф, Z, {ζ₁}, {δ₂}, {ζ₁, δ₂}   
iβcl sets are Ф, Z, {ζ₁},  {ζ₁, δ₂}.                                               
d-mi-gcl{ζ₁} is Z                                       
d-mi-gcl{δ₂} is Z                                        
d-mi-gcl{Ω₃} is Z                                        
The intersection of d-mi-gcl{x} is Z  x∈Z.                      
iβcl{ζ₁} is {ζ₁} 
iβcl{δ₂} is {ζ₁, δ₂} 
iβcl{Ω₃} is Z 
The intersection of  iβcl{x} is {ζ₁} not equal to Z  x∈Z. 
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THEOREM 3.53: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-bβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bβcl set Then bβcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of bβcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of bβcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-bβR0 space. 
 
EXAMPLE 3.54:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂}, {δ₂, Ω₃}  },     
≤3 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃} 
d-migcl(Z, Τ1) are Ф,Z, {ζ₁} 
 βcl sets are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
bβcl sets are Ф, Z                                               
d-mi-gcl{ζ₁} is {ζ₁}                                          
d-mi-gcl{δ₂} is Z                                               
d-mi-gcl{Ω₃} is Z                                               
The intersection of d-mi-gcl{x} is {ζ₁}  x∈Z.                              
bβcl{ζ₁} is Z 
bβcl{δ₂} is Z 
bβcl{Ω₃} is Z 
The intersection of bβcl{x} is Z not equal to {ζ₁}  x∈Z. 
 
 THEOREM 3.55: In a TOS (Z, Ƭ, ≤), every W- mi-gcl(Z, Τ1) 
– R0 space is a W-ΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of  mi-gcl{x} is  empty set    
xϵZ  by fact, every mi-gcl(Z, Τ1)is a mi

cl(Z, T1) and then 
every mi

cl(Z, T1) is  
Ψcl set Then βcl{x} contained in mi-gcl{x}   x∈Z.  
That implies the intersection of Ψcl{x} contained in mi-
gcl{x}. But the intersection of mi-gcl{x} is empty set    x∈Z. 
we get the intersection of Ψcl{x} is empty set  x∈Z. Hence 
(Z, Τ)  is W- ΨR0 space. 
 
EXAMPLE 3.56:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {δ₂ }, 
{Ω₃], {δ₂, Ω₃} }  
mi-gcl(Z, Τ1) are Ф, Z                                               
Ψcl sets are Ф, Z, {ζ₁}, {δ₂}, {Ω₃}, {ζ₁, δ₂} {ζ₁, Ω₃}                                  
mi-gcl{ζ₁} is Z                                       
mi-gcl{δ₂} is Z                                        
mi-gcl{Ω₃} is Z                                         
The intersection of  mi-gcl{x} is Z   x∈Z.                                  
 Ψcl{ζ₁} is {ζ₁} 
Ψcl{δ₂} is {δ₂} 
Ψcl{Ω₃} is {Ω₃} 
The intersection of Ψcl{x} ia empty set but not equal to Z   
x∈Z. 
 

THEOREM 3.57: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-iΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iΨcl set Then iΨcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of iΨcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of iΨcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iΨR0 space. 
 
EXAMPLE 3.58:   Let Z = { ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {δ₂}, 
{Ω₃}, {δ₂, Ω₃}  }.   
≤7 = {(ζ₁, ζ₁), (δ₂, Ω₃), (Ω₃, Ω₃), (δ₂, ζ₁) } }. 
mi-gcl(Z, Τ1) are Ф, Z 
i-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl sets are Ф, Z, {ζ₁}, {δ₂}, {Ω₃}, {ζ₁, δ₂}, {ζ₁, Ω₃}.  
iΨcl sets are Ф, Z, {ζ₁}, {Ω₃}, {ζ₁, δ₂}, {ζ₁, Ω₃}                                               
i-mi-gcl{ζ₁} is Z                                       
i-mi-gcl{δ₂} is Z                                        
i-mi-gcl{Ω₃} is Z                                        
The intersection of i-mi-gcl{x} is Z  x∈Z.                     
iΨcl{ζ₁} is {ζ₁} 
iΨcl{δ₂} is {ζ₁, δ₂} 
iΨcl{Ω₃} is {Ω₃} 
The intersection of i-Ψcl{x} is empty but not equal to Z 
 x∈Z. 
 
THEOREM 3.59: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-dΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ by fact, every d- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dΨcl set Then dΨcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of dΨcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-dΨR0 space. 
 
EXAMPLE 3.60:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃}  }.  
 ≤6 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (δ₂, ζ₁) },  (ζ₁, Ω₃), {δ₂, Ω₃} }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}.  
dΨcl sets are Ф, Z, {δ₂}.                                               
d-mi-gcl{ζ₁} is Z                                            
d-mi-gcl{δ₂} is Z                                        
d-mi-gcl{Ω₃} is Z                                       
The intersection of  d-mi-gcl{x} is Z   x∈Z.                      
dΨcl{ζ₁} is Z 
dΨcl{δ₂} is {δ₂} 
dΨcl{Ω₃} is Z 
The intersection of dαcl{x} is {δ₂}not equal to Z  x∈Z. 
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THEOREM 3.61: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-bΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bΨcl set Then bΨcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of bΨcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-bΨR0 space. 
 
EXAMPLE 3.62:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃} }.  ≤9 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃) } }. 
mi-gcl(Z, Τ1) are Ф, Z 
b-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}  
bΨcl sets are Ф, Z, {δ₂}.                                               
b-mi-gcl{ζ₁} is Z                                       
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of  b-mi-gcl{x} is Z  x∈Z.                       
bΨcl{ζ₁} is Z 
bΨcl{δ₂} is {δ₂} 
bΨcl{Ω₃} is Z 
The intersection of b-Ψcl{x} is {δ₂} is not equal to Z  x∈Z. 
 
THEOREM 3.63: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-bΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ by fact, every i- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bΨcl set Then bΨcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of bΨcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of bΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-bΨR0 space. 
 
EXAMPLE 3.64: Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {δ₂], 
{ζ₁, δ₂], {ζ₁, Ω₃} }.   
≤1 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃), (δ₂, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z, {δ₂], {Ω₃], {ζ₁, Ω₃} 
i-mi-gcl(Z, Τ1) are Ф, Z, {Ω₃} 
 Ψcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
bΨcl sets are Ф, Z                                              
i-mi-gcl{ζ₁}  is Z                                        
i-mi-gcl{δ₂} is Z                                       
i-mi-gcl{Ω₃} is {Ω₃}                                      
The intersection of  i-mi-gcl{x} is {Ω₃}  x∈Z.                       
bΨcl{ζ₁} is Z 
Ψcl{δ₂} is Z 
bΨcl{Ω₃} is Z 
The intersection of bΨcl{x} is Z but not equal to {Ω₃}  x∈Z. 
 

THEOREM 3.65: In a TOS (Z, Ƭ, ≤), every W-i- mi-gcl(Z, Τ1) 
– R0 space is a W-dΨR0

  space but not converse. 
Proof. Suppose (Z, Ƭ ) be a W-i- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of i- mi-gcl{x} is empty  
  xϵZ  by fact, every i- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dΨcl set Then dΨcl{x} contained in i-mi-gcl{x}   x∈Z.  
That implies the intersection of dΨcl{x} contained in i- mi-
gcl{x}. But the intersection of i-mi-gcl{x} empty set  x∈Z. 
we get the intersection of dΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-dΨR0 space. 
 
EXAMPLE 3.66:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, 
{δ₂}, {ζ₁, δ₂} }.   
≤4 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (Ω₃, ζ₁), (Ω₃, δ₂) }  
mi-gcl(Z, Τ1) are Ф, Z 
i-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl sets are Ф, Z, {ζ₁}, {δ₂} {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
dΨcl sets are Ф, Z, {Ω₃}, {ζ₁, Ω₃}                                              
i-mi-gcl{ζ₁} is Z                                       
i-mi-gcl{δ₂} is Z                                        
i-mi-gcl{Ω₃} is Z                                          
The intersection of i-mi-gcl{x} is Z  x∈Z.                      
dΨcl{ζ₁} is {ζ₁, Ω₃} 
dΨcl{δ₂} is Z 
dΨcl{Ω₃} is {Ω₃} 
The intersection of dΨcl{x} is{Ω₃] not equal to Z  x∈Z. 
 
THEOREM 3.67: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-iΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iΨcl set Then iΨcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of iΨcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of iΨcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iΨR0 space. 
 
EXAMPLE 3.68: Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {δ₂, 
Ω₃} }.  ≤2 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂) }, (Ω₃, δ₂) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁},   {δ₂, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl sets are Ф, Z, {ζ₁}, {δ₂, Ω₃}  
iΨcl sets are Ф, Z,  {δ₂, Ω₃}                                               
b-mig-gcl{ζ₁} is Z                                       
b-mi-gcl{δ₂} is Z                                        
b-mi-gcl{Ω₃} is Z                                        
The intersection of b-mi-gcl{x} is Z  x∈Z.                      
iΨcl{ζ₁} is Z 
iΨcl{δ₂} is {δ₂, Ω₃} 
iΨcl{Ω₃} is {δ₂, Ω₃} 
The intersection of iΨcl{x} is {δ₂, Ω₃} not equal to Z  x∈Z. 
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THEOREM 3.69: In a TOS (Z, Ƭ, ≤), every W-b- mi-gcl(Z, Τ1) 
– R0 space is a W-dΨR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-b- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of b- mi-gcl{x} is empty  
  xϵZ  by fact, every b- mi-gcl(Z, Τ1)is a d-mi

cl(Z, T1) and 
then every d-mi

cl(Z, T1) is  
dΨcl set Then dΨcl{x} contained in b-mi-gcl{x}   x∈Z.  
That implies the intersection of dΨcl{x} contained in b- mi-
gcl{x}. But the intersection of b-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of dΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-dΨR0 space. 
 
EXAMPLE 3.70: Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {δ₂}, 
{ζ₁, δ₂}, {δ₂, Ω₃} }.  
 ≤5 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, Ω₃) }, (δ₂, Ω₃) } 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁}, {Ω₃},  {δ₂, Ω₃} 
b-mi-gcl(Z, Τ1) are Ф,Z 
 Ψcl sets are Ф, Z, {ζ₁}, {Ω₃}, {δ₂, Ω₃}, {ζ₁, Ω₃}  
dΨcl sets  are Ф, Z, {ζ₁}                                               
b-mi-gcl{ζ₁}  is Z                                      
b-mi-gcl{δ₂} is Z                                      
b-mi-gcl{Ω₃} is  Z                                        
The intersection of  b-mi-gcl{x} is Z  x∈Z.  
dΨcl{ζ₁} is {ζ₁} 
dΨcl{δ₂} is Z 
dΨcl{Ω₃} is Z 
The intersection of Ψcl{x} is {ζ₁} not equal to Z  x∈Z. 
 
THEOREM 3.71: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-iΨR0

  space but not converse. 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a i-mi

cl(Z, T1) and 
then every i-mi

cl(Z, T1) is  
iΨcl set Then iΨcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of iΨcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of iΨcl{x} is empty set   x∈Z  Hence 
(Z, Τ)  is W-iΨR0 space. 
 
EXAMPLE 3.72: Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {δ₂}, 
{Ω₃}, {δ₂, Ω₃}  }.   
≤3 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (ζ₁, δ₂), (ζ₁, Ω₃) }. 
mi-gcl(Z, Τ1) are Ф, Z 
d-mi-gcl(Z, Τ1) are Ф, Z 
 Ψcl are Ф, Z, {ζ₁}, {δ₂}, {Ω₃}, {ζ₁, δ₂}, {ζ₁, Ω₃}  
iΨcl sets are Ф, Z, {δ₂}, {Ω₃}                                               
d-mi-gcl{ζ₁}  is Z                                       
d-mi-gcl{δ₂} is Z                                        
d-mi-gcl{Ω₃} is Z                                        
The intersections of  d-mi-gcl{x} is Z  x∈Z.   
iΨcl{ζ₁} is Z 
iΨcl{δ₂} is {δ₂} 
iΨcl{Ω₃} is {Ω₃} 
The intersection of iΨcl{x} is empty not equal to Z  x∈Z. 

THEOREM 3.73: In a TOS (Z, Ƭ, ≤), every W-d- mi-gcl(Z, Τ1) 
– R0 space is a W-bβR0

  space but not converse. 
 
Proof: Suppose (Z, Ƭ ) be a W-d- mi-gcl(Z, Τ1) – R0 space. 
Then the intersection of d- mi-gcl{x} is empty  
  xϵZ  by fact, every d- mi-gcl(Z, Τ1)is a b-mi

cl(Z, T1) and 
then every b-mi

cl(Z, T1) is  
bΨcl set Then bΨcl{x} contained in d-mi-gcl{x}   x∈Z.  
That implies the intersection of bΨcl{x} contained in d- mi-
gcl{x}. But the intersection of d-mi-gcl{x}  
empty set  x∈Z. 
we get the intersection of bΨcl{x} is empty set   x∈Z  
Hence (Z, Τ)  is W-bΨR0 space. 
 
EXAMPLE 3.74:   Let Z={ ζ₁, δ₂, Ω₃ } and T= { Ф, Z, {ζ₁}, {ζ₁, 
Ω₃}  }.  ≤7 = {(ζ₁, ζ₁), (δ₂, δ₂), (Ω₃, Ω₃), (δ₂, ζ₁) }. 
mi-gcl(Z, Τ1) are Ф, Z, {ζ₁},  {δ₂, Ω₃} 
d-mi-gcl(Z, Τ1) are Ф,Z, {δ₂, Ω₃] 
 Ψcl sets are Ф, Z, {δ₂}, {Ω₃}, {δ₂, Ω₃}  
bΨcl sets are Ф, Z, {Ω₃}                                               
d-mi-gcl{ζ₁} is Z                                                    bΨcl{ζ₁} is Z 
d-mi-gcl{δ₂} is {δ₂, Ω₃}                                             bΨcl{δ₂} is Z 
d-mi-gcl{Ω₃} is {δ₂, Ω₃}                                             bΨcl{Ω₃} is 
{Ω₃} 
The intersection of d-mi-gcl{x} is {δ₂, Ω₃}        The 
intersection of bΨcl{x} is [Ω₃} not equal to {δ₂, Ω₃} 
 bΨcl{ζ₁} is Z 
bΨcl{δ₂} is Z 
bΨcl{Ω₃} is {Ω₃} 
The intersection of bΨcl{x} is [Ω₃} not equal to {δ₂, Ω₃} 
 
The following diagrams shows the above results.  
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