

Soft Pre Generalized b-Closed Sets in a Soft Topological Space

K. Muthulakshmi¹, K. Muthulakshmi²

¹Assistant professor, Department of Mathematics, Sri Kaliswari College(Autonomous), Sivakasi-India ²M.sc Student, Department of Mathematics, Sri Kaliswari College(Autonomous), Sivakasi-India ***_____

Abstract:- This paper introduces soft pre generalized bclosed sets in a soft topological space. In a soft topological space, a soft set F_A is said to soft pre generalized b- closed if bcl $(F_A) \cong F_0$ whenever $F_A \cong F_0$ and F_0 is a soft P- open set in X. A detail study carried out on properties of soft Pre generalized b- closed sets.

Keywords: Soft Pgb- closed set, Soft Pgb- open set, Soft Pgb-closure, soft Pgb b-interior.

1. INTRODUCTION

Soft set theory was first introduced by Molodtsov [1] in 1999 as a general mathematical tool for dealing uncertain fuzzy, not clearly defined objects. He has shown several applications of this theory in solving many practical problems in economics, engineering, social science, medical science, and so on.

In 2010 Muhammad shabir, Munazza Naz [2] used soft sets to define a topology namely Soft topology. In general topology the concept of generalized closed set was introduced by Levine [3]. This notation has been studied extensively in recent years by many topologies.

The investigation of generalized closed sets has led to several new and interesting concepts, e.g. new covering properties and new separation axioms. Some of these separation axioms have been found to be useful in computer science and digital topology.

Soft generalized closed set was introduced by K.Kannan [4] in 2012. Soft pre generalized closed set was introduced by J.Subhashinin [5] in 2014. In this paper we introduce soft pre generalized b-closed set in a soft topological space and studied some of its properties.

2. Preliminaries

2.1. Definition [6] A soft set F_A on the universe X is defined by the set of ordered pairs $F_A = \{(e, f_A(e)): e \in E, e \in E\}$ $f_A(e) \in P(X)$, where E is the parameters, $A \subseteq E$, P(X) is the power set of X, and $f_A: A \rightarrow P(X)$ such that $f_A(e)=\Phi$ if $e \notin A$. Here f_A is called an approximate function of the soft set F_A . The value of $f_A(e)$ may be arbitrary, some of them may be empty, some may have non-empty intersection. Note that the set of all soft set over X is denoted by S(X).

2.2. Definition [6] A soft set F_A over X is called a null soft set, denoted by F_{ϕ} , if $e \in A$, $F(e) = \phi$.

2.3. Definition [6] A soft set F_A over X is called a absolute soft set, denoted by \tilde{A} , if $e \in A$, F(e) = X.

If A=E then the A-universal soft set is called a universal soft set denoted by \tilde{X} .

2.4. Definition [6] Let $F_E \in S(X)$. A soft topology on F_E denoted by $\tilde{\tau}$ is a collection of soft subsets of F_E having the following properties:

- (i) $F_{\phi}, F_E \in \tilde{\tau}$
- (ii)
- $$\begin{split} \{ F_{E_i} \stackrel{\sim}{\subseteq} F_{\rm E} : & i \in {\rm I} \subseteq {\rm N} \} \stackrel{\sim}{\subseteq} \tilde{\tau} = > \cup_{i \in {\rm I}} F_{{\rm E}i} \in \tilde{\tau} \\ \{ F_{E_i} \stackrel{\sim}{\subseteq} F_{\rm E} : & 1 \le i \le n, n \in {\rm N} \} \stackrel{\sim}{\subseteq} \tilde{\tau} = > \cap^n F_{{\rm E}i} \in \tilde{\tau}. \end{split}$$
 (iii) The pair (F_E , $\tilde{\tau}$) is called a soft topological space.

2.5. Definition [6] Let $(F_E, \tilde{\tau})$ be a soft topological space. Then every element of $\tilde{\tau}$ is called a soft open set. Clearly F_φ and F_E are soft open sets. F_C is said to be soft closed if the soft set $F_{\rm C}^{\tilde{c}}$ is soft open in F_E.

2.6. Definition [5] Let (F_E , $\tilde{\tau}$) be a soft topological space over X, a soft set F_A is said to be soft pre-open (soft Popen) if $F_A \cong int(cl(F_A))$. F_A is said to be soft pre-closed (soft P-closed) if the soft set $F_A^{\tilde{c}}$ is soft P- open in F_E .

2.7. Proposition [5]

- i) Every soft open set is a soft pre open set.
- ii) Every soft closed set is a soft pre closed set.

2.8. Definition [7] Let (F_E , $\tilde{\tau}$) be a soft topological space over X, a soft set F_A is said to be soft b-open if F_A \cong int(cl(F_A)) \cup cl(int(F_A)). A soft set F_A is said to be soft bclosed if int(cl(F_A)) \cap cl(int(F_A)) \subseteq F_A

2.9. Theorem[7]

In a soft topological space X and let F_A and F_B are soft sets over X.Then

- i) $bcl(\phi)=\phi$
- $bint(\phi)=\phi$ ii)
- $(bcl(bcl F_A))=bcl F_A$ iii)
- $bcl(F_A \widetilde{U} F_B) = bcl(F_A) \widetilde{U} bcl(F_B)$ iv)
- $bcl(F_A \cap F_B) \cong bcl(F_A) \cap bcl(F_B)$ v)

Proof: Refer theorem 7[7]

2.10. Definition [8] Let $(F_E, \tilde{\tau})$ be a soft topological space over X . A soft set F_A is called a soft generalized closed (soft g-closed set) in U if $cl(F_A) \cong F_0$ whenever F_A \cong F₀ and F₀ is soft open in X.

2.11. Definition [5] Let $(F_E, \tilde{\tau})$ be a soft topological space over X. A soft set F_A is called a soft pre-generalized closed set (soft pg-closed set) in X if $pcl(F_A) \cong F_0$ $F_A \cong F_0$ and F_0 is soft pre open in X. whenever

3. Soft Pre Generalized b-closed set

In this section we introduce soft pre generalized b-closed sets in a soft topological space and study some of their properties.

3.1. Definition Let $(F_E, \tilde{\tau})$ be a soft topological space over X. A soft set F_A is called a soft pre generalized bclosed set (briefly soft pgb-closed set) in X if $bcl(F_A) \cong F_0$ whenever $F_A \cong F_0$ and F_0 is soft preopen in X.

3.2. Definition Let $(F_E, \tilde{\tau})$ be a soft topological space and let F_A be soft subset of F_E . Then the soft pre generalized b-closure (briefly soft pgb-closure) of F_A denoted by pgbcl(F_A) is defined as the intersection of all soft pre generalized b-closed supersets of F_A.

3.3. Example Let $(F_{E}, \tilde{\tau})$ be a soft topological space over X, where X={h₁,h₂,h₃} ,E={e₁,e₂} , $\tilde{\tau}$ ={ \tilde{X} , F_{ϕ}, $F_{E_1}, F_{E_2}, F_{E_3}, F_{E_4}, F_{E_5}, F_{E_6}, F_{E_7}, F_{E_8}$ and the following soft sets over X can be defined as follows:

 $\tilde{X} = \{(e_1, \{h_1, h_2, h_3\}), (e_2, \{h_1, h_2, h_3\})\}, F_{\phi} = \{(e_1, \phi), (e_2, \phi)\}$

 $F_{E_1} = \{(e_1, \{h_3\}), (e_2, \phi)\}, F_{E_2} = \{(e_1, \{h_3\}), (e_2, \{h_1\})\}$

 $F_{E_3} = \{(e_1, \{h_3\}), (e_2, \{h_1, h_3\})\}, F_{E_4} = \{(e_1, \phi), (e_2, \{h_3\})\}$

 $F_{E_5} = \{(e_1, \{h_3\}), (e_2, \{h_3\})\}, F_{E_6} = \{(e_1, \{h_2\}), (e_2, \{h_3\})\}$

 $F_{E_7} = \{(e_1, \{h_2, h_3\}), (e_2, \{h_1, h_3\})\}, F_{E_8} = \{(e_1, \{h_2, h_3\}), (e_2, h_3\})\}$ ${h_3})$

The soft set $A_E = \{(e_1, \{h_1, h_2\}), (e_2, \tilde{X})\}$ is a soft pgb-closed set.

3.4. Theorem. Every soft closed set is soft pgb-closed set.

Proof: Let F_A be any soft closed set in X such that $F_A \cong F_0$, where F_0 is soft P-open. Since $bcl(F_A) \cong cl(F_A)=F_A$, $bcl(F_A) \cong F_0$. Hence F_A is soft pgb-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

3.5. Example

example 3.3, consider In the soft subset, $B_E = \{(e_1, \phi), (e_2, \{h_2, h_3\})\}$. The soft set B_E is a soft pgb-closed set but not a soft closed set.

3.6. Theorem. Every soft b-closed set is soft pre generalized b-closed set.

Proof: Let F_A be any soft b-closed set such that F_0 is any soft pre-open set containing F_A. Since F_A is soft b-closed, $bcl(F_A) = F_A \cong F_0$, $bcl(F_A) \cong F_0$. Hence F_A is soft pgb-closed set

The converse of the above theorem need not true be as seen from the following example.

3.7. Example

In example 3.5, the soft subset B_E is soft pgb-closed but not a soft b-closed.

3.8. Theorem. Every soft generalized closed set is a soft pgb-closed set.

Proof: Let F_A be any soft g-closed set in a soft topological space X and F_0 is any soft open set containing F_A . Since every soft open set is a soft pre-open set, $bcl(F_A) \cong$ $cl(F_A) \cong F_0$. Therefore $bcl(F_A) \cong F_0$. Hence F_A is soft pgb-closed set.

The converse of the above theorem need not true be as seen from the following example.

3.9. Example

In example 3.3, consider the soft subset $C_E = \{(e_1, \{h_2\}),$ $(e_2, \{h_1, h_3\})$. The set C_E is a soft pgb-closed set but not a soft generalized closed set.

3.10. Theorem. Every soft pg-closed set is a soft pgbclosed set

Proof: Let F_A be any soft pg closed set such that F_0 is soft pre open set containing F_A , $pcl(F_A) \cong F_0$. Also, $bcl(F_A) \cong$ $pcl(F_A) \cong F_0$, $bcl(F_A) \cong F_0$. Hence F_A is soft pgb-closed set.

The converse of the above theorem need not be true as seen from the following example.

3.11. Example

In example 3.3, Consider the soft subset D_E = $\{(e_1, \{h_2, h_3\}), (e_2, \{h_1\})\}$. The set D_E is a soft pgb-closed set but not a soft pg-closed set.

3.12. Theorem. If F_A and F_B are soft pgb-closed sets in X then $F_A \widetilde{U} F_B$ is a soft pgb-closed set in X.

Proof: Let F_A and F_B be soft pgb-closed sets in X and F_0 be any soft pre open set containing F_A and F_B . Therefore $bcl(F_A) \cong F_0$; $bcl(F_B) \cong F_0$. Since $F_A \cong F_0$, $F_B \cong F_0$ then $F_A \widetilde{U} F_B \cong F_0$. Hence $bcl(F_A \widetilde{U} F_B) = bcl(F_A) \widetilde{U} bcl(F_B) \cong F_0$. Therefore $F_A \widetilde{U} F_B$ is a soft pgb-closed set in X.

3.13. Theorem. A set F_A is a soft pgb-closed set iff $bcl(F_A)-F_A$ contains no non-empty soft pre closed set.

Proof: Assume that F_C is a soft pre closed set in X such that $F_C \cong bcl(F_A) - F_A$. Then $F_A \cong F_C^{\tilde{c}}$. Since F_A is soft pgbclosed set and $F_C^{\tilde{c}}$ is soft pre open then $bcl(F_A) \cong F_C^{\tilde{c}}$. ie) $F_C \cong bcl(F_A^{\tilde{c}})$, $F_C = F_{\Phi}$. Hence $bcl(F_A) - F_A$ contains null soft pre closed set.

Conversely, Assume that $bcl(F_A)-F_A$ contains no nonempty soft pre closed set. Let $F_A \cong F_0$, F_0 is soft pre open. Suppose that $bcl(F_A)$ is not contained in F_0 , $bcl(F_A) \cap F_0^{\tilde{C}}$ is a non –empty soft pre closed set of $bcl(F_A)-F_A$, which is contradiction. Therefore $bcl(F_A) \cong F_0$. Hence F_A is soft pgb-closed set.

3.14. Theorem. The intersection of any two soft pgb-closed sets in X is also a soft pgb-closed set in X.

Proof: Let F_A and F_B be any two soft pgb-closed sets. $F_A \cong F_0$, F_0 is any soft pre open and $F_B \cong F_0$, F_0 is soft pre open. Then $bcl(F_A) \cong F_0$, $bcl(F_B) \cong F_0$, therefore $bcl(F_A \cap F_B) \cong bcl(F_A) \cap bcl(F_B) \cong F_0$, F_0 is soft pre open in X. Hence $F_A \cap F_B$ is a soft pgb-closed set.

3.15. Theorem. If F_A is a soft pgb-closed set in X and $F_A \cong F_B \cong bcl(F_A)$, Then F_B is a soft pgb-closed set in X.

Proof: Since $F_B \cong bcl(F_A)$, we have $bcl(F_B) \cong bcl(F_A)$. Clearly $bcl(F_B)$ - $F_B \cong bcl(F_A)$ - F_A . By theorem 3.13, $bcl(F_A)$ - F_A contains no non-empty soft pre closed set. Hence $bcl(F_B)$ - F_B contains no non-empty soft pre closed set. Therefore F_B is soft pgb-closed set in X.

4. Soft Pre Generalized b-open set

In this section we introduce soft pre generalized b-open sets in a soft topological space and study some of their properties.

4.1. Definition. Let $(F_E, \tilde{\tau})$ be a soft topological space over X. A soft set F_A is called a soft pre generalized bopen set (pgb-open set) if the complement $F_A^{\tilde{C}}$ is a soft pgb-closed set in X. Equivalently, F_A is called a soft pgbopen set if $F_C \cong bint(F_A)$ whenever $F_C \cong F_A$ and F_C is soft pre closed set in X.

4.2. Definition. Let $(F_E, \tilde{\tau})$ be a soft topological space and let F_A be a soft subset of F_E . Then the soft pre generalized b-interior (soft pgb-interior) of F_A denoted by pgbint(F_A) is defined as the soft union of all soft pre generalized open subsets of F_A .

4.3. Example

In example 3.3, consider the soft subset F_{E_1} = {(e₁, {h₃}), (e₂, ϕ)}. The soft set F_{E_1} is a soft pgb-open set.

4.4. Theorem. Every soft b-open set is a soft pre generalized b-open set.

Proof: Let F_A be any soft b-open set such that F_C is any soft pre closed set contained in F_A . Since F_A is soft b-open, bint $(F_A)=F_A \cong F_C$. Therefore bint $(F_A) \cong F_C$. Hence F_A is a soft pgb-open set.

The converse of the above theorem need not true be as seen from the following example.

4.5. Example. In example 3.3, consider the soft subset $H_E = \{(e_1, \tilde{X}), (e_2, \{h_1\})\}$. The soft set H_E is a soft pgb-open set but not a soft b-open set.

4.6. Theorem. The intersection of two soft pgb-open sets in X is also a soft pgb-open set in X.

Proof: Let F_A and F_B be soft pgb-open sets in X. Then $F_A^{\tilde{C}}$ and $F_B^{\tilde{C}}$ are soft pgb-closed sets. By theorem3.12, $F_A^{\tilde{C}} \cup F_B^{\tilde{C}}$ is also a soft pgb-closed set in X. (ie) $F_A^{\tilde{C}} \cup F_B^{\tilde{C}} = (F_A \cap F_B)^{\tilde{c}}$ is a soft pgb-closed set in X. Therefore $F_A \cap F_B$ is a soft pgb-open set in X.

4.7. Theorem. If $bint(F_A) \cong F_B \cong F_A$ and F_A is soft pgb-open in X, then F_B is soft pgb-open in X.

Proof: Suppose that $bint(F_A) \cong F_B \cong F_A$ and F_A is soft pgbopen in X. $F_A^{\tilde{c}} \cong F_B^{\tilde{c}} \cong bcl(F_A^{\tilde{c}})$. Since $F_A^{\tilde{c}}$ is soft pgb-closed in X, by theorem 3.15 $F_B^{\tilde{c}}$ is soft pgb-closed in X. Hence F_B is soft pgb-open in X.

Conclusion

Soft set theory was introduced by D.Molodtsov[1] in 1999.[2] Muhammad shabir and Munazza Naz introduced the concept of soft topological space. In 2014,J.Subhashini and C.Sekar[5] introduced the concept of soft pre generalized closed sets. In this paper, we introduce soft pre generalized b- closed sets based on the soft pre open sets. Also we introduce soft pre generalized b- open sets and study some theorems.

References

[1]D.Molodtsov, Soft Set Theory-First Results, Computers and Mathematics with applications, Vol. 37 (1999) 19-31

[2]Muhammad Shabir and Munazza Naz, On Soft topological spaces, Computers and Mathematics with Applications, Vol.63 (2011) 1786-1799.

[3]N.Levine, Generalised closed sets in topology, Rend.Circ.Mat.Palermo, Vol. 19 (2) (1970) 89-96.

[4] K.Kannan, Soft Generalized closed sets in Soft topological spaces, Journal of Theoretical and Applied Information Technology, Vol.37 (1) (2012) 1-20.

[5]J.Subhashini, Soft Pre Generalized closed sets in a soft topological space, International Journal of Engineering Trends and Technology, Vol.12, Number 7-Jun 2014. [6] Naim Cagman, Serkan Karatas and Serdar Enginoglu, Soft Topology, Computers and Mathematics with Applications, Vol.62 (2011) 351-358.

[7] Metin Akdag and Alkan Ozkan, Soft b-open sets and soft b-continuous functions , Original Research , Math Sci (2014) 8:124

[8] Saziye Yuksel, Naime Tozlu, Zehra Guzel Ergul, On soft generalized closed sets in soft Topological spaces, Journal of Theoretical and Applied Information Technology, Vol.55(2) (2013) 273-279.