
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3934

Homomorphic Image Encryption

Sachin Rana1, Om Jadhav1 , Shivam Rajput1, Pranjal Bhansali1, Varshapriya Jyotinagar2
1B.Tech, Dept. of Computer Engineering, Veermata Jijabai Technological Institute, Mumbai, India.

2Faculty of Computer Engineering, Veermata Jijabai Technological Institute, Mumbai, India.

---***---

Abstract - In cloud computing , user’s privacy is of utmost
importance when operating on user’s data, which is protected
using Homomorphic Encryption.[1] But it is not practical for
wide usage as the types of data and services available in cloud
computing are diverse. If you consider all these several data
types, digital image is an important personal data for users.
Many image processing services are also readily available in
Cloud Computing. To safeguard user’s privacy in these services
we propose a scheme based on homomorphic encryption while
processing the image. There are several steps in this process.
First being, construction of a secret key homomorphic
encryption (SKHE) for encrypting the image. Once the first
step is done, it's followed by SKHE working on encrypted
floating numbers, since they are used in image processing. Its
then followed by converting the already present traditional
encryption techniques so as to facilitate them working on
encrypted pixels. The image which had undergone encryption
is then processed homomorphically. Therefore services can
now process the encrypted image directly (without the need
for decrypting it first), and the result obtained after decryption
is the same as processing the plain image itself. To explain our
scheme, three common image processing instances are
proposed in our paper. The experiments will show that our
scheme is secure, correct, and efficient enough to be used in
practical image processing applications.

Key Words: Homomorphic encryption, Image Processing,
Paillier cryptosystem

1.INTRODUCTION

Along with the arrival of cloud computing fever, there
emerge a lot of services outsourcing applications based on
cloud computing platform (such as SaaS). Users who request
the service just need to upload their data to the service and
wait for the result. This benefits the users greatly, but also
risks breach of privacy, because the service provider (SP)
can access user’s plain sensitive information at will. To
maintain the essential balance between the privacy issue and
usability of data in cloud computing, many computable
encryption technologies are proposed, one of them being
homomorphic encryptions.

The central theme of how this process works can be
explained as follows:

“Enc” represents the encryption process, and “Dec”
represents the decryption process. For a function ƒ(x) taking
the plaintexts as input, there exists a function
 ƒ’(y) (where y = Enc(x))
taking the cipher texts as input, such that Dec (ƒ’(y)) = ƒ (x)

When the user uploads the encrypted image, it is worked
upon rather than the plain image. This input of encrypted
image generates an output of encrypted result image which
upon decryption gives us the required image. Its the same as
working on plain image, but only we are not. And this is how
the user's privacy is maintained.
Homomorphic encryption is indeed a very good way to
protect privacy in service outsourcing applications,
especially when handling the integer data type. But as we all
very well know that the data types in cloud computing are
diverse, the usage of homomorphic encryption for other
types is still a challenging problem for the entire world. For
example, with the popularization of photograph equipment,
a large amount of digital images are generated every day. It
has become one of the most popular forms of data for the
users. Consequently, the online image processing services
are widely used for users to edit their images. But the image
may also contain privacy that the user does not want SP to
see. To ensure that privacy which is of utmost importance
nowadays, is maintained in this data type, we have proposed
a scheme using homomorphic encryption in image
processing services.
In broad terms, image processing includes all kinds of
operations on the image. Handling of privacy issues is hard
for all kinds of image processing techniques using one
scheme. So in our paper basically, image processing mainly
refers to the processes based on the concept and usage of
pixels. That is, the new color of pixel is computed with the
help of the old ones. The various operations on plain pixels
can be seen as a function ƒ. Operating on the old pixels and
some other parameters (if necessary) as inputs, ƒ outputs the
new pixel that’s required. When using the traditional image
encryption techniques, one observes that operating on the
encrypted pixels is meaningless since no traditional
technique can process the encrypted image without
decrypting it first. However, encrypting each pixel and then
working on it generates pretty good results.
But unfortunately there are no such readymade encryption
techniques available in the market that makes our work
easy. So we'll just have to make one.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3935

All the homomorphic techniques known as of today work on
textual data. Image encryption using homomorphic
encryption is a long way yet. Unpadded-RSA and ElGamal
cryptosystems both give satisfactory results only when ƒ
consists of pure multiplication operations [10]. But both
addition and multiplication operations are necessary in
image processing. Neither do Goldwasser and Micali nor
Paillier cryptosystems fit image encryption, since ƒ consists
of only pure addition operations. Gentry’s fully
homomorphic encryption too is too complex to apply in
image processing, because it encrypts one bit at a time, with
the runtime more than 30 seconds even in “toy” security
level.
The traditional Homomorphic Encryption techniques are
developed for integers, but floating numbers are involved in
operations in image processing which is all together a
different daemon in itself, these cryptosystems hence cannot
be used directly either[11]. Some changes need to be made
to them before applying them on floating numbers. Besides
are all public key encryptions which need a large key size to
ensure the security, so it’s a waste of time. Thus, the sizes of
cipher texts are too large to store or transmit online.

The above analysis reflects the strong need for an efficient
homomorphic encryption technique, which can support both
addition and multiplication operations on floating numbers,
since images work on floating numbers. Then it can be used
for image encryption and thereby processing the encrypted
image directly without decrypting it first. Upon research it
seems that no existing work has ever proposed any solution
for this aforementioned problem.

Our contributions to solve these problems stated above are
as follows:

(1)We make changes to the Paillier homomorphic
encryption to propose an efficient secret key homomorphic
encryption which can support addition and multiplication
operations on floating numbers.

(2)We use the above stated method in image encryption
which gives the instances of processing encrypted image.

(3)We propose an encrypted image processing model based
on homomorphic encryption.

2. Homomorphic Encryption Implementation in
Image Processing:

2.1 Background Study:

2.1.1Encrypted Image Processing Model:

First of all, a model is constructed for processing an image
which is in encrypted format with the central idea being
homomorphic encryption; see Figure A.

Figure A: The encrypted image processing model.

Figure A (a) is a common online image processing service
model. The service has a set of image processing functions as .
When image data owner uploads the image for a specific kind
of process request, cloud service provider (CSP) will choose
the corresponding function to process the image. As CSP can
access the original image, privacy is breached.

Secondly, see Figure A (b),

Data owner first has to encrypt the image using a
homomorphic encryption prior to uploading it on the cloud .
Thanks to the owners encryption efforts, CSP can operate on
the encrypted image using a corresponding function and
return to the Data Owner the encrypted result image. After
decryption of the encrypted result image, Data Owner can get
the correct processed image. It's same as the CSP working on
a plain image, but only he's not.
The result is the same as Figure A(a). But as the image in
server is always stored in encrypted form, the privacy is
maintained.

2.1.2 RGB image representation
Any given RGB image can be seen as a collection of three
different images(a red scale image, a green scale image and a
blue scale image) placed on top of each other like a stack, and
when these set of images are fed into the red, green and blue
inputs of a color monitor, it produces a color image on the
screen[2].
An RGB image is often referred to as a “true color image” only
because of the precision with which a real-life image can be
replicated.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3936

If you study MATLAB, any RGB image is basically represented
as a M*N*3 array of color pixels, where each color pixel is
represented with three values which correspond to red, blue
and green color component of RGB image at a specified
spatial location at a particular point of time.
So, the color of any given pixel is calculated by the
combination of the red, green, and blue intensities stored in
each color plane at the pixel’s location [3].
Here each color plane is an array of dimensions M*N which
store the values of the particular color in them.

As can be observed in the image above, Pixel (A) has a value
of (255, 0, 255) which is calculated by the combination of
intensities stored in the red color plane, the green color plane
and the blue color plane respectively and is stored in an
array format.
Likewise, pixel (B) has value of (127, 255, 0) and is calculated
in a manner similar to as used for the calculation for pixel (A).

Color planes of RGB image:
Consider an RGB image array ‘Img’ then, Img(:, :, 1)
represents the Red color plane of the RGB image selected
Img(:, :, 2) represents the Green color plane of the RGB image
selected Img(:, :, 3) represents the Blue color plane of the RGB
image under study.

RGB image array range:
In MATLAB term, any RGB image array can belong to any of
the 3 classes. They are ‘double’, ‘uint8’, or ‘uint16’ data type
classes. The data type class of color component determines
the range of values it can accept [7].
For example, if an RGB image is of class ‘double’ then each
color component is a value between 0 and 1 only. No other
values beyond this range are acceptable.

Likewise, if an RGB image belongs to the class ‘uint8’, the
range of values that each color component can have is
restricted to [0 – 255] . [0 – 65535] is the range of values
acceptable if the RGB image is of class ‘uint16’.

Bit depth:
The number of bits that are used to store a pixel value of the
component image under study determines the bit depth of
any given RGB image.
For example, if each color component image is an 10-bit
image, the RGB image will be said to have a bit depth of 30.

Possible number of colors in RGB image:
Let an RGB image belong to class ‘uint16’, i.e. the range of
values a color component plane can have is [0 – 65535] (a
total of 65536 shades of that color). So, each individual color
plane of any given RGB image under study is capable of
showing 65536 shade of that color. So the total number of
combination of color that can be represented in any given
RGB image is 65536 X 65536 X 65536 = 2.814 E14. That’s a
lot of combinations.

2.2 Design:

2.2.1 Paillier cryptosystem Algorithm:

The working of the scheme is as follows:

Key generation:

1. Choose two very large prime numbers p and q at
random, and independently of each other, such
that g.c.d of (pq, (p-1)(q-1)) = 1. This property is
assured if both primes are of equal length.

2. Compute n (by using the formula n=pq) and λ= l.c.m
(p-1, q-1) which means Least Common Multiple.

3. Select a integer randomly as g where g ∈ Z*n2
4. Ensure that the n calculated above divides the order

of g by checking the existence of the
following modular multiplicative inverse: μ =(L(g λ
mod n2))^(-1)mod n, where function L is defined
as L(x) = (x-1)/n .

● The public (encryption) key used here is (n,g)
● The private (decryption) key used here is (λ, μ)

If using p,q of equivalent length, a simpler variant of the
above key generation steps would be to set g=n+1 and λ =
Ø(n), μ= Ø(n)^-1 mod n , where Ø(n) = (p-1)(q-1) .

Encryption

1. Let m be a message to be encrypted where 0<=m<n.
2. Select at random an integer r where 0<r<n and r∈

Z*n2 (i.e., ensure g.c.d (r, n)=1)
3. Compute cipher text as: c= gm rn mod n2

Decryption

1. Let c be the cipher text to decrypt, where c ∈ Z*n2

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3937

2. Compute the plaintext message as: m = L(cλ mod n2) .
μ mod n

2.2.2 Homomorphic properties:
One of the main feature of the Paillier cryptosystem is that it
supports homomorphic properties. Moreover it undergoes
non-deterministic encryption. The encryption function used
in this system follows additive homomorphic scheme. The
two properties can be described as follows:

● Homomorphic addition of two numbers
If we take the product of two ciphertexts, it will decrypt to the
sum of their corresponding original numbers[8],

Dec (Enc (A, r1). Enc (B, r2) mod n2) = (A+B) mod n,
where A and B are real numbers
.
The product of a ciphertext with another number with the
power g on decryption will result in the sum of the
corresponding numbers,

 Dec (Enc (A, r1). gB mod n2) = (A+B) mod n.

● Homomorphic multiplication of numbers
If we take an encrypted number raised to the power of
another number, it will decrypt to the product of the two
numbers,
 Dec (Enc (A, r1) B mod n2) = A.B mod n.
 Dec (Enc (B, r2) A mod n2) = A.B mod n.

If we consider a general approach, we can say that any
encrypted number which is raised to a constant x will decrypt
to the product of the number and the constant,

 Dec (Enc (A, r1) x mod n2) = x. A mod n.

However, when we use Paillier encryptions where two
numbers are provided, there is no known way to exactly
compute an encryption of the product of these numbers
unless you know the private key which is only known to the
user himself.

2.2.3 Technologies Used:
1)Python Imaging Library (abbreviated as PIL) (Pillow
according to newer versions) is a free library for the Python
programming language that strongly supports for
manipulating, saving or opening many different image file
formats. It’s a must use library for any image related
processing [4].

PIL or Pillow offers several standard image manipulation
procedures. These include the following important ones:

1. Masking and transparency handling,
2. Per-pixel manipulations,
3. Image enhancing, such as sharpening, adjusting

brightness, contrast or color,

4. Image filtering, such as blurring, contouring,
smoothing, or edge finding,

5. Adding text to images and much more.

Some of the file formats that are supported are PPM, PNG,
JPEG, GIF, TIFF, and BMP. It is also possible to create new file
decoders to expand the library of file formats accessible.

2) NumPy is a generic array-processing package. It provides
us with a very much needed high-performance
multidimensional array object, and tools for being able to
work on these arrays [5].
It is the fundamental package for scientific computation with
Python. It’s a must use library when any type of scientific
computations are involved. It contains various features
including these important ones:

1. Sophisticated (broadcasting) functions
2. Useful linear algebra, Fourier transform, and

random number capabilities
3. A powerful N-dimensional array object
4. Tools for integrating C/C++ and Fortran code[9]

Other than these important scientific uses, NumPy can also be
used as an efficient container with multi-dimensional feature
to store generic data. Besides this, Numpy also defines a set of
arbitrary data-types which can be used to perform speedy
integration with wide variety of databases.

3) SciPy is a free and open-source Python library used
for scientific computation and technical computing. It's also a
must use library for scientific computation and it builds on
NumPy library[6].
SciPy contains modules for special functions integration ,
optimization, linear algebra, interpolation, FFT, signal and
image processing, ODE solvers and other tasks common in
science and engineering.
SciPy is a part of the NumPy stack which includes tools
like Pandas, Matplotlib and SymPy, Pand an expanding set of
scientific computing libraries. This NumPy stack has similar
users to other applications such as Scilab,MATLAB, and GNU
Octave.

3. Implementation:
The project aims at deploying our code on two nodes, one
acting as client and the other one as sever machine. The
client is responsible for generating keys, encrypting the
image and sending the (key , image) pair to the server. Along
with that the client has the choice to select a frame to be
applied on the processed image. The server in turns perform
homomorphic operation and provides the final image with
applied frame.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3938

JPG to RGB Conversion

The first step is the conversion of the image into its RGB

pairs. The image is transformed into a 3-D array represented

by a 2-D matrix where row and column number specifies the

pixel coordinates in the image. In each element of this matrix

we have three pairs of RGB values which range from 0-255.

Hence we have transformed a complex image into simple

numbers which can be operated easily by the proposed

model.

Initially we had 2048*2048 resolution image. It contains

41,94,304 pixels. We converted it into RGB format which

includes RGB values for each and every pixels. The data is

saved in RGB.txt file with 4194304 rows.

Initial Image

Private and Public Key Generation

In order to encrypt the image we are using Pailler’s

Algorithm. The image is encrypted using private keys

generated as a result of the proposed cryptosystem. The

public key is sent to the server node to perform the

subsequent operations.

In this system values for ‘p’ and ‘q’ will be generated

randomly. Depending on the values selected and algorithm

proposed, we calculate values for ‘n’,’ λ’ and ‘μ’ respectively.

However in our model , we have to select two prime

numbers namely p,q such that their product is greater than

255. This is done in order to conserve the 0-255 greyscale

levels of the RGB pixels.

The first possible pair is 17,19 , such that calculated n is 323.

Later on in order to quantize the values between 255-323

we can just take a mod 256 of the final decrypted values. In

this way the decrypted pixel value 256 will represent 0 and

so on.

Also ‘g’ is a random variable that can lie anywhere from 0 to

n2. However in our implementation we have restricted the

range from 0 to n/2. This is done in order to save

computational time utilized for calculating gm.

RGB Encryption

After keys are generated, the first work is done at client side.

The image has to be encrypted on client side before sending

it to a third party(server node here) to maintain user

privacy. With the help of Public Key(n,g), we encrypted our

RGB.txt values and form the image from ciphertext values

which looks like this:

Encrypted Image

 Frame Detection and Encryption

The client has made his choice of frame that needs to be

applied over image. Here we have considered that he wants

to apply the following frame. The frame is encrypted at

server side. In order to detect the frame, we used the

condition of frame pixel detection. The pixel is encrypted

only if it has some color values other than pure white. This

way we can separate the frame pixels from unwanted pixels

and hence reduce some computational time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3939

Original frame

Operation on Encrypted Image

With the help of homomorphic encryption property

mentioned earlier, our image will get filtered in an encrypted

format i.e. frame will get applied.

This can be done in various ways. Firstly we can just replace

the pixels in matrix by the frame pixels. This works fine for

any image , however if we want to use complex filters like

changing the grayscale level of an image, replacement policy

is not an option.

The other approach is to get acknowledgement from client

after every additive homomorphic operation for each and

every pixel. However this design is not an optimal solution to

the problem. The time and space complexity will increase

exponentially with higher resolution images.

Paillier cryptosystem provides an easy solution to this

problem. The solution is explained here in short and kept as

the future scope of this project. The image can also be

represented by CMYK encoding. Hence reducing the value

range from 0-255 to 0-63. Then color addition by 1 unit can

be done on each pixel until desired frame value is achieved

by using the homomorphic addition property as stated in the

paper. Using this way, iterations at each pixel are greatly

reduced and become more feasible as an approach. However

a more optimal solution can still be out there and needs to be

introduced.

The image with applied frame will look as following

Decrypting the Final Image

The encrypted image is sent to user as either .JPG or .txt

format. With the help of private key (λ,μ), client can easily

decrypt the input received and develop the final filtered

image as shown in the figure below:

Final Image

4. Conclusion:
In the proposed model we have successfully studied about
image processing and were able to implement homomorphic
encryption techniques in order to provide a secure and
consistent means of data security.
The pre-existing Image Encryption techniques aimed at peer
to peer sharing, and one has to take the risk of trusting the
other entity usually third party apps. We find that most
schemes aim at achieving a tradeoff between time
complexity and efficiency. However using homomorphic
technique the security is improved and the total control lies
within the user. It provides total peer to peer security.
The domain is still new and developing and a lot needs to be
introduced before it can be practically introduced in the
society. The problem lies within extracting features from the
encrypted images which plays a vital role in Machine
learning using image processing and can be considered as a
part of future scope.
Furthermore, we proposed a few open issues in some
categories that need future research. We hope our study will
help to shape future research directions in this promising
area of security and privacy preservation of the data shared.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3940

5. References:

1. An Efficient Secret Key Homomorphic Encryption

Used in Image Processing Service by Pan Yang,

Xiaolin Gui, Jian An and Feng Tian.

2. Face Detection and Face Recognition in Python

Programming Language by Primoˇz Podrˇzaj

and Boris Kuster

3. https://www.geeksforgeeks.org/matlab-rgb-image-
representation/ (online)

4. https://en.wikipedia.org/wiki/Python_Imaging_Library
(online)

5. https://www.geeksforgeeks.org/numpy-in-python-set-
1-introduction/ (online)

6. https://en.wikipedia.org/wiki/SciPy (online)

7. https://www.ece.ucsb.edu/Faculty/Manjunath/course
s/ece178W03/matlabip.htm (online)

8. http://npm.taobao.org/package/paillier-js (online)

9. https://indianpythonista.wordpress.com/2017/01/31/
introduction-to-numpy/ (online)

10. Homomorphic Encryption: Theory & Application by
Jaydip Sen

11. A Comprehensive Study of Fully Homomorphic
Encryption Schemes by Majedah Alkharji, Hang Liu,
Mayyada Al Hammoshi

