
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 553

Short-text Semantic Similarity using GloVe word embedding

E. Hindocha1, V. Yazhiny2, A. Arunkumar3, P. Boobalan4

1,2,3Final Year B.Tech,Dept of Information Technology, Pondicherry Engineering College, Puducherry, India
4Associate Professor, Dept of Information Technolgy, Pondicherry Engineering College, Puducherry, India

---***--
Abstract - Word embedding are word representations in

the form of vectors that allow to maintain certain semantic

information of the words. There exist different ways of taking

profit of the semantic information the words have, as there

exist different ways of generating the word vectors that

represent those words (e.g. Word2Vec model vs. GloVe model).

By using the semantic information the word embedding

capture, we can build approximations to compare semantic

information between phrases or even documents instead of

words. In this project, we propose the use of the GloVe tool,

presented by Stanford University, to train word embedding,

use them to compare semantic differences between phrases

and compare the accuracy of the system with previous leads to

that alternative models were used, for instance, Word2Vec.

Key Words: GloVe word embedding; Bag of words;
Semantic Similarity; Co-occurrence matrix; Value Stream
Mapping(VSM).

1. INTRODUCTION

Computational Linguistics (CL) is the field of Computer

Science that aims to model the human natural language in

order to automatically treat digital text to accomplish an

innumerable amount of tasks that are related to text

processing, analysis, synthesis, and calculations of text

characteristics that are involved in other problems, such as

semantic parsing, text similarity, answer selection, etc.

Generally, every problem is related to some sort of linguistic

representation, ideally, digital text from the view of CL.

Atomic pieces make up a text, known as words. Practically, a

word is the linguistic unit, that generally possesses an

intrinsic meaning (i.e. it expresses something) that grouped

in conjunction with other words by following a set of

grammatical rules, makes a sentence, building a more

complex idea. Technically, in text, a word is a set of

characters delimited by a blank space or a punctuation mark.

As in every other Computer Science field, all data to be

processed must first become encoded in order to be

understandable by the computer. In the case of CL, there are

several ways of encoding words, depending on several

factors, that have relative advantages and disadvantages. For

example, we can represent a text with a Bag of Words (BoW)

model: in this case, the words take the shape of a bit, that can

have the value of 0 or 1 depending on the presence of that

word in the text. Nevertheless, one of the potential

downsides of the BoW model is that it does not capture the

meaning of the words since it only takes into account if that

word appears in a given text. Representation of words

known as word embedding is the another example, more

related to this project. Word embedding are n-dimensional

vectors of real values that are built with a large corpus of

plain text. One of the main characteristics of word

embedding that make it special is the capability of keeping a

relative meaning of the words, and that has opened up a

whole world in text representation and processing. There

are way more than two methods for estimating continuous

representations of words; a couple of well-known classic

examples are Latent Semantic Analysis (LSA) and Latent

Dirichlet Allocation (LDA). However, the most drawback of

this ways is that the high process value, since they need to be

calculable from an oversized corpus, and therefore the

operations created so as to estimate the vectors are not

scalable enough. That is the reason for the popularity of

Word2Vec models. In this paper of 2013, Mikolov et al.

presented a novel efficient way of calculating continuous

word vector representations and developed software that

implemented the models that are explained in their paper,

giving to the scientific community a valuable tool to keep

investigating on word embeddings. From that time, other

efficient methods of unsupervisedly estimating word vectors

have grown in the scientific community, and one of the most

famous is GloVe, that stands for Global Vectors.

2. LITERATURE SURVEY

2.1 Survey on LSTM encoder for finding short text

similarity

Lin Yao proposed an LSTM encoder for finding text

similarity. The proposed work conduct experiments on 2

dataset: MSR Paraphrase Corpus dataset and Quora QR

dataset. They give different lengths of short text.In training

process, autoencoder uses inception module to get lot of

features from multiple dimensions and it improves LSTM cell

to know about the word sequence information of short texts

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 554

and choose to forget the information gained before. The

vectors of short texts is the output of encoder. In evaluating

stage cosine distance is used to calculate short text

similarity.The proposed system requires only unlabelled

short text data.

2.2 Survey on Semantic text similarity for English

and Spanish text

Eneko Agirre proposed a system that includes two snippets

of text. Semantic textual similarity (STS) captures the notion

that some text are more similar than others by measuring

the texts degree of semantic equivalence. STS aims to create

a unified framework for combining several semantic

components. The System includes three subtask i.e English,

Spanish and interpretable subtask. The English subtask

dataset consists of pairs of sentences from new headlines

(HDL), image descriptions (Images), and a pair from a

committed belief dataset. The Spanish subtask follows the

same method like English subtask except that the similarity

scores were adapted to fit a range from zero to four. This

task introduces explanatory layer for finding the similarity. It

contains a pair of sentences, system aligns the chunks across

both the sentences and also for every alignment, it classify

the type of relation and gives the corresponding similarity

score.

2.3 Survey on open source framework for text

similarity

Daniel Bar proposed a system that is designed a framework

designed to streamline to the development of text similarity.

For text processing, UIMA based pipeline is used in which

the words are tokenized by using corpus reader and the data

combined in different ways and is preprocessed in which the

stop words and symbols are removed and abbreviation are

expanded. Then the text similarity is computed among the

given input texts and similarity score is given for each test.

This is done by using various models such as greedy string

tiling, Double metaphonic and explicit semantic analysis.

With the help of the estimated similarity score, the post

processing of the scores is done and the text similarity is

detected.

2.4 Survey on Novel word embedding and

translation-based language modeling for extractive

speech summarization

Kuan –yu chen proposed a system that formulate a

translation based language modeling framework for

extractive speech summarization. Two sets of word

representations namely desired word representations and

separate context word representations is used for

embedding the words. The language modelling for extractive

speech summarization for which each sentence of a spoken

document, the sentences are selected based on

corresponding generative probability. In this way the words

from two different representations are embedded by using

TBLM method.

2.5 Survey on Extensive feature extraction from
word alignments for semantic textual similarity

Christian Hanig proposed an extensive feature extraction

method for semantic textual similarity which focuses on

categories of alignments such as named entities, temporal

expressions, measurement expressions and dedicated

negation handling. Here the word tokenization is done which

is the splitting of words and word lemmatization is

performed. After that elongation of words is replaced and

the clitics are replaced. In named entities, the main name and

surname are combined and aligned. Normalized temporal

expressions aligns words with same time interval.

Measurement expressions aligns words that express same

absolute value. Arbitrary token sequence ignores case

information, punctuations and symbols. Negations aligns the

two words that has straight negative tokens each other and

the remaining content words are grouped together. Then the

features of the words are extracted by using defined score

based on alignment process. 40 features were extracted and

then it is divided into non- alignment features and alignment

features. Then the extracted features is trained and tested

against the English and Spanish data.

2.6 Survey on Probabilistic FastText for multisense

word embeddings

Piotr Bojanowski proposed a system to enrich word vectors

which is a morphological word representations. Given a

word vocabulary of size W where a word is identified by its

index w. here the morphology is modeled by considering

subword units and the words are represented as the sum of

its character n-grams. For a word at a particular position,

both positive and negative samples are randomly selected.

But for a context position, only one possible choice is given.

The skipgram model ignores the internal structure of words

by using a distinct vector representation of each word. A

special boundary symbols < and > is included to distinguish

prefixes and suffixes. Thus this model allows the

representation of the words which also allows to represent

rare words.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 555

3. OVERVIEW OF THE PROPOSED SYSTEM

 3.1 Problem Definition

The objective of this project is to determine and prove

whether a system using word embeddings generated with

GloVe can perform better than state-of-the-art systems that

use the collection of modelsWord2Vec to build the word

vector representations for their final use in the field of text

similarity. We compare these two methods (GloVe and

Word2Vec) in many ways in order to find which aspects of

the word embeddings are totally different for the task of

semantic text similarity. After analyzing the results, we also

aim to use the currently generated word embeddings with

GloVe in several different ways to improve the performance

of our model.

3.2 System Model

Pre-trained word embeddings area unit a staple in deep

learning for NLP. The Renowned word2vec is the pioneer of

word embeddings in mainstream deep learning. GloVe is

another commonly used method of obtaining pre-trained

embeddings. Unfortunately, there are very few practitioners

that appears to truly perceive GloVe; several simply think

about it “another word2vec”. In reality, GloVe is a much

more principled approach to word embeddings that provides

deep insights into word embeddings in general.

Fig- 1 Architecture Diagram for Short-text Semantic
Similarity using GloVe word embedding

3.3 Modules Description

3.3.1 Text Pre-Processing

The ‘Bag of Words’ model was a very important insight that

created NLP thrive. This model consists on receiving a listing

of labelled text corpora, creating a word count calculate every

corpus and determining with what quantity frequency every

word (or morpheme to be more precise) appears for every

given label. After that, the Bayes’ Theorem is applied on an

unlabeled corpus to check that label (a sentiment analysis

that labels between positive and negative, perhaps) it has a

greater probability of belonging to, based on morpheme

frequencies.

Even though good (>90%) check scores may be achieved with

this methodology, it’s a pair of problems:

1. Syntactic and semantic accuracy isn’t as high as it should
because of the fact that context is king. For example;
‘Chicago’ means one thing and ‘Bulls’ means another, but
‘Chicago Bulls’ means a completely different thing.
Counting word-frequencies doesn’t take this into
account.

2. For more practical use cases, we need to understand that
data in real-life tends to be unlabeled, therefore passing
from a supervised to an unsupervised learning method
yields a greater utility.

3.3.2 Co-occurrence matrix

To build a co-occurrence matrix, GloVe additionally takes

native context into account by computing the co-occurrence

matrix employing a fixed window size (words are deemed to

co-occur once they seem together within a fixed window).

For instance, the sentence “The cat sat on the mat” with a

window size of two would be converted to the co-

occurrence matrix. Notice however the matrix is symmetric:

this can be as a result of once the word “cat” seems within

the context of “sat”, the opposite (the word “sat” appearing

in the context of”cat”) also happens.

Fig- 2 Co-occurrence matrix table

The important principle behind GloVe can be defined as

follows: the co-occurrence ratios between two words in a

context are strongly connected to meaning. This sounds

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 556

tough however the thought is admittedly easy. Take the

words “ice” and “steam”, for instance. Ice and steam dissent

in their state however they are similar in this they’re both

forms of water. Therefore, we would expect words related to

water (like “water” and “wet”) to appear equally in the

context of “ice” and “steam”. In distinction, words like “cold”

and “solid” would in all probability seem close to “ice” but

however wouldn’t seem close to “steam”.The following table

shows the particular statistics that show this intuition well:

 Fig- 3 Probability and ratio table

The probabilities shown are basically just counts of how

frequently the word seems when the words “ice” and

“steam” are in the context, where refers to the words

“solid”, “gas”, “water”, and “fashion”. As you can see, words

that are related to the nature of “ice” and “steam” (“solid”

and “gas” respectively) occur far more often with their

corresponding words that the non-corresponding word. In

distinction, words like “water” and “fashion” which are not

particularly related to either have a probability ratio near 1.

Note that the probability ratios is computed simply by using

the co-occurrence matrix.

From here on, we’ll need a small of mathematical notation to

create the reason easier. We’ll use to refer to the co-

occurrence matrix and to refer to the th element

in which is equal to the number of times word appears

in the context of word . We’ll also define to

refer to the total number of words that have appeared in the

context of .

3.3.3 Document level similarity using GloVe vector

Document vector- In the VSM approach a document is

delineated as a vector in word space. An element in the

vector could be a measure (simple frequency count,

normalized count, tf-idf, etc..) of the importance of the

corresponding word for that document. We have gone over

the mechanics of this in nice detail and therefore the made

analysis that this approach makes attainable in our earlier

posts – Stacks of Documents and Bags of Words and Reduced

Order Models for Documents.

If 2 documents contain nearly identical distribution of

words, the vectors they furnish rise to in the word space

would be lot of parallel than otherwise. So the cosine

between the 2 vectors would be nearer to one. Making the

belief that 2 documents with a same distribution of words

are similar (which we all know to be an inexact statement!)

the VSM approach find their similarity by taking cosine of the

document vectors as the measure. Clearly documents that

don’t share several words would be thought about dissimilar

duirng this model – once again an inexact conclusion to

create. Let us consider few examples so we are clear about

this.

Example:

 Take the following three documents in a 7-dimensional
word space:

 Word Space: [‘avoid’, ‘capital’, ‘france’, ‘japan’, ‘letters’,
‘paris’, ‘tokyo’]

 Doc1: Tokyo is the capital of Japan =>d1=[0, 1, 0, 1, 0, 0,
1]

 Doc2: Paris is the capital of France => d2 =[0, 1, 1, 0, 0, 1,
0]

 Doc3: Avoid capital letters => d3 = [1, 1, 0, 0, 1, 0,
0]

A simple count primarily based VSM vector illustration of

every document is shown above as well. The cosine

similarity between any pair of these vectors is equal to (0 +

1*1 + 0 + 0 + 0 + 0 + 0) / (30.5 * 30.5) = 1/3.0. The math is all

correct however we’d have liked to possess gotten higher

similarity between Doc1 & Doc2 so that we could put them

together in a geography bucket while placing the third

somewhere else. But that’s the character of bag-of-words

approach to documents.

A simple count primarily based VSM vector illustration of

every document is shown above as well. The cosine

similarity between any pair of these vectors is equal to (0 +

1*1 + 0 + 0 + 0 + 0 + 0) / (30.5 * 30.5) = 1/3.0. The math is all

correct however we’d have liked to possess gotten higher

similarity between Doc1 & Doc2 so that we could put them

together in a geography bucket while placing the third

somewhere else. But that’s the character of bag-of-words

approach to documents.

 Take an another triplet of documents spanned by a
6-dimensional word space:

http://xplordat.com/2018/01/23/stacks-of-documents-and-bags-of-words/
http://xplordat.com/2018/06/18/reduced-order-models-for-documents/
http://xplordat.com/2018/06/18/reduced-order-models-for-documents/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 557

 Word Space: [‘decent’, ‘good’, ‘honest’, ‘lies’,
‘person’, ‘tell’]

 Doc1: Be honest and decent => d1 = [1, 0, 1, 0, 0, 0]
 Doc2: Be a good person => d2 = [0, 1, 0, 0, 1, 0]
 Doc3: Tell lies => d3 = [0, 0, 0, 1, 0, 1]

The documents do not share any words so their dot products

are all zero, indicating that they are all dissimilar. But again

we would have hoped to have got Doc1 & Doc2 to be more

similar with either being more dissimilar to Doc3. The

upshot from the examples here is that the bag-of-words

based document vectors for assessing similarity and thus

classification thereof can be misleading.

Document Vector with Word Embeddings-In general the

quantity of distinctive words in an exceedingly given

document may be a little, little fraction of the entire number

of distinctive words within the corpus. So the document

vectors are sparse with more zeros than non-zeros. This is a

tangle particularly for neural nets where the quantity of

input layer neurons is the size of the incoming vector. This is

why the embedded word vectors have become common.

The length of the trained word vectors p is in generally
abundant, abundant smaller than the size of the corpus word
space. So the document vectors where the words are
replaced with their lower dimensional vectors are very
shorter – thus providing computational benefits. For
example, the twenty-news document repository has over
sixty thousand unique words. If we use 300-dimensional
word vectors (i.e. p = 300) for every word, we will cut down
the quantity of input neurons by a factor of two hundred,
making it much more competitive to use them in large NLP
tasks.

Sparse to Dense Document Vectors- If each word in a

document has a known illustration in the same p-

dimensional space, then the bag-of-words document vector

is portrayed as a vector in that same p-dimensional space.

We are merely combining the bag-of-words approach with

word embeddings to come back up with lower dimensional,

dense representations of documents. Let us take the instance

1.2 from earlier where we now also have a px1 vector

representation for each of the six words ‘decent’, ‘good’,

‘honest’, ‘lies’, ‘person’, ‘tell’ making up the corpus

vocabulary. The original 6-dimensional document

vector d1 can be rewritten in p-space as a px1 vector d*1

Fig- 4 Vector representation

Generally, with ‘n’ words and ‘m’ documents we can directly

extend the above. First we tend to get word vectors for every

of these n words, so giving us the pxn word-vector matrix W.

The ith document with a vector illustration di in the

standard n-word space is remodelled to the vector d*
i in the

fake p-word-space with:

While it is a computational advantage to have shorter

document vectors, we’d like to create positive that the

documents haven’t lost their meaning and relationships

within the method

3.4 Input and Output

Input: Two short text documents.

Output: It gives similarity score by comparing two short text

documents, dataset used and the parameters used for

evaluation.

4. EXPERIMENTAL RESULTS AND EVALUATION

4.1 Simulation Environment

The implementation of our proposed system was carried out

using the Python 3.5 software running on a personal

computer with a 2.07 GHz Intel (R) Core (TM) I3 CPU, 4 GB

RAM and Windows 10 as the operating system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 558

4.2 Result Analysis

In this model, the system compare the GloVe word

embedding with existing model of LSTM encoder and it

proves it is better than the existing.

Fig- 5 Comparison of LSTM Encoder with GloVe word
embedding

5. CONCLUSION AND FUTURE ENHANCEMENT

Terms of the loss measure between the particular
ascertained frequencies and the expected frequencies.
Whereas GloVe uses the log mean square error between the
expected (unnormalized) probabilities and the actual
observed (unnormalized) probabilities, word2vec uses the
cross-entropy loss over the normalized probabilities. The
GloVe paper argues that log mean squared error is best than
cross-entropy because cross entropy tends to place an
excessive amount of weight on the long tails. In reality, this is
often most likely an issue that desires additional analysis.
The essential thing to grasp is that word2vec and GloVe are
literally virtually mathematically the same, despite having
entirely totally different derivations.

In the future work, we are looking forward to try applying the
proposed method on audio and video. Also, we are looking
forward to enhance the proposed method to make the
similarity rate higher than it while keeping the same GloVe
word embedding or higher.

REFERENCES

[1] Lin Yao, Zhengyu Pan, and Huansheng Ning,

“Unlabeled Short Text Similarity With LSTM
Encoder”, IEEE Trans Special Section On Special
Section On Advanced Big Data Analysis For
Vehicular Social Networks, 2018.

[2] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
M Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada

Mihalcea, et al., Semeval-2015 task 2: Semantic
textual similarity, english, spanish and pilot on
interpretability., SemEval@ NAACL-HLT, 2015, pp.
252–263.

[3] Daniel Bär, Torsten Zesch, and Iryna Gurevych,
Dkpro similarity: An open source framework for
text similarity., ACL (Conference System
Demonstrations), 2013, pp. 121–126.

[4] Kuan-Yu Chen, Shih-Hung Liu, Berlin Chen, Hsin-
MinWang, and Hsin-Hsi Chen, Novel word
embedding and translation-based language
modeling for extractive speech summarization,
Proceedings of the 2016 ACM on Multimedia
Conference, ACM, 2016, pp. 377–381.

[5] Christian Hänig, Robert Remus, and Xose De La
Puente, Exb themis: Extensive feature extraction
from word alignments for semantic textual
similarity., SemEval@ NAACL-HLT, 2015, pp. 264–
268.

[6] Athiwaratkun, B., Wilson, A., & Anandkumar, A.
(2018). Probabilistic FastText for multisense word
embeddings. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1-11.
Association for Computational Linguistics.

[7] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T.
(2017). Enriching word vectors with subword
information. Transactions of the Association of
Computational Linguistics, 5 (1), 135-146.

[8] Gamallo, P., & Pereira-Fari~na, M. (2017).
Compositional semantics using feature-based
models from wordnet. In Proceedings of the 1st
Workshop on Sense, Concept and Entity
Representations and their Applications, pp. 1-11,
Valencia, Spain. Association for Computational
Linguistics.

[9] Khodak, M., Risteski, A., Fellbaum, C., & Arora, S.
(2017). Automated WordNet construction using
word embeddings. In Proceedings of the 1st
Workshop on Sense, Concept and Entity
Representations and their Applications, pp. 12-23.

[10] Lee, G.-H., & Chen, Y.-N. (2017). Muse:
Modularizing unsupervised sense embeddings. In
Proceedings of EMNLP, Copenhagen, Denmark.

