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Abstract - Word embedding are word representations in 

the form of vectors that allow to maintain certain semantic 

information of the words. There exist different ways of taking 

profit of the semantic information the words have, as there 

exist different ways of generating the word vectors that 

represent those words (e.g. Word2Vec model vs. GloVe model). 

By using the semantic information the word embedding 

capture, we can build approximations to compare semantic 

information between phrases or even documents instead of 

words. In this project, we propose the use of the GloVe tool, 

presented by Stanford University, to train word embedding, 

use them to compare semantic differences between phrases 

and compare the accuracy of the system with previous leads to 

that alternative models were used, for instance, Word2Vec. 

Key Words: GloVe word embedding; Bag of words; 
Semantic Similarity; Co-occurrence matrix; Value Stream 
Mapping(VSM). 
 

1. INTRODUCTION  
 
Computational Linguistics (CL) is the field of Computer 

Science that aims to model the human natural language in 

order to automatically treat digital text to accomplish an 

innumerable amount of tasks that are related to text 

processing, analysis, synthesis, and calculations of text 

characteristics that are involved in other problems, such as 

semantic parsing, text similarity, answer selection, etc. 

Generally, every problem is related to some sort of linguistic 

representation, ideally, digital text from the view of CL. 

Atomic pieces make up a text, known as words. Practically, a 

word is the linguistic unit, that generally possesses an 

intrinsic meaning (i.e. it expresses something) that grouped 

in conjunction with other words by following a set of 

grammatical rules, makes a sentence, building a more 

complex idea. Technically, in text, a word is a set of 

characters delimited by a blank space or a punctuation mark. 

As in every other Computer Science field, all data to be 

processed must first become encoded in order to be 

understandable by the computer. In the case of CL, there are 

several ways of encoding words, depending on several 

factors, that have relative advantages and disadvantages. For 

example, we can represent a text with a Bag of Words (BoW) 

model: in this case, the words take the shape of a bit, that can 

have the value of 0 or 1 depending on the presence of that 

word in the text. Nevertheless, one of the potential 

downsides of the BoW model is that it does not capture the 

meaning of the words since it only takes into account if that 

word appears in a given text. Representation of words 

known as word embedding is the another example, more 

related to this project. Word embedding are n-dimensional 

vectors of real values that are built with a large corpus of 

plain text. One of the main characteristics of word 

embedding that make it special is the capability of keeping a 

relative meaning of the words, and that has opened up a 

whole world in text representation and processing. There 

are way more than two methods for estimating continuous 

representations of words; a couple of well-known classic 

examples are Latent Semantic Analysis (LSA) and Latent 

Dirichlet Allocation (LDA). However, the most drawback of 

this ways is that the high process value, since they need to be 

calculable from an oversized corpus, and therefore the 

operations created so as to estimate the vectors are not 

scalable enough. That is the reason for the popularity of 

Word2Vec models. In this paper of 2013, Mikolov et al. 

presented a novel efficient way of calculating continuous 

word vector representations and developed software that 

implemented the models that are explained in their paper, 

giving to the scientific community a valuable tool to keep 

investigating on word embeddings. From that time, other 

efficient methods of unsupervisedly estimating word vectors 

have grown in the scientific community, and one of the most 

famous is GloVe, that stands for Global Vectors. 

2. LITERATURE SURVEY 
 
2.1 Survey on LSTM encoder for finding short text 

similarity 

Lin Yao proposed an LSTM encoder for finding text 

similarity. The proposed work conduct experiments on 2 

dataset: MSR Paraphrase Corpus dataset and Quora QR 

dataset. They give different lengths of short text.In training 

process, autoencoder uses inception module to get lot of 

features from multiple dimensions and it improves LSTM cell 

to know about the word sequence information of short texts 
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and choose to forget the information gained before. The 

vectors of short texts is the output of encoder. In evaluating 

stage cosine distance is used to calculate short text 

similarity.The proposed system requires only unlabelled 

short text data. 

2.2 Survey on Semantic text similarity for English 

and Spanish text 

Eneko Agirre proposed a system that includes two snippets 

of text. Semantic textual similarity (STS) captures the notion 

that some text are more similar than others by measuring 

the texts degree of semantic equivalence. STS aims to create 

a unified framework for combining several semantic 

components. The System includes three subtask i.e English, 

Spanish and interpretable subtask. The English subtask 

dataset consists of pairs of sentences from new headlines 

(HDL), image descriptions (Images), and a pair from a 

committed belief dataset. The Spanish subtask follows the 

same method like English subtask except that the similarity 

scores were adapted to fit a range from zero to four. This 

task introduces explanatory layer for finding the similarity. It 

contains a pair of sentences, system aligns the chunks across 

both the sentences and also for every alignment, it classify 

the type of relation and gives the corresponding similarity 

score. 

2.3 Survey on open source framework for text 

similarity 

Daniel Bar proposed a system that is designed a framework 

designed to streamline to the development of text similarity. 

For text processing, UIMA based pipeline is used in which 

the words are tokenized by using corpus reader and the data 

combined in different ways and is preprocessed in which the 

stop words and symbols are removed and abbreviation are 

expanded. Then the text similarity is computed among the 

given input texts and similarity score is given for each test. 

This is done by using various models such as greedy string 

tiling, Double metaphonic and explicit semantic analysis. 

With the help of the estimated similarity score, the post 

processing of the scores is done and the text similarity is 

detected. 

2.4 Survey on Novel word embedding and 

translation-based language modeling for extractive 

speech summarization 

Kuan –yu chen proposed a system that formulate a 

translation based language modeling framework for 

extractive speech summarization. Two sets of word 

representations namely desired word representations and 

separate context word representations is used for 

embedding the words. The language modelling for extractive 

speech summarization for which each sentence of a spoken 

document, the sentences are selected based on 

corresponding generative probability. In this way the words 

from two different representations are embedded by using 

TBLM method. 

2.5 Survey on Extensive feature extraction from 
word alignments for semantic textual similarity 
 
Christian Hanig proposed an extensive feature extraction 

method for semantic textual similarity which focuses on 

categories of alignments such as named entities, temporal 

expressions, measurement expressions and dedicated 

negation handling. Here the word tokenization is done which 

is the splitting of words and word lemmatization is 

performed. After that elongation of words is replaced and 

the clitics are replaced. In named entities, the main name and 

surname are combined and aligned. Normalized temporal 

expressions aligns words with same time interval. 

Measurement expressions aligns words that express same 

absolute value. Arbitrary token sequence ignores case 

information, punctuations and symbols. Negations aligns the 

two words that has straight negative tokens each other and 

the remaining content words are grouped together. Then the 

features of the words are extracted by using defined score 

based on alignment process. 40 features were extracted and 

then it is divided into non- alignment features and alignment 

features. Then the extracted features is trained and tested 

against the English and Spanish data. 

2.6 Survey on Probabilistic FastText for multisense 

word embeddings 

Piotr Bojanowski proposed a system to enrich word vectors 

which is a morphological word representations. Given a 

word vocabulary of size W where a word is identified by its 

index w. here the morphology is modeled by considering 

subword units and the words are represented as the sum of 

its character n-grams. For a word at a particular position, 

both positive and negative samples are randomly selected. 

But for a context position, only one possible choice is given. 

The skipgram model ignores the internal structure of words 

by using a distinct vector representation of each word. A 

special boundary symbols < and > is included to distinguish 

prefixes and suffixes. Thus this model allows the 

representation of the words which also allows to represent 

rare words. 
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3. OVERVIEW OF THE PROPOSED SYSTEM 
 
 3.1 Problem Definition 
 
The objective of this project is to determine and prove 

whether a system using word embeddings generated with 

GloVe can perform better than state-of-the-art systems that 

use the collection of modelsWord2Vec to build the word 

vector representations for their final use in the field of text 

similarity. We compare these two methods (GloVe and 

Word2Vec) in many ways in order to find which aspects of 

the word embeddings are totally different for the task of 

semantic text similarity. After analyzing the results, we also 

aim to use the currently generated word embeddings with 

GloVe in several different ways to improve the performance 

of our model. 

3.2 System Model  
 
Pre-trained word embeddings area unit a staple in deep 

learning for NLP. The Renowned word2vec is the pioneer of 

word embeddings in mainstream deep learning. GloVe is 

another commonly used method of obtaining pre-trained 

embeddings. Unfortunately, there are very few practitioners 

that appears to truly perceive GloVe; several simply think 

about it “another word2vec”. In reality, GloVe is a much 

more principled approach to word embeddings that provides 

deep insights into word embeddings in general. 

 
 

Fig- 1 Architecture Diagram for Short-text Semantic 
Similarity using GloVe word embedding 

3.3 Modules Description 

3.3.1 Text Pre-Processing 

The ‘Bag of Words’ model was a very important insight that 

created NLP thrive. This model consists on receiving a listing 

of labelled text corpora, creating a word count calculate every 

corpus and determining with what quantity frequency every 

word (or morpheme to be more precise) appears for every 

given label. After that, the Bayes’ Theorem is applied on an 

unlabeled corpus to check that label (a sentiment analysis 

that labels between positive and negative, perhaps) it has a 

greater probability of belonging to, based on morpheme 

frequencies. 

Even though good (>90%) check scores may be achieved with 

this methodology, it’s a pair of problems: 

1. Syntactic and semantic accuracy isn’t as high as it should 
because of the fact that context is king. For example; 
‘Chicago’ means one thing and ‘Bulls’ means another, but 
‘Chicago Bulls’ means a completely different thing. 
Counting word-frequencies doesn’t take this into 
account. 
 

2. For more practical use cases, we need to understand that 
data in real-life tends to be unlabeled, therefore passing 
from a supervised to an unsupervised learning method 
yields a greater utility. 

 
3.3.2 Co-occurrence matrix 

To build a co-occurrence matrix, GloVe additionally takes 

native context into account by computing the co-occurrence 

matrix employing a fixed window size (words are deemed to 

co-occur once they seem together within a fixed window). 

For instance, the sentence “The cat sat on the mat” with a 

window size of  two would be converted to the co-

occurrence matrix. Notice however the matrix is symmetric: 

this can be as a result of once the word “cat” seems within 

the context of “sat”, the opposite (the word “sat” appearing 

in the context of”cat”) also happens. 

 

Fig- 2 Co-occurrence matrix table 

The important principle behind GloVe can be defined as 

follows: the co-occurrence ratios between two words in a 

context are strongly connected to meaning. This sounds 
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tough however the thought is admittedly easy. Take the 

words “ice” and “steam”, for instance. Ice and steam dissent 

in their state however they are similar in this they’re both 

forms of water. Therefore, we would expect words related to 

water (like “water” and “wet”) to appear equally in the 

context of “ice” and “steam”. In distinction, words like “cold” 

and “solid” would in all probability seem close to   “ice” but 

however wouldn’t seem close to “steam”.The following table 

shows the particular statistics that show this intuition well: 

 

   Fig- 3 Probability and ratio table 

The probabilities shown are basically just counts of how 

frequently the word  seems when the words “ice” and 

“steam” are in the context, where  refers to the words 

“solid”, “gas”, “water”, and “fashion”. As you can see, words 

that are related to the nature of “ice” and “steam” (“solid” 

and “gas” respectively) occur far more often with their 

corresponding words that the non-corresponding word. In 

distinction, words like “water” and “fashion” which are not 

particularly related to either have a probability ratio near 1. 

Note that the probability ratios is computed simply by using 

the co-occurrence matrix. 

From here on, we’ll need a small of mathematical notation to 

create the reason easier. We’ll use  to refer to the co-

occurrence matrix and to refer to the  th element 

in  which is equal to the number of times word  appears 

in the context of word . We’ll also define  to 

refer to the total number of words that have appeared in the 

context of .  

3.3.3 Document level similarity using GloVe vector  

Document vector- In the VSM approach a document is 

delineated as a vector in word space. An element in the 

vector could be a measure (simple frequency count, 

normalized count, tf-idf, etc..) of the importance of the 

corresponding word for that document.  We have gone over 

the mechanics of this in nice detail and therefore the made 

analysis that this approach makes attainable in our earlier 

posts – Stacks of Documents and Bags of Words and Reduced 

Order Models for Documents. 

If 2 documents contain nearly identical distribution of 

words, the vectors they furnish rise to in the word space 

would be lot of parallel than otherwise. So the cosine 

between the 2 vectors would be nearer to one. Making the 

belief that 2 documents with a same distribution of words 

are similar (which we all know to be an inexact statement!) 

the VSM approach find their similarity by taking cosine of the 

document vectors as the measure. Clearly documents that 

don’t share several words would be thought about dissimilar 

duirng this model – once again an inexact conclusion to 

create. Let us consider few examples so we are clear about 

this. 

Example: 

 Take the following three documents in a 7-dimensional 
word space: 

 Word Space: [‘avoid’, ‘capital’, ‘france’, ‘japan’, ‘letters’, 
‘paris’, ‘tokyo’] 

 Doc1: Tokyo is the capital of Japan =>d1=[0, 1, 0, 1, 0, 0, 
1] 

 Doc2: Paris is the capital of France => d2 =[0, 1, 1, 0, 0, 1, 
0] 

 Doc3: Avoid capital letters                => d3 = [1, 1, 0, 0, 1, 0, 
0] 

A simple count primarily based VSM vector illustration of 

every document is shown above as well. The cosine 

similarity between any pair of these vectors is equal to (0 + 

1*1 + 0 + 0 + 0 + 0 + 0) / (30.5 * 30.5) = 1/3.0. The math is all 

correct however  we’d  have liked to possess gotten higher 

similarity between Doc1 & Doc2 so that we could put them 

together in a geography bucket while placing the third 

somewhere else. But that’s the character of bag-of-words 

approach to documents. 

A simple count primarily based VSM vector illustration of 

every document is shown above as well. The cosine 

similarity between any pair of these vectors is equal to (0 + 

1*1 + 0 + 0 + 0 + 0 + 0) / (30.5 * 30.5) = 1/3.0. The math is all 

correct however  we’d  have liked to possess gotten higher 

similarity between Doc1 & Doc2 so that we could put them 

together in a geography bucket while placing the third 

somewhere else. But that’s the character of bag-of-words 

approach to documents. 

 Take an another triplet of documents spanned by a 
6-dimensional word space: 

http://xplordat.com/2018/01/23/stacks-of-documents-and-bags-of-words/
http://xplordat.com/2018/06/18/reduced-order-models-for-documents/
http://xplordat.com/2018/06/18/reduced-order-models-for-documents/
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 Word Space: [‘decent’, ‘good’, ‘honest’, ‘lies’, 
‘person’, ‘tell’] 

 Doc1: Be honest and decent => d1 =   [1, 0, 1, 0, 0, 0] 
 Doc2: Be a good person         => d2 =   [0, 1, 0, 0, 1, 0] 
 Doc3: Tell lies                           => d3 =   [0, 0, 0, 1, 0, 1] 

 
The documents do not share any words so their dot products 

are all zero, indicating that they are all dissimilar. But again 

we would have hoped to have got Doc1 & Doc2 to be more 

similar with either being more dissimilar to Doc3. The 

upshot from the examples here is that the bag-of-words 

based document vectors for assessing similarity and thus 

classification thereof can be misleading. 

Document Vector with Word Embeddings-In general the 

quantity of distinctive words in an exceedingly given 

document may be a little, little fraction of the entire number 

of distinctive words within the corpus. So the document 

vectors are sparse with  more zeros than non-zeros. This is a 

tangle particularly for neural nets where the quantity of 

input layer neurons is the size of the incoming vector. This is 

why the embedded word vectors have become common. 

The length of the trained word vectors p is in generally 
abundant, abundant smaller than the size of the corpus word 
space. So the document vectors where the words are 
replaced with their lower dimensional vectors are very 
shorter – thus providing computational benefits. For 
example, the twenty-news document repository has over 
sixty thousand unique words. If we use 300-dimensional 
word vectors (i.e. p = 300) for every word, we will cut down 
the quantity of input neurons by a factor of two hundred, 
making it much more competitive to use them in large NLP 
tasks. 

Sparse to Dense Document Vectors- If each word in a 

document has a known illustration in the same p-

dimensional space, then the bag-of-words document vector 

is portrayed as a vector in that same p-dimensional space. 

We are merely combining the bag-of-words approach with 

word embeddings to come back up with lower dimensional, 

dense representations of documents. Let us take the instance 

1.2 from earlier where we now also have a px1 vector 

representation for each of the six words ‘decent’, ‘good’, 

‘honest’, ‘lies’, ‘person’, ‘tell’ making up the corpus 

vocabulary. The original 6-dimensional document 

vector d1 can be rewritten in p-space as a px1 vector d*1  

 

Fig- 4 Vector representation 

Generally, with ‘n’ words and ‘m’ documents we can directly 

extend the above. First we tend to get word vectors for every 

of these n words, so giving us the pxn word-vector matrix W. 

The ith document with a vector illustration di in the 

standard n-word space is remodelled to the vector d*
i in the 

fake p-word-space with: 

 

While it is a computational advantage to have shorter 

document vectors, we’d like to create positive that the 

documents haven’t lost their meaning and relationships 

within the method 

3.4 Input and Output 

Input: Two short text documents. 

Output: It gives similarity score by comparing two short text 

documents, dataset used and the parameters used for 

evaluation. 

4. EXPERIMENTAL RESULTS AND EVALUATION 

4.1 Simulation Environment 

The implementation of our proposed system was carried out 

using the Python 3.5 software running on a personal 

computer with a 2.07 GHz Intel (R) Core (TM) I3 CPU, 4 GB 

RAM and Windows 10 as the operating system.  
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4.2 Result Analysis 

In this model, the system compare the GloVe word 

embedding with existing model of LSTM encoder and it 

proves it is better than the existing. 

 

Fig- 5 Comparison of LSTM Encoder with GloVe word 
embedding 

5. CONCLUSION AND FUTURE ENHANCEMENT 

Terms of the loss measure between the particular 
ascertained frequencies and the expected frequencies. 
Whereas GloVe uses the log mean square error between the 
expected (unnormalized) probabilities and the actual 
observed (unnormalized) probabilities, word2vec uses the 
cross-entropy loss over the normalized probabilities. The 
GloVe paper argues that log mean squared error is best than 
cross-entropy because cross entropy tends to place an 
excessive amount of weight on the long tails. In reality, this is 
often most likely an issue that desires additional analysis. 
The essential thing to grasp is that word2vec and GloVe are 
literally virtually mathematically the same, despite having 
entirely totally different derivations. 

 
In the future work, we are looking forward to try applying the 
proposed method on audio and video. Also, we are looking 
forward to enhance the proposed method to make the 
similarity rate higher than it while keeping the same GloVe 
word embedding or higher.    
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