
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 692

Testing Uncertainty of Cyber-Physical Systems in IoT Cloud

Infrastructures: Combining Model-Driven Engineering and

Elastic Execution

Ms. A. Sivasankari., Mrs. N. Sindhuja., Mr .D.B. Shanmugam

1Head of the department, Department of Computer science, DKM College for Women (Autonomous), Vellore.
2Research scholar,Department of Computer Science, DKM College for Women (Autonomous), Vellore, TamilNadu.

3Headof the Department(MCA), Sri Balaji Chockalingam Engineering College, Arani, TamilNadu.
--***---
Abstract - -Today’s cyber-physical systems (CPS) span IoT
and cloud-based datacenter infrastructures, which are highly
heterogeneous with various types of uncertainty. Thus,
testing uncertainties in these CPS is a challenging and
multidisciplinary activity.We need several tools for
modelling, deployment, control, and analytics to test and
evaluate uncertainties for different configurations of the
same CPS.In this paper, we explain why using state-of-the art
model-driven engineering (MDE) and model-based testing
(MBT) tools is not adequate for testing uncertainties of CPS
in IoT Cloud infrastructures. We discuss how to combine
them with techniques for elastic execution to dynamically
provision both CPS under test and testing utilities to perform
tests in various IoT Cloud infrastructures. Ccs Concepts(1)
Computing methodologies→Model development and
analysis;(2) Computer systems organization.

KEYWORDS: Testing, Elasticity, Uncertainty, IoT, Cloud,
MDE, MBT

1. INTRODUCTION:

Cloud computing is adopting significance in the current
technology. Due to the advent in the communication
technology, any objects can get connected with any other
objects. This is the era of where the things speak instead of
livings humans. This technology has been termed as Internet
of Things (IoT). For IoT to speak, there is a need of powerful
essential network infrastructure that is Internet. This is in
turn prone to physical threats in the cloud network. IoT is an
integrated part of future Internet and can be defined as a
dynamic global network infrastructure with self-configuring
capabilities based on standard and interoperable
communication protocols where physical and virtual
“things” have identities, physical attributes, and virtual
personalities and use intelligent interfaces, and are
seamlessly integrated into the information network .

 The continuous growth of the urban population has
generated a tremendous expansion of our cities.Nowadays,
indeed, more than 50 % of the world’s population is living
urban, and they estimate that it will reach 70% by the year
2050. Therefore, cities need to be ready to accommodate this
huge amount of citizens and to face new challenges like
traffic congestion, air pollution, waste management and so

on. Majority of the IoT companies included are Amazon,
CISCO, MS Azure, Salesforce, Oracle and much more. IoT is
the integration of multiple heterogeneous networks. It is
difficult to establish the junction of relationship as the
relationship of trust between nodes that are constantly
changing. Security has become a serious aspect of IoT
because of the inclusion of the latest technologies and
various applications to enormous users.

1. IOT Cloud model

2. IOT AND CLOUD INTEGRATION MODELS:

2.1 Developers Of Iot Cloud Platforms Can Have Varying
Goals:

Goal 1: developers might need only to develop IoT elements
(e.g., sensors, actuators and gateways) for a customer and to
connect these IoT elements to existing cloud services. In this
case, they might just want to develop and test a set of
sensors that can be deployed into certain gateways sending
the data to public cloud services.

Goal 2: developers focus on only cloud services at data
centers that serve IoT elements. Typically they focus on a set
of complex cloud services, e.g., for data storage, complex
event processing, and data analytics.

Goal 3: developers want to design and test a complete IoT
cloud platform for a customer. They, therefore, focus on both
IoT elements and cloud services and on how to coordinate
them in a united view for the customer. Numerous works
support the development of either the IoT part or the cloud

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 693

services for IoT . However, there is a lack of tools and
discussions for the development and operations of the last
goal.

Goal 4. We focus on supporting developers to concentrate on
Goal 3, which is complex but of paramount importance for
several customers, e.g., predictive maintenance of
equipment, on-demand crowd sensing for safe cities, and
sports events. For such platforms, we must deal with
deferent engineering principles outlined.

2.2 Development In Distributed Iot And Cloud Systems

As the IoT cloud platform is complex, it is expected that
during the development, components of the platform must
be able to deploy in multiple IoT and cloud systems.

For this, we must have a set of connectors allowing the
developer access to clouds and IoT systems so that the
developer can deploy testing infrastructures and run tests
across clouds and IoT septic systems. We also need to deal
with different mechanisms of controlling virtual resources
and different performance settings (e.g., expected time for
allocating a resource, ex-pected performance for each
resource).

As discussed in the related work most tools either enable IoT
deployment or cloud deployment; even many industrial
cloud systems support IoT and cloud and enable their
integration, these systems support Goal 1 and Goal
2.Moreover, at runtime, both IoT elements and cloud
services need to be controlled, monitored, and analyzed in a
coordinated manner.

While throughout the development lifecycle the developer
would need mechanisms to emulate sensors and gateways in
the heterogeneity of different clouds, in a production
environment we have to do an end-to-end control of cloud
services and gateways deployed across IoT networks and
clouds.

Fig 2:IOT AND CLOUD INTEGRATION MODELS

This has to be done in a uniform manner, and most of the
times control on one end of the IoT cloud platform would the
control on the other end (e.g., deploying new data processing
services on the gateway would change the characteristics of
the load on cloud software services).As discussed in the
related work, this feature is missing in most toolsets.

3 .OVERVIEW OF ICOMOT

To support Goal 3 in multi-IoT and -cloud environments, we
design, develop and experience different tools and
engineering actions to address two different main issues: (I)
to provide main software components which are software-
defined services, deployable and to support easy
,deployment, control, and monitoring in a united manner.

To achieve the point, we base on two main emerging
research directions:

1. software-defined IoT units: sensor and gateway
components are considered as units that can be composed
and controlled via software-defined APIs.

2. cloud-based elastic services: they are common cloud
services by different providers. To enable the elasticity, some
services will be associated with elasticity capabilities. To
achieve the second point, we build a toolset to enable
elasticity control developments. The describes how we
leverage our existing tools and our engineering actions to
develop IoT cloud platforms. Cloud providers and third-
party developers can design and provide several
components and services that will available through
PaaS/IaaS and public repositories/marketplaces. A
developer will utilize these services and components and to
develop her/his own services and components.

Then can utilize various tools to support service deployment,
configuration, analytics and control to test and evaluate
her/his designs. To this end, we have demonstrated the
iCOMOT framework to support the developer to develop and
test different configurations and runtime behaviours of IoT
cloud systems. Icomot
(http://tuwiendsg.github.io/iCOMOT/) includes several
individual research tools for configuring, deploying,
monitoring and controlling IoT cloud platforms, such as
SYBL, SALSA, MELA . We connect several common
repositories and together with these tools to support
automation of IoT cloud platform configurations
deployment. Furthermore, several sensors with data sets are
also provided. The following sections, we will explain main
insightful engineering actions, designs and experiences.

4 DESIGN AND ENGINEERING ACTIONS

4.1 Software components for IoT cloud platforms

IoT Units and Cloud Services Repository Requirements:
Existing cloud APIs already allow us to invoke suitable cloud

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 694

services at data centers and to emulate execution
environments (e.g., lightweight virtual machines for
emulated IoT gateways). However, they do not support the
IoT side well, such as, modelling, configuring, deploying and
testing different types of sensors, gateway software
components, and libraries for cloud connectivity.

Solutions: To model and capture IoT unit capabilities and
configuration with software artifact, we leverage the concept
of IoT cloud units to successfully model suitable IoT
resources and enable some useful behaviours, such as
dynamically changing communication protocols between IoT
gateways and cloud services at runtime. As IoT units can be
provided by different developers and providers, we support
access to different component repositories for existing
IoTunits, such as gateways execution environment, virtual
network routers and communication protocols for cloud
connectivity.

These repositories can be leveraged by well-developed
technologies, such as Docker Hub, Git-based repositories and
Maven, and IoT marketplaces.

Software Sensors Requirements: One important type of
IoT software units are sensors. For development and testing,
it is crucial to have emulated sensors whose behaviour is
similar to real sensors but with advanced features to allow
us to easily control the sensors. An emulated sensor just
takes time series datasets,e.g., obtained from industrial real
systems, and simulates events by sending them to gateways.
By leveraging different real datasets, we can instantiate
different sensors by configuring these instances with
different sample data and behaviour models. With this way,
we can emulate GPS, energy consumption, temperature
sensors,chiller's operational status, etc., for different types of
IoT cloud
platforms.

Solutions: In our framework, the developer can develop
her/his real sensors or emulated sensors then deposit them
into the repository from which they can be deployed into IoT
cloud platforms. To support rapid development of the IoT
side, one important issue is to have simulated sensors as
executable that can be deployed at a very large-scale in
multi-cloud environments to simulate real situations, e.g.,
monitoring chillers in a city, in IoT cloud platforms.

We also enable the users to modify configurations while the
sensors are running, for simulating different workloads or
for testing their application under various out-of-the
ordinary circumstances (e.g., _re at a location). The
developer can also design topologies of different sensors for
better management and reuse. In production scenarios of an
IoT cloud platform, sensors will be physically distributed at
different places, while, in simulations and tests, sensors are
deployed in different VMs, OS containers, lightweight
machines like Raspberry Pi, or cloud datacenters.

To enhance interoperability and reusability of possible
sensor architectures, we present the topologies of sensors by
well-known description languages, such as TOSCA for the
deployment and control process.

Software-defined Gateways Requirements: In certain IoT
cloud platforms, sensors can directly connect to cloud
services. However, in our experience, very often gateways
are needed as intermediate nodes for handling different
types of sensoring data and connectivities. We consider and
support gateways as an-other type of IoT
software/hardware units. Gateways are much more complex
than sensors. For example, gateways can store information
and execute some lightweight components to process
sensoring data in the cloudlets model.

Solutions: From the architecture design perspective, we
develop and provision gateways functionality by using our
concept of software-defined IoT units.Generally, a software-
defined gateway consists of a set of dependent IoT units
deployed in a virtualized environment, e.g. Centos or Docker.
These IoT units are responsible for managing data streams,
controls of actuators, cloud connectivity and lightweight data
storage and processing.

The key point of a software defined gateway is that it enables
dynamic deployment and configuration of IoT units to
handle data, control and connectivity in the IoT systems.
This enables the developer to implement IoT-side
distributed data processing, such as pre-processing data in
gateways and splitting streams, i.e., sending events to
multiple cloud services. Cloud Services for IoT
Requirements: At data centers, both cloud services and
custom-built software components can be used for building
the IoT cloud platform.Main cloud providers, such as
Amazon EC2 Windows Azure.

However, it is challenging to combine and use such services
in a coordinated mode with IoT elements, for example, to
enable the elasticity coordination between IoT sensors and
cloud services for data processing. Focusing on elastic
software components, we enable developers to employ a
series of o_-the-shelf software components in building their
elastic platforms.

4.2 Deployment, Control, and Monitoring Actions

Deployment Requirements: The developer has to deploy
components of IoT cloud platforms very often in order to
study and test them. Generally, a deployment service will
have to deal with both IoT and cloud service sides. We need
the deployment of different types of services and manage
from single components to the entire platform configuration
at runtime. Therefore, the developer has to prepare at set of
deployment artefacts in the repository including the dataset,
configuration script, software artefacts. The APIs and
information for accessing cloud infrastructures must also be
prepared.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 695

We witnessed that these complex tasks cannot be done by a
single tool, but multiple tools and connectors to different
clouds, orchestrated by a centralized service.For the
application provider who just want to deploy the services or
sensors, a description tool with GUI that hides the low-level
information is more convenient. With an end-to-end aspect,
the deployment needs to cope with different levels of
deployment, including requesting cloud provider resources,
configuring virtual machines, middleware and dependencies,
and deploying artefacts.

Elasticity Analytics Requirements: For analyzing the
elasticity change of the IoT cloud platform (e.g., scaling
in/out cloud services and sensor instances), elasticity
analytics will be deployed at different parts of the platform
to provide different performance and elasticity metrics. An
elastic IoT cloud platform would have elasticity
requirements defined over its components, based on which
intelligent controllers can analyze its behaviour and take
appropriate actions. Due to the potential complexity of IoT
cloud platforms, the developer might not know such
requirements for all platform components, especially
reacting the dependencies between the IoT part and the
cloud part. For example, a developer might not understand
the cloud storage performance required to the requirement
of activating more sensors.

Solutions: To custom IoT cloud platform-specific analytics,
we follow two different approaches: (I) bottom-up: common
built-in metrics are structured and analyzed automatically,
providing an overview over the platform's elasticity, and
(ii)top-down: the platform developer can define custom,
potentially domain-specific, metrics and analytics functions.
Thus, we provide a complete end-to-end view over
behavioural limits of the platform to enable the developer to
redefine the platform, and improve its control strategies.
Especially, it is crucial to defined an analytics function,
which, based on supplied requirements, records
encountered bounds on the monitored metrics not targeted
by user requirements, in which the developer requirements
were respected.

Elasticity Control Requirements: We need to enable elasticity
for various parts of the IoT cloud platforms, such as sensors,
gateways and cloud services, during the development and
operation. This means that elasticity control mechanisms
and tools must work across sub-platforms for design, test
and operation purposes and must interface various
protocols (e.g., REST, RMI, ssh + bash execution) used to
change software components. Moreover, most developers
would be interested in specifying abstract, high-level
requirements (e.g., not focused on system-level metrics,
controlling the software service as a whole).

Solutions: For sensors, developers could control the
behaviour of sensors (e.g.,data reading frequency), to which
gateway a sensor connects as well as the protocols between
by gateways and sensors. At gateways, developers could

control the number of sensor connections, the amount of
data which is stored locally considering various constraints
(e.g., the gateway has very limited computational power,
memory and space). Moreover, we can add/remove various
components for locally processing information, or change
their sensitivity. For cloud services in an IoT cloud platform,
we can support various known control mechanisms:
(I)virtual infrastructure capabilities (e.g., add/remove
virtual machines, network interfaces, disks), (ii) platform
specific capabilities (e.g., start/stop web
server,deploy/undeploy service in existing web server), or
(iii) application-specific (e.g.,using API o_ered by cloud
services developers). Capabilities. Each of these can be
enforced separately or grouped into complex control
processes. However, elasticity setup cannot be completely
automated, and completely application-independent. In case
developers need more advanced elasticity control, they can
encapsulate them into their application specific control
mechanisms (e.g., use aweb server deploy together with a
new configuration, to result into other performance/cost
characteristics). For controlling elasticity, we enable
interaction based control to empower the developers with
their control strategies,considering the evolution of the
service at runtime.

5. EXPERIMENTS

5.1 Case Studies

Let us consider a scenario in which a predictive maintenance
company would like to focus on predictive analytics for
chillers in a city. The company wants to reuse/rent as much
as possible IoT cloud infrastructures so that the company
will focus on deploying its sensors, gateways, and cloud
services. Both sensors, gateways and cloud services establish
the company's IoT cloud platform. The IoT cloud platform
includes gateways at the IoT part and cloud services at the
data center. All of them are virtualized services, meaning
that they can be deployed, configured and used on-the-way.

The predictive maintenance company will need features
from the IoT cloud platform provider, which provides the
right configuration of the IoT cloud platform for the
predictive maintenance company. The IoT cloud platform
can over features for a predictive maintenance company
which monitors chillers and perform data analytics and
maintenance tasks. In this case study, we will focus on the
case the predictive maintenance company wants to buy
services from an IoT cloud platform provider to create
aconfiguration of its own elastic IoT cloud platform. Then the
company develops and tests different sensors which connect
to its elastic IoT cloud platform to have a complete system
for gathering data to support data analytics1.

5.2 DEVELOPMENT AND DEPLOYMENT

First all of all, to make the (re)configuration of the IoT cloud
platform, using our tool, the predictive maintenance

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 696

company can deploy two separate configurations: a
configuration of the IoT sensors and gateways(A), and
another of the cloud data center (B). This enables them to
play with different sensors easily regarding data and
topology, communication protocols, bursting workload,
while the cloud services might be stable. For both
configurations, IoT units and cloud services are provided
from different providers from various repositories. The
example of two topologies of sensors on two VMs, which
allows the developer to manage single sensors and sensor
topologies2 (and VM which host sensors insimulation
scenarios). the deployment of an elastic IoT configuration
platform named ElasticIoTPlatform at the data center to
real cloud services and simulated gateways. With our
techniques, such configurations (for sensors and for
gateways/services) can be also programmed using Java code,
enabling different ways to program and test IoT cloud
platforms.

Having the entire IoT platform is provisioned, the company
focuses on Monitoring(1)). Before provisioning, platform
developers must have in mind what monitoring data is
relevant for the elasticity of the platform, and implement the
necessary monitoring capabilities. A crucial factor in elastic
platforms is that instances of units tend to appear/disappear
dynamically at run-time as a result of scaling actions being
enforced due to various elasticity requirements(e.g.,
platform performance, quality, cost).

Thus, the company wants to avoid monitoring information
being lost due to scaling in/out of individual units, and also
to have and overview over the overall behaviour of the
platform units and not only individual unit instances. Thus,
the platform developer must use our tool for deciding the
contribution of a unit instance to the overall behaviour of the
entire platform, or individual units, and structure monitoring
information according to the architecture of the platform.

For example, the developer could decide that CPU usage of
all unit instances must be averaged, and that the network
data transfer. After having the platform deployed and
monitored, the company focuses on the various Governance
processes which must be enforced over the IoT sensors and
gateways, arising from the company's different security, geo-
political, performance objectives. For example, an abnormal
event might be detected by the IoT platform, such as
dangerous gas detected in a smart building. In such a case,
for better analyzing the cause of the event, the frequency and
data collected might need to be changed. For enabling such
dynamic changes, we can invoke sensor and gateway
capabilities through their APIs for changing data collection
frequency, or execute a complex process for changing the
security levels and protocols used to send data.

Leveraging these capabilities, we can enable processes for
governing the gateways and sensors in different situations.
Governance processes might change the frequency, size, and
mechanisms in which sensor data is collected, processed and

sent to the cloud data center. Thus, an Elasticity control
mechanism is crucial for ensuring the performance and
quality of the overall IoT platform, especially during and
after the execution of governance processes, through
elasticity. To enable elasticity control, the platform
developers must design and develop elasticity capabilities
for the individual platform units, wart, their type and
purpose. Any capability that enables dynamic
reconfiguration of any aspect or property of the platform
unit’s qualities as an elasticity capability, and must be
designed and implemented in the platform units, and
enforced at run-time.

For example, if a governance process increases the data
collection frequency, the elasticity control mechanism
should scale the platform to handle the load increase. One
lesson learned is that from architectural design,
development and operation, we need to decide if all of these
complex services, gateways and sensors should be specified
and deployed in a single software configuration or not. It is
possible and it is hard to manage.

On the other hand, from an IoT cloud platform provider
perspective, it is typical to provide a platform that includes
gateways (at the edge) connecting to cloud services (in the
data center) and let the customer to deploy possible sensors
and configure these gateways and services to into the
customer need.

5.3 ELASTICITY ANALYTICS AND CONTROL

After developing the ElasticIoTPlatform configuration, the
developer can use our toolset for deploying and running it.
At runtime, the developer is able to follow the behaviour of
the application using our monitoring features, in order to
redefine the elasticity and governance requirements and
respectively policies. For such a complex use-case, which
encompasses both IoT and cloud environments, there are
two main control perspectives:
 (I) controlling the services deployed in the cloud which
manage data processing and storing, (ii) controls the IoT
parts for addressing the governance policies.

In an emergency scenario, the entire ElasticIoTPlatform
needs to react in order to localize or to better analyze the
cause of the emergency. For this, further data needs to be
collected, for avoiding errors and miss-predictions. a process
described by the developer for addressing such case, in
which the sensor push rate is increased (i.e., due to
governance policy), and the cloud services are allowed to
scale to higher cost levels. The latter is intended to address
the issue of cost limit in the elasticity requirements, as
normally the developer specifies a cloud service cost limit,
for safety reasons.

In a day-to-day case, with an increasing workload the cloud
service would employ more and more virtual resources up to
the cost limit, while in the emergency scenario, the cloud

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 697

service can exceed the respective limit. From our
experiences, we learned that, in our architectural designs,
controlling elasticity of cloud software services should give
powers to developers (e.g., controlling multiple software
services at a Elasticity and governance process for the
ElasticIoTPlatform configuration time, different software
stacks, both system and application level metrics), while
maintaining a simple mechanism of elasticity control
specification. Moreover, this control of gateways or of
sensors, should interface with a variety of tools (e.g.,
different cloud providers, using deferent protocols, different
gateway vendor specific tools), for providing an end-to-end
control of IoT cloud platforms.

5.4 DEPLOYMENT AND FAILURE

Let us consider some aspects related to the use of tools to
evaluate IoT cloud platform deployment. We use our private
DSG Open Stack, Stratus lab LAL public cloud We run our
deployment engine in our private Open Stack with
m1.medium VM (2 CPU and3,750 MB RAM) in the DSG cloud
in order to test deployment issues for sensors and a
configuration of an elastic IoT cloud platform
ElasticIotPlatform.While we deploy ElasticIoTPlatform in
our DSG cloud, we want to emulate several sensors by
deploying them in both clouds where on each m1.small VM
(1CPU, 2GB RAM)3, we deploy 30 sensors. We tested our
studied configuration of an IoT cloud platform by deploying
and activating from 100 to 350 sensors
when we use both clouds we deploy sensors equally in each
cloud).an increasing and varying trend of deployment failure
rates. We can seem that Flexiant has higher software failure
rate by looking the deviation of failure percent of sensors
and VMs, and VM failures are caused by the high number of
concurrent requests on clouds.

6. RELATED WORK

Several challenges of IoT and cloud integration are discussed
intensively .Many IoT platforms have been developed based
on which different added services can be added. Our work is
not about developing a particular IoT cloud platform, but
focusing on techniques accelerating the development of such
platforms. Although experiences have been shared, we have
not seen similar experiences discussing rapid end-to-end
development of elastic IoT cloud platforms. Several
frameworks support the development of IoT. Industrial
tools, such as Predix and Microsoft Azure IoT,also allow us to
write IoT sensors and connect the sensors to cloud services.
Butthey do not support elasticity controls. In our work, we
do not focus on programming IoT sensors but recombine
existing units and deploy them cross-issue spanning both
IoT and clouds.

Such evaluations are useful for us to decide the
infrastructure used for the cloud service part of the IoT PaaS.
However, they have not focused on IoT clouds in general.
The middleware, part of the Opinion platform , which

provides functionality for dynamically adding/removing
sensors to/from an IoT Platform spanning mobile networks
and cloud infrastructures. We do not focus on particular
platforms but we enable such functionality. There are some
approaches on supporting simulation of IoT and IoT cloud
systems. However, they are purely simulation systems, while
we support configuration and testing of emulated sensors
and gateways running in the cloud that interact with real-
world cloud systems.

7 .CONCLUSIONS AND FUTURE WORK

In this paper, we described requirements, toolsets and
engineering analytics for elastic IoT cloud platforms that
simplify and accelerate the development of IoT cloud
platforms, based on our development of the iCOMOT. Given
the complexity of IoT cloud platform development
requirements, it is hard any single, even powerful, toolset
that will meet all the requirements. Therefore, we have to
carry out appropriate engineering actions and also
integrating different tools into our iCOMOT toolset. We show
how utilizing such an integrated toolset we can simplify the
development and and testing of IoT cloud platforms.
Currently, we focus on building a common knowledge of
components, topologies and artifacts for supporting testing
and evaluation of uncertainties in elastic IoT cloud
platforms, in particular, and cyber-physical systems, in
general.

REFERENCES

1. Crowd analytics archives. http://www.dfrc.ch/tag/crowd-
analytics/
2. The controls galaxy,
http://pacificcontrols.net/products/galaxy.html, Last access:
17 May 2016
3. U-test geo sports case study. http://www.u-test.eu/use-
cases/#tab-1429727705-1-5
4. Akpinar, K., Hua, K.A., Li, K.: Thingstore: a platform for
internet-of-things applicationdevelopment and deployment.
In: Eliassen, F., Vitenberg, R. (eds.) Proceedingsof the 9th
ACM International Conference on Distributed Event-
BasedSystems, DEBS '15, Oslo, Norway, June 29 - July 3,
2015. pp. 162{173. ACM(2015)
5. Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S.,
Alelaiwi, A., Hossain, M.A.: A survey on sensor-cloud:
Architecture, applications, and approaches. IJDSN2013
(2013), http://dx.doi.org/10.1155/2013/917923
6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing
and its role in theinternet of things. In: Proceedings of the
First Edition of the MCC Workshop onMobile Cloud
Computing. pp.13{16. MCC '12, ACM, New York, NY, USA
(2012)
7. Botta, A., de Donato, W., Persico, V., Pescape, A.: On the
integration of cloudcomputing and internet of things. In:
Future Internet of Things and Cloud (Fi-Cloud), 2014
International Conference on. pp. 23{30 (Aug 2014)

