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Abstract - -Today’s cyber-physical systems (CPS) span IoT 
and cloud-based datacenter infrastructures, which are highly 
heterogeneous with various types of uncertainty. Thus, 
testing uncertainties in these CPS is a challenging and 
multidisciplinary activity.We need several tools for 
modelling, deployment, control, and analytics to test and 
evaluate uncertainties for different configurations of the 
same CPS.In this paper, we explain why using state-of-the art 
model-driven engineering (MDE) and model-based testing 
(MBT) tools is not adequate for testing uncertainties of CPS 
in IoT Cloud infrastructures. We discuss how to combine 
them with techniques for elastic execution to dynamically 
provision both CPS under test and testing utilities to perform 
tests in various IoT Cloud infrastructures. Ccs Concepts(1) 
Computing methodologies→Model development and 
analysis;(2) Computer systems organization. 
 
KEYWORDS: Testing, Elasticity, Uncertainty, IoT, Cloud, 
MDE, MBT 
 
1. INTRODUCTION: 

Cloud computing is adopting significance in the current 
technology. Due to the advent in the communication 
technology, any objects can get connected with any other 
objects. This is the era of where the things speak instead of 
livings humans. This technology has been termed as Internet 
of Things (IoT). For IoT to speak, there is a need of powerful 
essential network infrastructure that is Internet. This is in 
turn prone to physical threats in the cloud network. IoT is an 
integrated part of future Internet and can be defined as a 
dynamic global network infrastructure with self-configuring 
capabilities based on standard and interoperable 
communication protocols where physical and virtual 
“things” have identities, physical attributes, and virtual 
personalities and use intelligent interfaces, and are 
seamlessly integrated into the information network . 

 The continuous growth of the urban population has 
generated a tremendous expansion of our cities.Nowadays, 
indeed, more than 50 % of the world’s population is living 
urban, and they estimate that it will reach 70% by the year 
2050. Therefore, cities need to be ready to accommodate this 
huge amount of citizens and to face new challenges like 
traffic congestion, air pollution, waste management and so 

on. Majority of the IoT companies included are Amazon, 
CISCO, MS Azure, Salesforce, Oracle and much more. IoT is 
the integration of multiple heterogeneous networks. It is 
difficult to establish the junction of relationship as the 
relationship of trust between nodes that are constantly 
changing. Security has become a serious aspect of IoT 
because of the inclusion of the latest technologies and 
various applications to enormous users. 

 

1. IOT Cloud model 

2. IOT AND CLOUD INTEGRATION MODELS: 
 
2.1 Developers Of Iot Cloud Platforms Can Have Varying 
Goals: 
 
Goal 1: developers might need only to develop IoT elements 
(e.g., sensors, actuators and gateways) for a  customer and to 
connect these IoT elements to existing cloud services. In this 
case, they might just want to develop and test a set of 
sensors that can be deployed into certain gateways sending 
the data to public cloud services. 
 
Goal 2: developers focus on only cloud services at data 
centers that serve IoT elements. Typically they focus on a set 
of complex cloud services, e.g., for data storage, complex 
event processing, and data analytics. 
 
Goal 3: developers want to design and test a complete IoT 
cloud platform for a customer. They, therefore, focus on both 
IoT elements and cloud services and on how to coordinate 
them in a united view for the customer. Numerous works 
support the development of either the IoT part or the cloud 
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services for IoT . However, there is a lack of tools and 
discussions for the development and operations of the last 
goal. 
 
Goal 4. We focus on supporting developers to concentrate on 
Goal 3, which is complex but of paramount importance for 
several customers, e.g., predictive maintenance of 
equipment, on-demand crowd sensing for safe cities, and 
sports events. For such platforms, we must deal with 
deferent engineering principles outlined. 
 
2.2 Development In Distributed Iot And Cloud Systems 
 
As the IoT cloud platform is complex, it is expected that 
during the development, components of the platform must 
be able to deploy in multiple IoT and cloud systems.  
 
For this, we must have a set of connectors allowing the 
developer access to clouds and IoT systems so that the 
developer can deploy testing infrastructures and run tests 
across clouds and IoT septic systems. We also need to deal 
with different mechanisms of controlling virtual resources 
and different performance settings (e.g., expected time for 
allocating a resource, ex-pected performance for each 
resource).  
 
As discussed in the related work most tools either enable IoT 
deployment or cloud deployment; even many industrial 
cloud systems support IoT and cloud and enable their 
integration, these systems support Goal 1 and Goal 
2.Moreover, at runtime, both IoT elements and cloud 
services need to be controlled, monitored, and analyzed in a 
coordinated manner.  
 
While throughout the development lifecycle the developer 
would need mechanisms to emulate sensors and gateways in 
the heterogeneity of different clouds, in a production 
environment we have to do an end-to-end control of cloud 
services and gateways deployed across IoT networks and 
clouds.  
 

 
Fig 2:IOT AND CLOUD INTEGRATION MODELS 

This has to be done in a uniform manner, and most of the 
times control on one end of the IoT cloud platform would the 
control on the other end (e.g., deploying new data processing 
services on the gateway would change the characteristics of 
the load on cloud software services).As discussed in the 
related work, this feature is missing in most toolsets. 
 
3 .OVERVIEW OF ICOMOT 
 
To support Goal 3 in multi-IoT and -cloud environments, we 
design, develop and experience different tools and 
engineering actions to address two different main issues: (I) 
to provide main software components which are software-
defined services, deployable and  to support easy 
,deployment, control, and monitoring in a united manner.  
 
To achieve the point, we base on two main emerging 
research directions: 
 
1. software-defined IoT units: sensor and gateway 
components are considered as units that can be composed 
and controlled via software-defined APIs. 
 
2. cloud-based elastic services: they are common cloud 
services by different providers. To enable the elasticity, some 
services will be associated with elasticity capabilities. To 
achieve the second point, we build a toolset to enable 
elasticity control developments. The describes how we 
leverage our existing tools and our engineering actions to 
develop IoT cloud platforms. Cloud providers and third-
party developers can design and provide several 
components and services that will available through 
PaaS/IaaS and public repositories/marketplaces. A 
developer will utilize these services and components and to 
develop her/his own services and components.  
 
Then can utilize various tools to support service deployment, 
configuration, analytics and control to test and evaluate 
her/his designs. To this end, we have demonstrated the 
iCOMOT framework to support the developer to develop and 
test different configurations and runtime behaviours of IoT 
cloud systems. Icomot 
(http://tuwiendsg.github.io/iCOMOT/) includes several 
individual research tools for configuring, deploying, 
monitoring and controlling IoT cloud platforms, such as 
SYBL, SALSA, MELA . We connect several common 
repositories and together with these tools to support 
automation of IoT cloud platform configurations 
deployment. Furthermore, several sensors with data sets are 
also provided. The following sections, we will explain main 
insightful engineering actions, designs and experiences. 
 
4 DESIGN AND ENGINEERING ACTIONS 
 
4.1 Software components for IoT cloud platforms 
 
IoT Units and Cloud Services Repository Requirements: 
Existing cloud APIs already allow us to invoke suitable cloud 
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services at data centers and to emulate execution 
environments (e.g., lightweight virtual machines for 
emulated IoT gateways). However, they do not support the 
IoT side well, such as, modelling, configuring, deploying and 
testing different types of sensors, gateway software 
components, and libraries for cloud connectivity. 
 
Solutions: To model and capture IoT unit capabilities and 
configuration with software artifact, we leverage the concept 
of IoT cloud units to successfully model suitable IoT 
resources and enable some useful behaviours, such as 
dynamically changing communication protocols between IoT 
gateways and cloud services at runtime. As IoT units can be 
provided by different developers and providers, we support 
access to different component repositories for existing 
IoTunits, such as gateways execution environment, virtual 
network routers and communication protocols for cloud 
connectivity.  
 
These repositories can be leveraged by well-developed 
technologies, such as Docker Hub, Git-based repositories and 
Maven, and IoT marketplaces. 
 
Software Sensors Requirements: One important type of 
IoT software units are sensors. For development and testing, 
it is crucial to have emulated sensors whose behaviour is 
similar to real sensors but with advanced features to allow 
us to easily control the sensors. An emulated sensor just 
takes time series datasets,e.g., obtained from industrial real 
systems, and simulates events by sending them to gateways. 
By leveraging different real datasets, we can instantiate 
different sensors by configuring these instances with 
different sample data and behaviour models. With this way, 
we can emulate GPS, energy consumption, temperature 
sensors,chiller's operational status, etc., for different types of 
IoT cloud 
platforms. 
 
Solutions: In our framework, the developer can develop 
her/his real sensors or emulated sensors then deposit them 
into the repository from which they can be deployed into IoT 
cloud platforms. To support rapid development of the IoT 
side, one important issue is to have simulated sensors as 
executable that can be deployed at a very large-scale in 
multi-cloud environments to simulate real situations, e.g., 
monitoring chillers in a city, in IoT cloud platforms.  
 
We also enable the users to modify configurations while the 
sensors are running, for simulating different workloads or 
for testing their application under various out-of-the 
ordinary circumstances (e.g., _re at a location). The 
developer can also design topologies of different sensors for 
better management and reuse. In production scenarios of an 
IoT cloud platform, sensors will be physically distributed at 
different places, while, in simulations and tests, sensors are 
deployed in different VMs, OS containers, lightweight 
machines like Raspberry Pi, or cloud datacenters.  
 

To enhance interoperability and reusability of possible 
sensor architectures, we present the topologies of sensors by 
well-known description languages, such as TOSCA for the 
deployment and control process. 
 
Software-defined Gateways Requirements: In certain IoT 
cloud platforms, sensors can directly connect to cloud 
services. However, in our experience, very often gateways 
are needed as intermediate nodes for handling different 
types of sensoring data and connectivities. We consider and 
support gateways as an-other type of IoT 
software/hardware units. Gateways are much more complex 
than sensors. For example, gateways can store information 
and execute some lightweight components to process 
sensoring data in the cloudlets model. 
 
Solutions: From the architecture design perspective, we 
develop and provision gateways functionality by using our 
concept of software-defined IoT units.Generally, a software-
defined gateway consists of a set of dependent IoT units 
deployed in a virtualized environment, e.g. Centos or Docker. 
These IoT units are responsible for managing data streams, 
controls of actuators, cloud connectivity and lightweight data 
storage and processing.  
 
The key point of a software defined gateway is that it enables 
dynamic deployment and configuration of IoT units to 
handle data, control and connectivity in the IoT systems. 
This enables the developer to implement IoT-side 
distributed data processing, such as pre-processing data in 
gateways and splitting streams, i.e., sending events to 
multiple cloud services. Cloud Services for IoT 
Requirements: At data centers, both cloud services and 
custom-built software components can be used for building 
the IoT cloud platform.Main cloud providers, such as 
Amazon EC2 Windows Azure. 
 
However, it is challenging to combine and use such services 
in a coordinated mode with IoT elements, for example, to 
enable the elasticity coordination between IoT sensors and 
cloud services for data processing. Focusing on elastic 
software components, we enable developers to employ a 
series of o_-the-shelf software components in building their 
elastic platforms. 
 
4.2 Deployment, Control, and Monitoring Actions 
 
Deployment Requirements: The developer has to deploy 
components of IoT cloud platforms very often in order to 
study and test them. Generally, a deployment service will 
have to deal with both IoT and cloud service sides. We need 
the deployment of different types of services and manage 
from single components to the entire platform configuration 
at runtime. Therefore, the developer has to prepare at set of 
deployment artefacts in the repository including the dataset, 
configuration script, software artefacts. The APIs and 
information for accessing cloud infrastructures must also be 
prepared.  
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We witnessed that these complex tasks cannot be done by a 
single tool, but multiple tools and connectors to different 
clouds, orchestrated by a centralized service.For the 
application provider who just want to deploy the services or 
sensors, a description tool with GUI that hides the low-level 
information is more convenient. With an end-to-end aspect, 
the deployment needs to cope with different levels of 
deployment, including requesting cloud provider resources, 
configuring virtual machines, middleware and dependencies, 
and deploying artefacts. 
 
Elasticity Analytics Requirements: For analyzing the 
elasticity change of the IoT cloud platform (e.g., scaling 
in/out cloud services and sensor instances), elasticity 
analytics will be deployed at different parts of the platform 
to provide different performance and elasticity metrics. An 
elastic IoT cloud platform would have elasticity 
requirements defined over its components, based on which 
intelligent controllers can analyze its behaviour and take 
appropriate actions. Due to the potential complexity of IoT 
cloud platforms, the developer might not know such 
requirements for all platform components, especially 
reacting the dependencies between the IoT part and the 
cloud part. For example, a developer might not understand 
the cloud storage performance required to the requirement 
of activating more sensors. 
 
Solutions: To custom IoT cloud platform-specific analytics, 
we follow two different approaches: (I) bottom-up: common 
built-in metrics are structured and analyzed automatically, 
providing an overview over the platform's elasticity, and 
(ii)top-down: the platform developer can define custom, 
potentially domain-specific, metrics and analytics functions. 
Thus, we provide a complete end-to-end view over 
behavioural limits of the platform to enable the developer to 
redefine the platform, and improve its control strategies. 
Especially, it is crucial to defined an analytics function, 
which, based on supplied requirements, records 
encountered bounds on the monitored metrics not targeted 
by user requirements, in which the developer requirements 
were respected. 
 
Elasticity Control Requirements: We need to enable elasticity 
for various parts of the IoT cloud platforms, such as sensors, 
gateways and cloud services, during the development and 
operation. This means that elasticity control mechanisms 
and tools must work across sub-platforms for design, test 
and operation purposes and must interface various 
protocols (e.g., REST, RMI, ssh + bash execution) used to 
change software components. Moreover, most developers 
would be interested in specifying abstract, high-level 
requirements (e.g., not focused on system-level metrics, 
controlling the software service as a whole). 
 
Solutions: For sensors, developers could control the 
behaviour of sensors (e.g.,data reading frequency), to which 
gateway a sensor connects as well as the protocols between 
by gateways and sensors. At gateways, developers could 

control the number of sensor connections, the amount of 
data which is stored locally considering various constraints 
(e.g., the gateway has very limited computational power, 
memory and space). Moreover, we can add/remove various 
components for locally processing information, or change 
their sensitivity. For cloud services in an IoT cloud platform, 
we can support various known control mechanisms: 
(I)virtual infrastructure capabilities (e.g., add/remove 
virtual machines, network interfaces, disks), (ii) platform 
specific capabilities (e.g., start/stop web 
server,deploy/undeploy service in existing web server), or 
(iii) application-specific (e.g.,using API o_ered by cloud 
services developers). Capabilities. Each of these can be 
enforced separately or grouped into complex control 
processes. However, elasticity setup cannot be completely 
automated, and completely application-independent. In case 
developers need more advanced elasticity control, they can 
encapsulate them into their application specific control 
mechanisms (e.g., use aweb server deploy together with a 
new configuration, to result into other performance/cost 
characteristics). For controlling elasticity, we enable 
interaction based control to empower the developers with  
their control strategies,considering the evolution of the 
service at runtime. 
 
5. EXPERIMENTS 
 
5.1 Case Studies 
 
Let us consider a scenario in which a predictive maintenance 
company would like to focus on predictive analytics for 
chillers in a city. The company wants to reuse/rent as much 
as possible IoT cloud infrastructures so that the company 
will focus on deploying its sensors, gateways, and cloud 
services. Both sensors, gateways and cloud services establish 
the company's IoT cloud platform. The IoT cloud platform 
includes gateways at the IoT part and cloud services at the 
data center. All of them are virtualized services, meaning 
that they can be deployed, configured and used on-the-way.  
 
The predictive maintenance company will need features 
from the IoT cloud platform provider, which provides the 
right configuration of the IoT cloud platform for the 
predictive maintenance company. The IoT cloud platform 
can over features for a predictive maintenance company 
which monitors chillers and perform data analytics and 
maintenance tasks. In this case study, we will focus on the 
case the predictive maintenance company wants to buy 
services from an IoT cloud platform provider to create 
aconfiguration of its own elastic IoT cloud platform. Then the 
company develops and tests different sensors which connect 
to its elastic IoT cloud platform to have a complete system 
for gathering data to support data analytics1. 
 
5.2 DEVELOPMENT AND DEPLOYMENT 
 
First all of all, to make the (re)configuration of the IoT cloud 
platform, using our tool, the predictive maintenance 
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company can deploy two separate configurations: a 
configuration of the IoT sensors and gateways(A), and 
another of the cloud data center (B). This enables them to 
play with different sensors easily regarding data and 
topology, communication protocols, bursting workload, 
while the cloud services might be stable. For both 
configurations, IoT units and cloud services are provided 
from different providers from various repositories. The 
example of two topologies of sensors on two VMs, which 
allows the developer to manage single sensors and sensor 
topologies2 (and VM which host sensors insimulation 
scenarios). the deployment of an elastic IoT configuration 
platform  named ElasticIoTPlatform  at the data center to 
real cloud services and simulated gateways. With our 
techniques, such configurations (for sensors and for 
gateways/services) can be also programmed using Java code, 
enabling different ways to program and test IoT cloud 
platforms. 
 
Having the entire IoT platform is provisioned, the company 
focuses on Monitoring(1 )). Before provisioning, platform 
developers must have in mind what monitoring data is 
relevant for the elasticity of the platform, and implement the 
necessary monitoring capabilities. A crucial factor in elastic 
platforms is that instances of units tend to appear/disappear 
dynamically at run-time as a result of scaling actions being 
enforced due to various elasticity requirements(e.g., 
platform performance, quality, cost).  
 
Thus, the company wants to avoid monitoring information 
being lost due to scaling in/out of individual units, and also 
to have and overview over the overall behaviour of the 
platform units and not only individual unit instances. Thus, 
the platform developer must use our tool for deciding the 
contribution of a unit instance to the overall behaviour of the 
entire platform, or individual units, and structure monitoring 
information according to the architecture of the platform.  
 
For example, the developer could decide that CPU usage of 
all unit instances must be averaged, and that the network 
data transfer. After having the platform deployed and 
monitored, the company focuses on the various Governance 
processes which must be enforced over the IoT sensors and 
gateways, arising from the company's different security, geo-
political, performance objectives. For example, an abnormal 
event might be detected by the IoT platform, such as 
dangerous gas detected in a smart building. In such a case, 
for better analyzing the cause of the event, the frequency and 
data collected might need to be changed. For enabling such 
dynamic changes, we can invoke sensor and gateway 
capabilities through their APIs for changing data collection 
frequency, or execute a complex process for changing the 
security levels and protocols used to send data.  
 
Leveraging these capabilities, we can enable processes for 
governing the gateways and sensors in different situations. 
Governance processes might change the frequency, size, and 
mechanisms in which sensor data is collected, processed and 

sent to the cloud data center. Thus, an Elasticity control 
mechanism is crucial for ensuring the performance and 
quality of the overall IoT platform, especially during and 
after the execution of governance processes, through 
elasticity. To enable elasticity control, the platform 
developers must design and develop elasticity capabilities 
for the individual platform units, wart, their type and 
purpose. Any capability that enables dynamic 
reconfiguration of any aspect or property of the platform 
unit’s qualities as an elasticity capability, and must be 
designed and implemented in the platform units, and 
enforced at run-time.  
 
For example, if a governance process increases the data 
collection frequency, the elasticity control mechanism 
should scale the platform to handle the load increase. One 
lesson learned is that from architectural design, 
development and operation, we need to decide if all of these 
complex services, gateways and sensors should be specified 
and deployed in a single software configuration or not. It is 
possible  and it is hard to manage. 
 
On the other hand, from an IoT cloud platform provider 
perspective, it is typical to provide a platform that includes 
gateways (at the edge) connecting to cloud services (in the 
data center) and let the customer to deploy possible sensors 
and configure these gateways and services to into the 
customer need. 
 
5.3 ELASTICITY ANALYTICS AND CONTROL 
 
After developing the ElasticIoTPlatform configuration, the 
developer can use our toolset for deploying and running it. 
At runtime, the developer is able to follow the behaviour of 
the application using our monitoring features, in order to 
redefine the elasticity and governance  requirements and 
respectively policies. For such a complex use-case, which 
encompasses both IoT and cloud environments, there are 
two main control perspectives: 
 (I) controlling the services deployed in the cloud which 
manage data processing and storing, (ii) controls the IoT 
parts for addressing the governance policies. 
 
In an emergency scenario, the entire ElasticIoTPlatform 
needs to react in order to localize or to better analyze the 
cause of the emergency. For this, further data needs to be 
collected, for avoiding errors and miss-predictions. a process 
described by the developer for addressing such case, in 
which the sensor push rate is increased (i.e., due to 
governance policy), and the cloud services are allowed to 
scale to higher cost levels. The latter is intended to address 
the issue of cost limit in the elasticity requirements, as 
normally the developer specifies a cloud service cost limit, 
for safety reasons. 
 
In a day-to-day case, with an increasing workload the cloud 
service would employ more and more virtual resources up to 
the cost limit, while in the emergency scenario, the cloud 
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service can exceed the respective limit. From our 
experiences, we learned that, in our architectural designs, 
controlling elasticity of cloud software services should give 
powers to developers (e.g., controlling multiple software 
services at a Elasticity and governance process for the 
ElasticIoTPlatform configuration time, different software 
stacks, both system and application level metrics), while 
maintaining a simple mechanism of elasticity control 
specification. Moreover, this control of gateways or of 
sensors, should interface with a variety of tools (e.g., 
different cloud providers, using deferent protocols, different 
gateway vendor specific tools), for providing an end-to-end 
control of IoT cloud platforms. 
 
5.4 DEPLOYMENT AND FAILURE 
 
Let us consider some aspects related to the use of tools to 
evaluate IoT cloud platform deployment. We use our private 
DSG Open Stack, Stratus lab LAL public cloud  We run our 
deployment engine in our private Open Stack with 
m1.medium VM (2 CPU and3,750 MB RAM) in the DSG cloud 
in order to test deployment issues for sensors and a 
configuration of  an elastic IoT cloud platform  
ElasticIotPlatform.While we deploy ElasticIoTPlatform in 
our DSG cloud, we want to emulate several sensors by 
deploying them in both clouds where on each m1.small VM 
(1CPU, 2GB RAM)3, we deploy 30 sensors. We tested our 
studied configuration of an IoT cloud platform by deploying 
and activating from 100 to 350 sensors 
when we use both clouds we deploy sensors equally in each 
cloud).an increasing and varying trend of deployment failure 
rates. We can seem that Flexiant has higher software failure 
rate by looking the deviation of failure percent of sensors 
and VMs, and VM failures are caused by the high number of 
concurrent requests on clouds.  
 
6. RELATED WORK 
 
Several challenges of IoT and cloud integration are discussed 
intensively .Many IoT platforms have been developed  based 
on which different added services can be added. Our work is 
not about developing a particular IoT cloud platform, but 
focusing on techniques accelerating the development of such 
platforms. Although experiences have been shared, we have 
not seen similar experiences discussing rapid end-to-end 
development of elastic IoT cloud platforms. Several 
frameworks support the development of IoT. Industrial 
tools, such as Predix and Microsoft Azure IoT,also allow us to 
write IoT sensors and connect the sensors to cloud services. 
Butthey do not support elasticity controls. In our work, we 
do not focus on programming IoT sensors but recombine 
existing units and deploy them cross-issue spanning both 
IoT and clouds.  
 
Such evaluations are useful for us to decide the 
infrastructure used for the cloud service part of the IoT PaaS. 
However, they have not focused on IoT clouds in general. 
The middleware, part of the Opinion platform , which 

provides functionality for dynamically adding/removing 
sensors to/from an IoT Platform spanning mobile networks 
and cloud infrastructures. We do not focus on particular 
platforms but we enable such functionality. There are some 
approaches on supporting simulation of IoT and IoT cloud 
systems. However, they are purely simulation systems, while 
we support configuration and testing of emulated sensors 
and gateways running in the cloud that interact with real-
world cloud systems. 
 
7 .CONCLUSIONS AND FUTURE WORK 
 
In this paper, we described requirements, toolsets and 
engineering analytics for elastic IoT cloud platforms that 
simplify and accelerate the development of IoT cloud 
platforms, based on our development of the iCOMOT. Given 
the complexity of IoT cloud platform development 
requirements, it is hard  any single, even powerful, toolset 
that will meet all the requirements. Therefore, we have to 
carry out appropriate engineering actions and also 
integrating different tools into our iCOMOT toolset. We show 
how utilizing such an integrated toolset we can simplify the 
development and and testing of IoT cloud platforms. 
Currently, we focus on building a common knowledge of 
components, topologies and artifacts for supporting testing 
and evaluation of uncertainties in elastic IoT cloud 
platforms, in particular, and cyber-physical systems, in 
general. 
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