
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2106

A Survey on Various Cross-Site Scripting Attacks and Few Prevention

Approaches along with a Conducive Approach

Akshay Deodare1, Jyoti Raghatwan2

1,2Department of Computer Engineering, RMD Sinhgad School of Engineering, Maharashtra, India
---***---
Abstract - In this paper, a very destructive threat Cross –
Site Scripting is discussed where the attack script is executed
by the browser. Commercial reasons have made a necessity of
building dynamic web applications. Web application
vulnerabilities are mostly found due to lack of input or output
sanitization moreover these are often exploited to manipulate
source code or gain unauthorized access. Social engineering is
intentionally executed to gain the evil benefits of a reflected
cross-site scripting script. Design of the third party web
application can be changed by storing the script permanently
on the applications server. Also few preventive methods
proposed earlier are portrayed in this paper along with a
favourable method to detect base64 based evil script. Every
method presented has certain limitations and to overcome
these various approaches should be designed. . The base64
encoded malicious script can bypass firewall if it isn’t secured
well. The algorithmic flowchart construed in this paper
decodes the base64 format and then checks for XSS attack
vector.

Keywords- XSS, Cross-Site Scripting, base64, security.

1. INTRODUCTION

It has been a high time since the era of HTML only web pages
are gone, there was no exchange of data between server and
client. Dynamic webpages have made internet content more
interactive [1]. They execute codes on user’s server and
manages server data. As these web pages store and access
the data in a database it is necessary to protect the web
application from security threats. With the rise in dynamic
webpages, security threats have also increased [2]. If the
web application is not enough protected it can be a victim of
evil attacks such as SQL injection, Cross-Site Scripting, XML
injection, Host header attack, Denial of service and many
other dangerous scripts.

1.1 Cross Site Scripting (XSS)

XSS is an injection attack which allows a hacker to execute
scripts in a user's browser. The user becomes a victim when
he visits the webpage that implements the evil script. The
web application behaves as a deliverer of the attack script to
the browser. The scripting language mostly used is
JavaScript because it is core or necessity of maximum

browsing experiences [3]. Basically, XSS can be used to
deface your web application.

Various methods such as Escaping and Restriction are used
to prevent and mitigate the impact of XSS attacks. Firewalls
are also put up to protect the sensitive data that provides
web services [2].

2. SURVEY OF EXISTING ATTACKS AND

THEIR PREVENTION

2.2 Cross-site scripting example

<script>window.location=’http://www.website/?cookie=’+d

ocument.cookie<script>

This example shows the cross-site scripting implementation
to steal the cookies of the user [3]. An attacker sends a script
injected link to the victim which redirects him to a dissimilar
website. The evil script gets executed onto the browser and
the sensitive data that is cookies are fetched by the attacker
[5].

2.2 Cross Site Scripting Types

2.2.1 DOM -based

The script used to seek sensitive data uses the document
object [5]. The script appears in DOM rather than in HTML
format. Here it is not possible to find the payload in
response. Netsparker a widely known automated
vulnerability finding software company demonstrates DOM
based XSS in the following way
Consider URL example.com/test.html contains the code.

<script>document.write("Current URL : " +
document.baseURI);</script>

If an http request with xss script like this
http://example.com/test.html#<script>alert(1)</script> is
made , JavaScript code gets executed as the page writes
everything typed in url with document.write() function.
Anything written after # is never sent to server. We cannot
find <script>alert(1)<script> in the source code because all
this was happening in DOM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2107

2.2.2 Reflected XSS

This method usually requires social engineering to trick the
victim. Social engineering means tricking the user by
manipulating user to achieve a successful conclusion of the
attack [6]. The XSS occurs or impacts when the user opens a
maliciously crafted link. The browser-executable code is not
stored in the application.

An attacker creates and tests the website if it is vulnerable to
XSS. If found vulnerable he tricks the victim using social
engineering to load the infected URL (similar to the tested
website) on the browser. Eventually, the evil code is
executed using victims browser [2].

This may include session stealing or installing key loggers or
changing the webpage content.

2.2.3 Stored or persistent XSS

Certain web applications allow users to store the content on
the server such as comments, FAQs, etc. These type of web
applications can be prey of Stored Cross Site Scripting. The
web application gathers input that might be a hacking script
through certain forms and then stores them on the server.
The input stored is not properly validated thus the malicious
data appears on the website on the victim's browser.

Stored XSS doesn't need a specific victim to carry out the
attack. The successful conclusion occurs when anybody visits
the XSS affected site. An attacker requires a host input form
in order to execute the malicious script

Scenario:

 An attacker tests the vulnerability of the web
application.

 On successful testing, he plants the evil script.
 Victim visits the vulnerable webpage.
 User’s Browser executes the malicious code.

The malicious script is stored permanently on the server and
is executed every time the user opens the infected web
application.

2.2.4 Induced XSS

If a web application is vulnerable to HTTP Response Splitting
Vulnerability, Induced XSS can be executed. The attacker
usually manipulates the HTTP header of the server's
response. Induced XSS's are not very common but can still be
mentioned in the classification [4].

2.3 Preventive Approaches

In Reflected XSS a maliciously scripted link is sent in order to
trick the user. Florian Kerschbaum proposed a lightweight
and efficient way to prevent XSS in 2007. It ensures that
input given to the web application from the user’s browser is
not shaped by an attacker by forwarding a link. The website
must contain 2 types of pages namely entry and regular
pages. No input can be accepted by entry pages unless a
gateway filters the inputs or discards them. The system
allows access to the regular pages (servlets or scripts,
applications) only through entry pages. Gateway divides the
input into query URLs or POST request data while accessing
the entry page and gives access to regular pages only if a
cookie is set and the referrer string originates from the same
site [7].

Imran Yusof and Al-Sakib Khan Pathan gave an approach for
preventing Persistent XSS. The method works on input
filtering. Input data must be filtered such that the browser
doesn’t execute the evil scripts. User input must be sanitized
before it gets stored in the database [8]. Event handlers, Data
URIs are filtered using regular expressions. Insecure
keywords such as document.cookie, document.write, etc. are
filtered by either encoding them or blocking them.
Dangerous characters used in XSS payloads can be escaped
using &# followed by the character code [8].

Secure PHP functions can be used to prevent XSS attack
using 2 stages as proposed by Twana Assad TAHA and Murat
KARABATAK in 2018. First, the input validation is carried
out using regular expressions and then another regular
expression for checking if any malicious script is present in
the input field. This malicious code will be removed instantly
on detection. Certain PHP functions such as htmlEntities()
and htmlspecialchar() are used to convert characters HTML
entities. As proposed by the above two authors the two
methods are AllowList regular and DenyList regular
expression. AllowList allows only trusted and expected user
inputs i.e. it performs validation (contact number must not
contain characters other than + and numbers) whereas the
DenyList regular expression checks the suitability of data
and abandons or substitutes the suspicious characters such
as HTML and script tags [3].

3. STUDY RESULTS

XSS ranks 7th according to Owasp top 10 vulnerabilities
[10]. The threat of reflected, stored and DOM-based XSS is
almost the same. The only difference arises is due to the way
of attacking. At some point, the webpage is unable to control
the malicious JavaScript and thus become the prey of XSS.

Stored XSS stores the impact permanently on the server.
Impact of Reflected XSS is seen when the specific user

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2108

interacts with the malicious script. DOM-based XSS
destruction occurs if a user interacts with a malicious script
that is created on the basis of Document Object Model.

Table-1:XXS TYPES AND CHARACTERISTICS

XSS type Characteristics

Stored Stored permanently on a server

Reflected Requires specific user interaction

DOM The script includes Document Object

Induced Manipulates the HTTP header of the server’s

response

XSS vulnerabilities cannot be totally prevented. An
assumption of the characters and strings is made to validate
the input fields. A highly complex attack vector must be first
developed in order to prevent the subcategories of that evil
script and that script itself. PHP provides an input filtering
layer using certain functions. An application should never
output data received as input directly to the browser
without checking it for malicious code. These suggested

methods for user input validation are mostly used to defend
XSS [3].

1. Replacement: replace the evil script in the input
with true characters

2. Removal: remove the dangerous inputs
3. Escaping: dangerous characters are escaped by

adding &# then the character code [8].
4. Firewalls are usually established to protect the

server side. Moreover web applications can be
tested using software such as Acunetix, Netsparker,
etc

Table -2: COMPARISON OF ABOVE MENTIONED METHODS

4. CONDUCIVE METHOD TO PREVENT XSS

A method can be developed to detect the XSS script that is
encoded in base64 format. One way that might detect a
base64 encrypted script is, to set up a decode mechanism in
the web application source code and build a regular
expression that matches the decoded format in order to
escape it in an efficient way.

4.1 Algorithm

1. Decode the base64 script.
2. Set a pattern of regular expression to detect and

protect the input entry that may encompass the evil
script.

3. End

Method Limitations

Building a gateway[7] The browser must send a

reliable reference string.

 Bookmarks can be set

only to the entry pages.

 Can detect and avoid

reflected XSS only

Pattern Filtering

Approach[8]

 An assumption of the

characters and strings is

made to validate the

input fields.

 The approach is built

only for Stored XSS.

 Manual filtering of

characters is required.

Use of PHP functions and

regular expressions to

detect and prevent XSS[3]

 If the XSS script is

encoded in base64

format, it might not get

detected.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2109

Figure-1 DETECTION OF BASE64 ENCODED XSS

5. CONCLUSION

This paper presents a detailed survey of a few XSS
prevention methods, also specifies the ways in which various
cross-site scripting attacks can be exploited. The limitations
of different methods vary. A method that might be conducive
to detect base64 based XSS script has been proposed. In the
course of time, these proposed methods (by respective
authors) may become less useful due to rapid sophistication
of evil attacks. Web application developers must know the
latest threats that may affect the web applications. New
threats are discovered by hackers in very less time so the
developers must also carry out the research continuously to
make the digital world secure.

REFERENCES

[1] N. Niu E. Stroulia M. El-Ramly: Understanding Web
usage for dynamic Web-site adaptation: a case
study. 2002 Proceedings. Fourth International
Workshop on Web Site Evolution.

[2] K. Pranathi, S. Kranthi, Dr.A.Srisaila, P.
Madhavilatha: Attacks on web Application Caused
by Cross Site Scripting: 2018 2nd international
conference on electronics, Communication and
Aerospace Technology.

[3] Twana Assad TAHA, Murat Karabatak: A proposed
approach for preventing Cross Site Scripting: 2018
6th International Symposium on Digital Forensic
and Security (ISDFS)

[4] V.K Malviya, S.Saurav: On security issues in web
applications through cross-site scripting: 2013 20th
Asia Pacific Software Engineering Conference
(AtiPSEC), Bangkok, 2013, pp.583-588

[5] Mohit Dayal, Nanhay Singh, Ram Shringar Raw: A
comprehensive Inspecon of Cross Site Scripting
Attack. International Conference on Computing,
Communication, and Automation (ICCCA2016)

[6] Francois Mouton; Mercia M. Malan; Louise Leenen;
H.S. Venter: Social engineering attack framework.
2014 Information Security for South Africa

[7] Florian Kerschbaum 2007. Simple Cross-Site Attack
Prevention: 2007 Third International Conference on
Security and Privacy in Communications Networks
and the Workshops - SecureComm 2007.

[8] Imran Yusof, Al-Sakib Pathan: Preventing Persistent
Cross-Site Scripting (XSS) Attack By Applying
Pattern Filtering Approach.

[9] https://www.netsparker.com/blog/web-
security/dom-based-cross-site-scripting-
vulnerability/

[10] https://www.veracode.com/directory/owasp-top-
10

https://ieeexplore.ieee.org/author/37294989100
https://ieeexplore.ieee.org/author/37265166000
https://ieeexplore.ieee.org/author/38274458300
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8210
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8210
https://ieeexplore.ieee.org/author/38016485900
https://ieeexplore.ieee.org/author/37077442400
https://ieeexplore.ieee.org/author/37085519395
https://ieeexplore.ieee.org/author/37545496900
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6940061
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4543879
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4543879
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4543879
https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10

