## SeismicAnalysisofa Multi-Storey Building using Steel Braced Frames

## MohdAtif Khan<sup>1</sup>, Faheem Ahmad Khan<sup>2</sup>, Bilal Siddiqui<sup>3</sup>

<sup>1</sup>MTech Student, Department of Civil Engineering, BBD University, Lucknow. <sup>2,3</sup>Assistant Professor, Department of Civil Engineering, BBD University, Lucknow. \*\*\*\_\_\_\_\_\_\*

Abstract – The main concern in the high rise building is their lateral stability i.e. they provide stability during seismic activity without any major destruction .Bracing is one of the horizontal force resisting system.An attempt is made to analyze the response of G+14storied RC multi-storey building due to the application of different bracing system such as X, V, inverted V bracing and to find the best bracing system during earthquake. ETABs software is used for modeling and analyzing the building. The building is taken in Zone III and analyzed with Time History analysis method. Various parameters such as storey drift, storey displacement, fundamental time period and storey stiffness are studied. From the study it was concluded that building with bracing perform better during seismic activity as compared with building without bracing. Among all the different bracing, X bracing is the best bracing system to reduce the responses during seismic activity.

# KeyWords:Time History Analysis, Storeydrift, Storey displacement, Time period, Storey stiffness.

## **1. INTRODUCTION**

Generally, it is recognized that seismic design of buildings should satisfy at least two fundamental requirements. First, the structure must behave elastically and protect relatively brittle non-structural components against minor earthquake ground shaking. Therefore, a structure should have sufficient strength and elastic stiffness to limit structural displacements, such as interstorey drift. Second, the structure must not collapse in a major earthquake. For this case, significant damage of the structure and non-structural components is acceptable. In order for a structure not to collapse and thereby minimize the loss of life, it must have large energy dissipation capacity during large inelastic deformations. In general, structural systems which exhibit stable hysteretic loops perform well under the large inelastic cyclic loadings characteristics of major earthquakes. Such stable hysteretic characteristics of a structure can be obtained provided that the structural members and joints are designed to possess sufficient ductility.

In Seismic Analysis, we come to know that earthquakes are the most volatile, disturbing and unpredictable of all natural disasters, in which it is very difficult to save life and engineering properties. Care has to take for each step of construction of a building from foundation part. When earthquakes take place, a building undergoes dynamic motion. Because of subjected to inertia forces that may act in the opposite direction to speeding up of earthquake excitations. These inertia forces normally called seismic loads dealt by assuming forces external to the building. To overcome these problems, we need to identify the seismic performance of multi-storey buildings during various horizontal force resisting systems. This is because to make sure that the high rise buildings withstand during earthquake events. Hence, can save as many lives as possible. During earthquake the performance of a structure depends on many factors such as stiffness, adequate lateral strength, simple and regular configurations etc.

### 2. OBJECTIVE

The objective of this research is focused on the technique which areused to study the seismic behaviour of R.C buildings with seismic zone III of India using bracing system. The whole design was carried out in ETABs which covers all aspects of structural engineering. More specifically, the salient objectives of this research are:

- 1) To perform a comparative study of the various seismic parameters.
- 2) Comparison among building with X, V bracing, inverted V bracing and without bracing on the basis of storey displacement, storey drift, storey stiffness & fundamental time period.

3) To propose the best suitable technique for seismic analysis.

In this paper, an RC multi-storey residential building isstudied for earthquake using Time history method in the ETABs software. This analysis is carried out by considering seismic zone III, and for this zone, the behaviour assesses by taking the medium soil. A different response for displacements, storey drift and other parameters are plotted for zone III for medium type of soil.

#### **3. STRUCTURALMODELING**

For the purpose of this study,a RC framed (G+14) multistory building having same floor plan with 6 bays of 3m each along longitudinal direction and along transverse direction as shown in figure 1. Four models with different types of bracings wereselectedinordertodetermine thebehaviourofstructuralsteelduringseismicactivity. The columns are fixed at the ground and are taken as restrains. The bottomstorey height is 3.5m and rest are of 3m. All the values of loads and dimensions are given in table no.1.The

load cases considered in the seismic analysis are as per IS 1893:2002 (part 1). Figure 1 and 2 shows the geometrical configuration of the building. The model was prepared for bare frame and with differentbracingsystems.Table1givesthematerialproperti es ofthemembers.



Figure 1: Plan of Building without Bracing.



Figure 2: A 3D View of Building without Bracing.



Figure 3:- 3D View of Building with X- Bracing.



Figure 4:- 3D View of Building with V- Bracing



Figure 5:- 3D View of Building with Inverted V- Bracing.

## **Table 1: Material and Section Properties**

| 1.  | Building Type           | Residential building |  |
|-----|-------------------------|----------------------|--|
| 2.  | No. of storeys          | G+14                 |  |
| 3.  | Bottom storey height    | 3.5m                 |  |
| 4.  | Total height            | 45.5m                |  |
| 5.  | Floor height            | 3m                   |  |
| 6.  | Size of column          | 300mm*400mm          |  |
|     |                         |                      |  |
| 7.  | Size of beam            | 230mm*300mm          |  |
| 8.  | Thickness of slab 150mm |                      |  |
| 9.  | Masonry wall            | 250mm                |  |
|     | thickness               |                      |  |
| 10. | Seismic zone            | III                  |  |
| 11. | Grade of concrete       | M20                  |  |
| 12. | Grade of steel          | Fe250                |  |
| 13. | Unit weight of          | 25KN/m <sup>3</sup>  |  |
|     | concrete                |                      |  |
| 14. | Unit weight of PCC      | 24 KN/m <sup>3</sup> |  |
| 15. | Unit weight of brick    | 20 KN/m <sup>3</sup> |  |
| 16. | Unit weight of plaster  | 21 KN/m <sup>3</sup> |  |
| 17. | Wall load               | 13.5 KN/m            |  |



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 239

Volume: 06 Issue: 04 | Apr 2019

www.irjet.net

| 18. | Parapet wall load    | 7KN/m                 |
|-----|----------------------|-----------------------|
| 19. | Live load            | 3 KN/m <sup>2</sup>   |
| 20. | Roof load            | 2.5 KN/m <sup>2</sup> |
| 21. | IS Code for concrete | IS 456:2000           |
| 22. | IS Code for          | IS 1893:2002 (part I) |
|     | earthquake           |                       |

Building is analalyzed on the basis of Various load combinations in the limit state of design for reinforced concrete structures as per IS 1893:2000(part1).

#### **3.1 ETABs Overview**

ETABs is used for seismic analysis and to study the behaviour of multistorey building with and without bracing are compared with different parametres of analysis.Complete analysis including structural modeling is performed in this software.

The analysis has been done by using ETABs software which involves following steps:-

- 1. Defining dimensions of the plan
- 2. Defining the members and material properties
- 3. Assigning loads and load combinations
- 4. Run and check model to find errors
- 5. Run analysis
- 6. Extract results and discuss

#### 4. METHOD OFANALYSIS

#### 4.1 Time History Analysis

Time history analysis is the study of the dynamic response of the structure at every addition of time, when its base is exposed to a particular ground motion. Static techniques are applicable when higher mode effects are not important. This is for the most part valid for short, regular structures. Thus, for tall structures, structures with torsional asymmetries, or no orthogonal frameworks, a dynamic method is needed. In linear dynamic method, the structures is modeled as a multi degree of freedom (MDOF) system with a linear elastic stiffness matrix and an equivalent viscous damping matrix. The seismic input is modeled utilizing time history analysis, the displacements and internal forces are found using linear elastic analysis. The playing point of linear dynamic procedure as for linear static procedure is that higher modes could be taken into account.

In order to study the seismic behaviour of RC multistorey building under lateral forces with or without bracing, dynamic analysis is required. The ETABs software is used to perform linear time history analysis.

#### 4.2Parameters considered for analysis

- 1. Storey drift
- 2. Storey displacement

- 3. Fundamental time period
- 4. Storey stifness

The seismic data is taken according to the IS 1893:2002 for the Zone III.

| Serial No | Model Description  |             |  |
|-----------|--------------------|-------------|--|
| 1         | Zone               | III         |  |
| 2         | Zone Factor        | 0.16        |  |
| 3         | Type of building   | Residential |  |
| 4         | Importance Factor  | 1           |  |
| 5         | Soil Type          | II          |  |
| 6         | Soil Condition     | Medium      |  |
| 7         | Damping Ratio      | 5%          |  |
| 8         | Response Reduction | 5           |  |
| Factors   |                    |             |  |

#### Table 2:Seismic Data

#### 5. RESULTS

#### 5.1 Storey drift

It is the relative displacement of one level relative to other level above or below. According to IS 1893:2002 (part 1),thestoreydrift should not exceed 0.004 times of relative storey height.

5.1.1Max. Storeydrift(mm) comparison in X direction the table and the graph below shows the comparison of various bracing with bare frame in terms of storey drift in X direction.

| No of   | WITHOUT | X       | V       | INVERTED  |
|---------|---------|---------|---------|-----------|
| story   | BRACING | BRACING | BRACING | V BRACING |
| Story15 | 0.734   | 0.584   | 0.751   | 0.659     |
| Story14 | 1.051   | 0.632   | 0.826   | 0.745     |
| Story13 | 1.351   | 0.673   | 0.892   | 0.82      |
| Story12 | 1.608   | 0.706   | 0.945   | 0.882     |
| Story11 | 1.822   | 0.729   | 0.985   | 0.929     |
| Story10 | 1.995   | 0.743   | 1.011   | 0.961     |
| Story9  | 2.131   | 0.746   | 1.023   | 0.977     |
| Story8  | 2.232   | 0.738   | 1.021   | 0.979     |
| Story7  | 2.302   | 0.72    | 1.004   | 0.966     |
| Story6  | 2.343   | 0.691   | 0.973   | 0.938     |
| Story5  | 2.359   | 0.652   | 0.928   | 0.896     |
| Story4  | 2.352   | 0.603   | 0.87    | 0.84      |
| Story3  | 2.321   | 0.536   | 0.784   | 0.755     |
| Story2  | 2.238   | 0.528   | 0.81    | 0.806     |
| Story1  | 1.94    | 4.55    | 2.981   | 2.91      |

Max. Storey drift(mm) comparison in X direction-



Volume: 06 Issue: 04 | Apr 2019

www.irjet.net



5.1.2Max. Storeydrift(mm) comparison in Y directionthe table and graph below shows the comparison of different bracing system with bare frame in terms of storey drift in Y direction.

| No.of   |         |         |         | INVEDTED |
|---------|---------|---------|---------|----------|
| story   | WITHOUT | x       | V       |          |
|         | BRACING | BRACING | BRACING | BRACING  |
| Story15 | 0.743   | 0.649   | 0.771   | 0.606    |
| Story14 | 1.109   | 0.701   | 0.849   | 0.687    |
| Story13 | 1.445   | 0.747   | 0.917   | 0.758    |
| Story12 | 1.731   | 0.783   | 0.97    | 0.816    |
| Story11 | 1.969   | 0.808   | 1.01    | 0.861    |
| Story10 | 2.163   | 0.822   | 1.035   | 0.891    |
| Story9  | 2.316   | 0.825   | 1.045   | 0.908    |
| Story8  | 2.431   | 0.817   | 1.042   | 0.91     |
| Story7  | 2.511   | 0.797   | 1.024   | 0.899    |
| Story6  | 2.561   | 0.765   | 0.992   | 0.874    |
| Story5  | 2.584   | 0.721   | 0.946   | 0.835    |
| Story4  | 2.583   | 0.667   | 0.888   | 0.783    |
| Story3  | 2.562   | 0.589   | 0.807   | 0.707    |
| Story2  | 2.523   | 0.6     | 0.815   | 0.731    |
| Story1  | 2.512   | 3.17    | 4.14    | 4.199    |

Max. Storeydrift(mm) comparison in Y-direction-



## 5.2 Storey Displacement

It is the diplascement of each storey with respect to ground level. According to IS 1893 (part1) :2002 the 5.2.1 Max.Storey displacement (mm) comparison in x direction-the table and graph below shows the comparison of various bracing system with bare frame in terms of storey displacement in X direction.

|         |         |        |        | INVERTE |
|---------|---------|--------|--------|---------|
| NO OF   | WITHOU  | Х      | v      | D       |
| STORE   | Т       | BRACIN | BRACIN | V       |
| Y       | BRACING | G      | G      | BRACING |
| Story15 | 28.779  | 13.832 | 15.751 | 15.063  |
| Story14 | 28.045  | 13.247 | 15     | 14.404  |
| Story13 | 26.993  | 12.615 | 14.174 | 13.659  |
| Story12 | 25.643  | 11.942 | 13.283 | 12.838  |
| Story11 | 24.035  | 11.236 | 12.338 | 11.957  |
| Story10 | 22.213  | 10.506 | 11.353 | 11.028  |
| Story9  | 20.218  | 9.764  | 10.341 | 10.068  |
| Story8  | 18.086  | 9.018  | 9.318  | 9.09    |
| Story7  | 15.854  | 8.28   | 8.297  | 8.111   |
| Story6  | 13.552  | 7.56   | 7.293  | 7.145   |
| Story5  | 11.21   | 6.869  | 6.319  | 6.206   |
| Story4  | 8.851   | 6.217  | 5.391  | 5.31    |
| Story3  | 6.499   | 5.613  | 4.521  | 4.47    |
| Story2  | 4.178   | 5.078  | 3.737  | 3.715   |
| Story1  | 1.94    | 4.55   | 2.981  | 2.91    |

Max. Storey displacement (mm) comparison in x direction-



5.2.2Max.Storey displacement (mm) comparison in Y direction-the table and graph below shows the comparison of various bracing system with bare frame in terms of storey displacement in Y direction.

| NO OF   | WITHOUT | v            | V            | INVERTED     |
|---------|---------|--------------|--------------|--------------|
| STORYS  | BRACING | A<br>BRACING | v<br>BRACING | v<br>BRACING |
| Story15 | 31.742  | 13.461       | 17.25        | 15.465       |
| Story14 | 30.999  | 12.811       | 16.48        | 14.859       |
| Story13 | 29.89   | 12.11        | 15.63        | 14.171       |
| Story12 | 28.445  | 11.363       | 14.714       | 13.413       |
| Story11 | 26.715  | 10.581       | 13.743       | 12.597       |
| Story10 | 24.745  | 9.773        | 12.733       | 11.737       |
| Story9  | 22.582  | 8.95         | 11.698       | 10.846       |
| Story8  | 20.267  | 8.125        | 10.653       | 9.938        |
| Story7  | 17.836  | 7.308        | 9.611        | 9.028        |
| Story6  | 15.325  | 6.512        | 8.588        | 8.129        |

ISO 9001:2008 Certified Journal Page 2443 L



## International Research Journal of Engineering and Technology (IRJET) e-Is

Volume: 06 Issue: 04 | Apr 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

| Story5 | 12.764 | 5.747 | 7.596 | 7.256 |
|--------|--------|-------|-------|-------|
| Story4 | 10.18  | 5.026 | 6.65  | 6.421 |
| Story3 | 7.597  | 4.359 | 5.762 | 5.638 |
| Story2 | 5.035  | 3.77  | 4.955 | 4.93  |
| Story1 | 2.512  | 3.17  | 4.14  | 4.199 |

Max. Storey displacement (mm) comparison in Y direction-



#### 5.3 Fundamental time periods-

According to IS 1893:2002 it is the first(longest) modal time period of vibration.

5.3.1Fundamental time period (S) comparison-The table and the graph below shows the comparison of various bracing system with bare frame in terms of fundamental time period.

|             | WITHOUT | x       | V       | INVERTED<br>V |
|-------------|---------|---------|---------|---------------|
| MODAL       | BRACING | BRACING | BRACING | BRACING       |
| Modal 1     | 2.113   | 0.993   | 1.104   | 1.079         |
| Modal 2     | 1.891   | 0.89    | 0.959   | 0.986         |
| Modal 3     | 1.764   | 0.644   | 0.675   | 0.691         |
| Modal 4     | 0.697   | 0.326   | 0.366   | 0.362         |
| Modal 5     | 0.619   | 0.297   | 0.316   | 0.332         |
| Modal 6     | 0.583   | 0.139   | 0.17    | 0.182         |
| Modal 7     | 0.404   | 0.134   | 0.169   | 0.169         |
| Modal 8     | 0.355   | 0.13    | 0.145   | 0.162         |
| Modal 9     | 0.343   | 0.085   | 0.112   | 0.111         |
| Modal<br>10 | 0.284   | 0.084   | 0.095   | 0.108         |
| Modal<br>11 | 0.247   | 0.073   | 0.086   | 0.098         |
| Modal<br>12 | 0.24    | 0.063   | 0.083   | 0.083         |

Fundamental time period (S) comparison



#### 5.4 Storey stiffness

As per IS 1893:2002 the lateral stiffness is less than 70 percent of that in the storey above or less than 80 percent of average lateral stiffness of the three storey above.

5.4.1Max.Storey stifness (kN/m) comparison in x directionthe table and graph below shows the comparison of various bracing system with bare frame in terms of storey stiffness in X direction.

| NO OF<br>STOREY | WITHOUT<br>BRACING | X<br>BRACING | V<br>BRACING | INVERTED<br>V BRACING |
|-----------------|--------------------|--------------|--------------|-----------------------|
| Story15         | 82225.893          | 201749.63    | 165111.89    | 179165.8              |
| Story14         | 113846.64          | 373293.98    | 306364.7     | 316707.3              |
| Story13         | 126534.47          | 501809.39    | 412105.18    | 411757.6              |
| Story12         | 133531.57          | 601861.5     | 494022.47    | 481678                |
| Story11         | 138074.29          | 683217.72    | 560090.31    | 536175.6              |
| Story10         | 141383.28          | 752901       | 616125.72    | 581487.3              |
| Story9          | 144031.15          | 816253.48    | 666559.5     | 621892.3              |
| Story8          | 146339.62          | 877773.32    | 715104.71    | 660695.7              |
| Story7          | 148514.22          | 941771.95    | 765284.54    | 700841.2              |
| Story6          | 150703.98          | 1013015.1    | 820943.82    | 745401.4              |
| Story5          | 153036.45          | 1097900.6    | 887210.06    | 798351.3              |
| Story4          | 155659.05          | 1203792.2    | 969674.53    | 863782                |
| Story3          | 159033.88          | 1366816.7    | 1098192.5    | 968549.9              |
| Story2          | 165553.96          | 1392896.2    | 1102921.2    | 911152.3              |
| Story1          | 191139.93          | 161702.39    | 259663.03    | 252550.7              |

Max.Storey stifness (kN/m) comparison in x direction-



International Research Journal of Engineering and Technology (IRJET) e-ISSN

Volume: 06 Issue: 04 | Apr 2019





5.4.2Max.Storey stifness (kN/m) comparison in Y direction-the table and graph below shows the comparison of various bracing system with bare frame in terms of storey stiffness in Y direction.

|         |           |           |           | INVERTED  |
|---------|-----------|-----------|-----------|-----------|
| NO OF   | WITHOUT   | Х         | V         | V         |
| STOREY  | BRACING   | BRACING   | BRACING   | BRACING   |
| Story15 | 72684.213 | 202627.23 | 163480.93 | 177941.84 |
| Story14 | 96586.265 | 375344.8  | 291989.22 | 313435.62 |
| Story13 | 105880.63 | 504836.59 | 382069.79 | 406758.85 |
| Story12 | 111006.47 | 605800.18 | 448897.84 | 475112.96 |
| Story11 | 114314.96 | 687972.52 | 501129.39 | 528233.64 |
| Story10 | 116709.24 | 758416.06 | 544362.17 | 572292.24 |
| Story9  | 118614.25 | 822505.88 | 582445.61 | 611505.59 |
| Story8  | 120267.07 | 884780.63 | 618311.46 | 649109.94 |
| Story7  | 121817.56 | 949601.85 | 654481.54 | 687972.12 |
| Story6  | 123372.44 | 1021775.5 | 693444.68 | 731076.42 |
| Story5  | 125018.23 | 1107918.2 | 738182.25 | 782244.12 |
| Story4  | 126826.98 | 1214374.3 | 791565.06 | 845682.99 |
| Story3  | 128924.25 | 1386994.3 | 870299.17 | 944067.29 |
| Story2  | 131374.3  | 1366867.2 | 850370.28 | 916639.61 |
| Story1  | 132134.35 | 258920.79 | 161354.81 | 159764.65 |

Max.Storey stifness (kN/m) comparison in Y direction-



#### 6. CONCLUSION

From the above study and results several conclusions can be drawn such as:

- 1) Building with bracing is more earthquake resistance than building without bracing.
- 2) Steel bracing can be used to strengthen or retrofit the existing structures.
- 3) Displacements and Drifts are reduced in Building with bracing as compared to building without bracing.
- 4) X bracing is more effective as compared with other bracing for storey drift in x as well as y directions.
- 5) X bracing is also more effective in x and y direction as compared to other bracing for storey displacement.
- 6) The fundamental time period can be also reduced with bracing. Again the X bracing performed better in terms of fundamental time period it gives the lesser value of time period as compared with other bracing.
- 7) For storey stiffness X bracing is more effective in both x and y direction as compared with other bracing system.
- 8) Hence, in comparison to X, V and inverted V bracing, X bracing is the most effective bracing system of all.

#### REFERENCES

- 1. A.H.Salmanpour (2008), "Seismic reliability of concentrically braced steel frames", WCEE.
- 2. S.Sabouri-Ghomi (2008)" Concept improvement of behavior of X bracing systemby using Easy going steel", WCEE.
- 3. E. M.Hines (2010), "Eccentric Braced Frames System Performance" ASCE.
- 4. SandaKoboevic (2012), "Seismic performance of low to moderate heighteccentrically braced steel frames designed for north American seismic condition"ASCE.
- Pooja.B.Suryawanshi (2016), "Analysis of seismic Design steel Braced Frame", ISSN: 2349-784X, Vol. 02, Issue 11 May 2016.
- 6. Swethasunil (2017), "Seismic study of multi-storey RC building with differentbracing", IJIRSET, ISSN:23198753,Vol.6, Issue 5 May 2017.
- 7. IS: 1893 (Part 2): 2016 Criteria for Earthquake Resistant design of structures.
- 8. IS:456: 2000 Plain and Reinforced concrete.

#### BIOGRAPHY



Mr. MohdAtif khan was born in 1996 in Bareilly city. He received his Bachelor of Technology degree in civil engineering from BabuBanarasi Das University, Lucknow in 2017. Now He is pursuing his Master of Technology in Structural Engineering from BabuBanarasi Das University, Lucknow