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Abstract - Compressive sensing is a signal processing 
technique for efficiently acquiring and reconstructing a signal, 
by finding solutions to underdetermined linear systems. 
Reconstruction of under determine signals possess several 
problems in signal processing. In this paper compressive 
sensing was used to reconstruct the speech signals which have 
sparsity in fourier domain. To optimise the signal sample 
reconstruction basis pursuit algorithm was used. The 
algorithm was implemented using MATLAB software and the 
simulation results in the absence of external noise shows that 
the basis pursuit algorithm can be used to reconstruct the 
speech signals which are sampled below the nyquist rate.   
Key Words Compressive sensing, sparsity, incoherent, 
Fourier transform, basis pursuit algorithm. 

 

1.INTRODUCTION  
 
The principal approach for signal reconstruction from its 
estimations is characterized by the Shannon – Nyquist 
sampling  theorem expressing that the sampling rate should 
be atleast double the maximal signal frequency. In the 
discrete case, the quantity of estimations ought to be atleast 
equivalent to the signal length so as to be actually recovered. 
Anyway this methodology may require substantial 
requirement of power, noteworthy detecting time, heavy 
power consumption and vast number of sensors. Another 
impediment of sampling utilizing nyquist rate is that the rate 
at which sampling must be done, may not be viable 
dependably. For instance, in the event of multiband signals 
having wide spectral range, sampling rate proposed by 
nyquist basis might be orders of size higher than the 
specifications of best accessible analog to-digital converter 
(ADC). The sampling rate utilizing Nyquist theorem is 
chosen by the highest frequency component present in 
signal. 

After the renowned Shannon-Nyquist sampling theorem, 
presentation of compressive sensing (CS) resembles a 
noteworthy leap forward in signal handling network. CS was 
presented by Donoho, Candes, Romberg, and Tao in 2004 
[1]-[2]. They have built up it scientific establishment. 
Compressive sensing is a novel methodology that goes past 
the conventional methodology. It demonstrates that a sparse 
signal can be recovered from less number of samples.  

 

2. MOTIVATION 
 
Signals with N-samples can be very much depicted by 
utilizing just M-parameters, where M is much less than N. 
Without a doubt there exist a wide assortment of systems for 
information decrease, utilizing low dimensional models to 
diminish the weight of handling. compressed sensing(CS) 
has turned into a functioning exploration territory as of late 
because of its fascinating theoretical nature and its useful 
utility in a wide scope of uses. CS is a progressive technique 
for sampling that enables a signal to be obtained and 
precisely recovered with altogether less samples than 
required by Nyquist-rate sampling. 

 

3. RESTRICTIONS 

3.1 Sparsity: compressive sensing strategy is connected 

for signals which pursues a few limitations. The 
confinements are sparsity and incoherence. Numerous 
natural signals are compressible by changing them to some 
domain—for example Sounds are minimally represented in 
the frequency domain and pictures in the wavelet domain. 

 Advances in compressive sensing recommend that if the 

signal is meager or compressible, the sampling sprocedure 

would itself be able to be structured to gain just fundamental 
data. Changing a signal to another domain may enable us to 
represent to a sample all the more compactly. Sparse signal 
models enable us to accomplish high rates of compression 
and utilize the information to recuperate the original signal 

from few number of estimations. 

 

 

Fig1:  Sparse representation of signal 

3.2. Incoherence: The concept of coherence was 
introduced in a slightly less general framework and has since 
been used extensively in the field of sparse representations 
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of signals. In particular, it is used as a measure of the ability 
of suboptimal algorithms such as matching pursuit and basis 
pursuit to correctly identify the true representation of a 
sparse signal. To be formal, one defines the coherence or the 
mutual coherence of a matrix A is defined as the maximum 
absolute value of the cross-correlations between the 
columns of A. Formally, let  a1,a2,…..aN be the columns of the 
matrix A, which are assumed to be normalized such that 
aaT=1. The mutual coherence of A is then defined as μ(A). 

μ(A) = i
T
aj| (1) 

We say that a dictionary is incoherent if μ(A) is small. 
Standard results then require that the measurement matrix 
satisfy a strict incoherence property. Coherence is in some 
sense a natural property in the compressed sensing 
framework, for if two columns are closely correlated, it will 
be impossible in general to distinguish whether the energy 
in the signal comes from one or the other. 
  

 

4. FOURIER TRANSFORM 

Discrete Fourier Transform (DFT) is a fundamental 
transform in digital signal processing with applications in 
frequency analysis, signal processing etc. DFT is the 
transformation of the discrete signal taking in time domain 
into its discrete frequency domain representation. The 
periodicity and symmetry properties of DFT are useful for 
compression. The nth DFT coefficient of length N sequence 
x(n) is defined as follows: 

X(k)=  e-2πjnk/N   ;k=0,1..,N-1        (2) 

And its inverse transform(IDFT) as: 

x(n)= e2πjnk/N,n=0,1..,N-1.        (3) 

The number of complex multiplications and additions to 
compute DFT is N2. Moreover fast algorithms exist that 
makes it possible to compute DFT efficiently. This algorithm 
is popularly known as Fast Fourier Transform (FFT) which 
reduces the computational burden to Nlog2N. FFT is 
computational efficient algorithms to compute the DFT and 
its inverse. 

5. GENERATION OF COMPRESSED SIGNAL 

Consider a real-valued, finite length, one-dimensional, 
discrete-time signal x, which can be viewed as an N ×1 
column vector in RN with elements x[n], n = 1, 2,….., N . The 
image or higher-dimensional data can be treated by 
vectorizing it into a long one dimensional vector.  For 
simplicity, assume that the basis is orthonormal. we can 
express any signal x as: 

x= iΨi  or  x=Ψs                (4) 

where s is the N ×1 column vector, x and s are equivalent 
representations of the same signal, with x in the time domain 
and s in the Ψ domain. We will focus on signals that have a 
sparse representation which is fourier transform domain 
here. 

 
Fig 2: Signal in different domains 

The CS acquisition model can be described mathematically 
by 

y=                                        (5)                         

where y is the compressed signal of length m, is 

Gaussian random matrix and x is the input signal 
represented in transformed domain shown in eq (1). The 
compressed signal is recovered back by using only m 
samples. 

6. RECONSTRUCTION OF COMPRESSED SIGNAL 

The inputs to the reconstruction algorithm are the 
measurement vector y and reconstruction matrix Φ and  

y= ΦΨs = Θs          (6) 

 

Fig 3:  Representation of equation (6) 

  
 Where Θ = ΦΨ is an M × N matrix. The measurement 
process is non-adaptive; that is, Φ does not depend in any 
way on the signal x. 

The original signal can be recovered back from compressive 
measurements which is an underdetermined system of 
linear equations and have infinite number of possible 
solutions. In such cases, the unique solution can be obtained 
by posing the reconstruction problem as an l0-optimization 
problem .The l0-optimization problem searches for a solution 
having minimum l0-norm subject to the given constraints. 
This is equivalent to trying all the possibilities to and the 
desired solution. 

Ŝ=arg 1             (7) 

where ||s||1 denotes the l1-norm of s, which represents the 
absolute sum of elements of a vector. The generalized 
expression of a norm is given by (8), from which definition of 
l1 and other relevant norms can be obtained wherever 
required. 

lp: ||x||p = p             (8) 
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Inorder to reconstruct the signal an algorithm should be 
required. In this context basis pursuit algorithm is used. 
 

7. BASIS PURSUIT ALGORITHM 
Basis Pursuit (BP) is a convex optimization problem, which 
searches for a solution having minimum l1-norm, subject to 
the equality constraint given in (4). BP is used in CS to find 
the sparse approximation Ŝ of input signal x, in dictionary or 
reconstruction matrix Θ, from compressive measurements y. 
BP can recover faithfully only if, the measurements are 
noise-free. 

Basis pursuit is the equality-constrained l1 
minimization problem minimize ||x||1 subject to  Ax = b, with 
variable x  Rn, data A  Rm×n, b  Rm, with m<n. Basis pursuit 

is often used as a heuristic for finding a sparse solution to an 
underdetermined system of linear equations. It plays a 
central role in modern statistical signal processing, 
particularly the theory of compressed sensing. 
In ADMM form, basis pursuit can be written as 

Minimize f(x)+||z||1              (9) 
subject to x-z=0                   (10) 

where f is the indicator function of {x Rn |Ax=b}. The 

ADMM algorithm is then 

x k+1    :  ¶(z k - u k)                       (11) 

Z k +1  :  s(x k +1+uk)         (12) 

u k +1  :  u k +x k +1-z k+1          (13) 

where ¶ is the projection on the {x Rn |Ax=b}. The x-

update, when involves solving a linearly constrained 
minimum Euclidean norm problem can be written 
explicitly as  

x k+1: (I-AT(AAT)-1A)(zk-uk)+AT(AAT) -1*b. (14) 

Again the comments on efficient computation by caching a 
factorization of AAT, subsequent projections are much 
cheaper than the first one. We can interpret ADMM for basis 
pursuit as reducing the solution of a least l1 norm problem to 
solving a sequence of minimum Euclidean norm problems. 
 

8. RESULTS AND DISCUSSION 

The speech signal is taken as input. The representation of 

speech signal in MATLAB is shown in fig. 4 

 

 
Fig 4: Input speech signal 

In the above signal, significant information is mainly 
concentrated in frequency ranges between 3500 Hz to10600 
Hz. Hence considering the signal within the range the above 
signal will shown in Fig 5. 

 
Fig 5: Required range of fig 4 

 Fig 5 is given as input, which contains 7100 samples. We 

were reduced them to 3000 samples and basis pursuit 

algorithm is implemented and signal is recovered in 

MATLAB (in the absence of external noise). 

 

 
Fig 6: Results obtained after implementation of algorithm 
 

9. CONCLUSIONS 
 
The undersampled speech signals were successfully 
reconstructed using compressive sensing. The algorithm 
used for optimising the signal was basis pursuit. The 
algorithm uses l1-norm minimisation of overall energy of the 
samples. The simulation results shows that more than 90% 
of the samples were recovered.  
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