

A study on basic preparatory and miscellaneous codes in FANUC control system for CNC machine for polytechnic students

k. Vinoth kumar¹

¹Lecturer, Dept. of Mechanical Engineering, 219 Valivalam Desikar Polytechnic college, Tamil Nadu, India

***______

Abstract – In modern-day manufacturing process accuracy and time plays a vital role. Hence the manufacturing sectors moves towards deploying CNC. Mostly diploma students are employed as CNC programmers and operators. In this paper, basic preparatory and miscellaneous codes in FANUC control system are studied. This gives general idea about CNC FANUC control system for diploma students so that they can practice.

Key Words: CNC machine, FANUC control, preparatory code, miscellaneous codes.

1.Introduction

CNC stands for computer numerical control. In which the machine movements, operations are controlled by set of codes, that have syntax. Most of the CNC programs are coded in FANUC control system. This set of codes in total called as part program, this part program is a collection of words, characters, numerricals and are called as blocks. A set of blocks that describe a profile of a product is called as part program. Usually the part program contains codes, which are machine control and tool control.

1.1 Part program format

Part program is the set of instructions that are manually written by the programmer according to the job given in the blue print.

The part program format is given in the following table-1

Symbol	Meaning		
Ν	Block number		
G	Preparatory code / function		
X , Y, Z, A,B,C	Coordinates data / axes		
F	Feed		
S	Spindle speed		
Т	Tool number / designation		
М	Miscellaneous codes/ functions		

Table-1

1.2 Basic terminologies

Sequence number- this is also called as block number and every program line starts with sequence or block number. This numbers are used while performing subprogram, mirroring and canned cycles.

Coordinate system- it is essential to apply coordinate system for machining in CNC machines. This is the process of identification and designating various axes in the machine. The axes may be vertical, horizontal and or traverse.

Datum points- these are the reference points for various operations, tool offset settings which is fixed by the manufacturer and by the programmer. Some of the datum points are machine zero, work zero, tool length reference plane and tool offsets.

CNC dimensioning- this deals with where program to be started and end with reference to work zero points. There are two types of dimensioning

- \triangleright Absolute mode or fixed zero mode
- \triangleright Incremental mode or floating zero mode

2. List of basic G codes, meaning and syntax

Some of the basic and important G codes, their meaning and syntax is given in the following table-2

	ble	-2
--	-----	----

G code	Meaning	Syntax
G00	Rapid traverse- tool moves in maximum speed as set by the manufacturer- this command must be used when no machining is carried out.	GOO XYZ X Y- end point of X Y coordinates
G01	Linear interpolation- tool moves in linear path	G01 XY X Y – end point coordinates

International Research Journal of Engineering and Technology (IRJET)

Volume: 06 Issue: 05 | May 2019

www.irjet.net

G02	Circular interpolation- clockwise direction- the tool moves in a curved path in clockwise direction	G02 $X_1Y_1X_2Y_2RF$ $X_1 Y_1$ - end point of arc X Y coordinates $X_2 Y_2$ – centre point of arc XY coordinates R- radius of arc F- feed – to be reduced while performing arc		
G03	Circular interpolation- counter clockwise direction- the tool moves in a curved path in counter clockwise direction	$\begin{array}{l} \textbf{G03X_1Y_1.X_2Y_2RF}\\ X_1 Y_1- end point of arc X Y coordinates\\ X_2 Y_2 - centre point of arc XY coordinates\\ R- radius of arc\\ F- feed - to be reduced while performing arc \end{array}$		
G20	All input values in INCH	Inch data		
G21	All input values in MILLIMETERS	Metric data		
G28	Return to home position	When this command is used the machine moves to home position as set by the manufacturer. Simply, This may be considered as reference point return command.		
G40	Cutter [milling]/ tool nose [turning]compensati on cancel	Cutter[milling] / tool nose [turning] compensation is cancelled		
G41	Cutter[milling] / tool nose [turning] compensation LEFT	Cutter[milling] / tool nose [turning] compensation is provided on LEFT side.		
G42	Cutter[milling] / tool nose [turning] compensation RIGHT	Cutter[milling] / tool nose [turning] compensation is provided on RIGHT side.		
G98	Feed rate per minute	Mm/min		
G99	Feed rate per revolution	Mm/revolution		

2.1 List of basic M codes, meaning and syntax

Some of the basic and important M codes, their meaning and syntax is given in the following table-3

M code	Meaning	Syntax		
M 00	Program stop	Single command		
M 01	Optional stop	Single command		
M 02	Program end	Single command		
M 03	Spindle ON clockwise	Single command		
M04	Spindle ON counter- clockwise	Single command		
M05	Spindle stop	Single command		
M 06	Tool change	M06 T (tool number)		
M 07	Coolant ON – low pressure	Single command		
M 08	Coolant ON- high pressure	Single command		
M 09	Coolant OFF	Single command		
M 30	Program stop	Single command		
M98	Sub program call	Single command		
M 99	Sub program end	Single command		

Table-3

3. Important canned cycle commands for turning and milling module

Canned cycle:

Are those cycles that are specifically, employed for repetitive tasks such as drilling, profile turning.

3.1 List of canned cycles for turning and milling

Various canned cycles are listed in the following table.

Table-4:	canned cycles
----------	---------------

Code	Used in CNC Machi ne	Meaning / action	Syntax
G 70	Turnin g	Finishing cycle	G70 .PQF P- start block Q- end block F- feed
G71	Turnin g	Multiple stock / rough removal cycle	G71 UR G71 PQUW P- start block Q- end block

| Page 8181

International Research Journal of Engineering and Technology (IRJET)Volume: 06 Issue: 05 | May 2019www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

G73	Turnin	Pattern	U-finishing allowance in X W- finishing allowance in Z	G83	Milling	Peck drilling cycle	G83 XYZRQF X,Y – coordinate points of drill
	g	repeat cycle					Z- depth of hole R- reference point
G74	Turnin	Peck	G74R				F- feed rate
	g	Drilling cycle	G74ZQRF Z- total depth	G84	Milling	Tapping cycle	
			Q- depth/cut R- relief amount	G85	Milling	Reaming cycle	
075	T	Currentine	F- feed rate G75 R	G86, G87,	Milling	Boring cycle	
G75	Turnin g	Grooving cycle	G75 XWQF	G88,G 89			
			R- retraction	G170	Milling	Circular	G170
			X- total depth	G171	0	pocketin	RPQXYZijk
			W- width of groove			g cycle	G171 PSRFBjZ
			Q- depth of cut F- feed rate				R- tool position at start of cycle
G78	Turnin	Multiple	G78 P(m,r,a)QR				P- roughing
	g	turning cycle	G78XZPQF				Q- depth of cut/pass
		cycle	m- repetitive count in finishing (1 to 99)				X,Y,Z- coordinate points of center of pocket
			r- chamfering amount				i,j – finishing allowance
			a- Angle of thread				R- radius of circular pocket
			Q- minimum cutting depth				P- cutter width percentage
			R- finishing allowance X – final depth of thread (S- spindle speed during roughing
			minor diameter)				R- feed in Z during roughing
			Z- length of thread				F- feed in X,Y during roughing
			P-height of thread as radius value in microns				B- spindle speed during finishing
			Q- depth of thread in first cut				j- finishing feed.
			as radius value in microns	G172	Milling	Rectangu	G172
<u> </u>	Turnin	Cannad	F- pitch	G173		lar pocketin	ijkPQRXYz G173jkPTSRFB
G80	Turnin g/ Milling	Canned cycle cancelled	Single command			g cycle	i,j – dimension of pocket in
G81	Milling	Drilling	G83 XYZRQF				X,Y direction
001	Mining	cycle	X,Y – coordinate points of				k- corner radius
		-	drill				P- roughing
			Z- depth of hole				Q- depth of cut/pass
			R- reference point				R- absolute depth from surface.
G82	Milling	Counter	F- feed rate				X,Y- pocket corner
002	·····ii	sinking &					coordinates
		counter					Z- base of pocket i,k-side and base finishing
		boring cycle					allowance

International Research Journal of Engineering and Technology (IRJET)

Volume: 06 Issue: 05 | May 2019

www.irjet.net

P- cutter width percentage
T- tool number
S- spindle speed during roughing
R- roughing spindle feed in Z
F- roughing feed in X,Y
B- spindle speed during finishing
j- finishing feed

3.2 Special commands

Since CNC machines are employed for accurate, fast and complex shapes, there are special types of commands that can be used for reducing the machining, programming time and for error free operations. Some of such commands are listed below

- Mirroring
- Sub- programs / Sub- routines
- sub programs: These are small programs that specifies the actual profile and machining path. They are stored separately and can be called in main program as and when required. They can be understood as mini-programs inside a main program.

Syntax

L1234 [sub program address]

.....

.....[sub program statements]

.....

M99 [sub program end].

Calling sub-program in main program

Main program

```
.....
```

M98 L1234 P2 [calling sub program with address and number of repetitions as passes P]

Main program

.....

•••••

Mirroring

This command is employed in milling, in which, a profile in a single quadrant [for example, I quadrant] can be mirrored in II, III and IV quadrants with offset distances in X or Y or in both X&Y coordinates.

Syntax

M70 mirror in X ON M71 mirror in Y ON M80 mirror in X OFF M81 mirror in Y OFF

While operating these commands, it has to be coordinated with respective sub program.

For example,

While performing mirror in X axix, the command sequence is M70

M98 sub program address/ identity

M71

And the same sequence to be followed for mirror in Y axis ans so on.

4. CONCLUSIONS

In this paper, various basic commands used in a FANUC controlled CNC machine are studied with meaning and syntax in a lucid manner. This paper gives bird's eye view for beginners specifically for diploma students. By practicing these basic commands, they can develop basic knowledge about syntax and operations. More over the programing skills are enhanced for beginners pursuing diploma.

REFERENCES

- [1] CAD/CAM/CIM by R.Radhakrishnan, S.Subramaniyan, New age international pvt limited.
- [2] CAD/CAM by Miller.P.Groover , Emony Zimmers, Jr. prentice Hall of India pvt limited.
- [3] CAD/CAM principles and applications, Dr.P.N.Rao, Tata McGraw Hill publishing company limited.
- [4] Computer control of manufacturing systems, Yoram Korean, McGraw Hill book
- [5] Automation, production systems and computer integrated manufacturing, Mikell P Groover, Pearson education Asia.

Author Photo

