

e-ISSN: 2395-0056 p-ISSN: 2395-0072

# STUDY ON BEHAVIOUR OF RETROFITTED RC BEAM-COLUMN EXTERIOR JOINTS WITH GFRP WRAPPING

# E. VAISHNAVI<sup>1</sup>, <sup>2</sup>Mr. S.S. JANAGAN<sup>2</sup>, Mr. K. SOUNDHIRARAJAN<sup>3</sup>

<sup>1</sup>PG Scolar, ME., (Structural Engg,) Department of Civil Engineering, Gnanamani College of Engineering, Namakkal <sup>2,3</sup>Assistant Professor, Department of Civil Engineering, Gnanamani College of Engineering, Namakkal Tamilnadu, India

\*\*\*

**Abstract** - The issue of upgrading the present technology infrastructure has been one in every of nice importance for over a decade. Deterioration of bridge decks, beams, girders and columns, buildings, and alternative is also attributed to ageing, environmentally induced degradation, poor initial design and construction, lack of maintenance, and to accidental events such as earthquakes. One in every of the techniques of strengthening of the RC structural members is through confinement with a composite enclosure. This external confinement of concrete by high strengthend chemical compond fiber reinforced polymer (FRP) composite will considerably enhance the strength and ductility and will result in large energy absorption capability of structural members. FRP material, that area unit out there within the type of sheet, area unit being employed to strengthen a spread of RC components to boost the flexural, shear, and axial load carrying capability of those components. An experimental investigation of the behavior of retrofitted FRP wrapped exterior beam-column joints with particularization as IS 13920: per 1993 below seismal conditions is given. The experimental study on exterior beam-column joint of a multistory reinforced concrete building (G+4 storey) in Chennai Zone falling under the seismic Zone – III has been analyzed using STADD. Pro. The specimens were desianed for seismal load in keeping with IS 1893(Part-I): 2002 & IS 13920: 1993. The take a look at specimen is reduced to *1 fifth model of beam-column joint from example specimen.* confinement and beam stirrups square Column measure provided closely in joint region in keeping with IS 13920: 1993. Three specimens were cast and tested to during the present investigation. failure One *is management specimen, take* a look at up to post final load. Another two specimen test up to 70% of the ultimate load and those specimens were retrofitted with GFRP wrapping.

Key Words: Beam-column joint, GFRP, Seismic Retrofitting

# 1. INTRODUCTION

The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes everywhere the globe has highlighted the implication of poor performance of RC beam-column joints. RC beam-column joints in a reinforced concrete moment resisting frame are crucial

zones for transfer of loads, effectively between the connecting elements (i.e. beams and columns) in the structure. In the analysis of concrete moment resisting frames, the joints area unit typically assumed as rigid. In Indian apply, the joint is sometimes neglected for specific style attentively being restricted to provision of sufficient anchorage for longitudinal beam reinforcement. This may be acceptable once the frame is not subjected to masses. The poor design observe of beam-column joints is combined by the high demand obligatory by the conterminous flexural members (beams and columns) with in the event of mobilizing their inflexible capacities to dissipate seismic energy.

# **2. OBJECTIVE**

- In order to increase the strength of beam column joint by using glass fibre reinforced polymer.
- In order to reduce the failure on beam column joint, similarly to attain the maximum strength.
- The use of glass fiber reinforced polymer into joint will enhance the strength of the joint similar to its original strength.

# 3. ANALYSIS OF BUILDING

### Table 3.1 Analysis of building

| Type of structure | Multi-storey rigid jointed<br>plane frame (Special RC<br>moment resisting frame)                                          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|
| Seismic zone      | III (Chennai)                                                                                                             |
| Number of stories | Five (G+4)                                                                                                                |
| Floor height      | 3.2 m                                                                                                                     |
| Materials         | M 20 Concrete, Fe 415 Steel                                                                                               |
| Size of Columns   | Rect 0.53 x 0.30, Rect 0.76 x<br>0.30, Rect 0.45 x 0.30, Rect<br>0.45 x 0.23, Rect 0.64 x<br>0.30, Rect 0.60 x 0.40, Rect |



|                             | 0.30x 0.23, Rect 0.38 x 0.23.                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|
| Size of Beams               | Rect 0.53 x 0.23, Rect 0.30 x<br>0.23, Rect 0.60 x 0.23, Rect<br>0.45 x 0.23, Rect 0.23 x<br>0.23, Rect 0.38 x 0.23. |
| Depth of slab               | 150 mm                                                                                                               |
| Type of soil                | Medium                                                                                                               |
| Foundation<br>depth         | 2 m                                                                                                                  |
| Live load on each<br>floor  | 3 kN/m <sup>2</sup>                                                                                                  |
| Live load on roof           | 1.5 kN/ m <sup>2</sup>                                                                                               |
| Floor finishes              | 1.2 kN/ m <sup>2</sup>                                                                                               |
| Seismic analysis and design | As per IS 1893(Part-I):<br>2002 and IS 13920: 1993.                                                                  |

# 4. NATURAL PERIOD OTHER FACTORS AND LATERAL LOAD OF A PROPOSED BUILDING

## Table 4.1 Loads on proposed building

| Natural period (T)                                          | 0.38 sec (X-Dir), 0.22 |
|-------------------------------------------------------------|------------------------|
|                                                             | sec (Z-Dir)            |
| Damping                                                     | 5%                     |
| S <sub>a</sub> /g                                           | 2.5                    |
| Zone Factor                                                 | 0.16                   |
| Importance factor (I)                                       | 1.0                    |
| for residential building                                    |                        |
| Response reduction                                          | 5.0                    |
| factor (R) for SMRF                                         |                        |
| Base shear (V <sub>b</sub> )                                | 1460.84 KN             |
| Lateral load on building (Q <sub>i</sub> ) For X – Directio |                        |
| Ground floor (Q1)                                           | 30.71 KN               |
| First floor (Q <sub>2</sub> )                               | 122.93 KN              |
| Second floor (Q <sub>3</sub> )                              | 276.60 KN              |
| Third floor (Q <sub>4</sub> )                               | 491.73 KN              |
| Fourth floor (Q <sub>5</sub> )                              | 540 KN                 |
| For Z – D                                                   | Direction,             |
| Ground floor (Q <sub>1</sub> )                              | 40 KN                  |
| First floor (Q <sub>2</sub> )                               | 160 KN                 |
| Second floor (Q <sub>3</sub> )                              | 360 KN                 |
| Third floor (Q <sub>4</sub> )                               | 640 KN                 |
| Fourth floor (Q <sub>5</sub> )                              | 702 KN                 |

## **5. ANALYSIS RESULT**

Results obtained from the analysis, it is concluded that, the maximum moment occurred at the ground floor roof level. So the exterior beam-column joint in the ground floor roof level was to be taken for experimental program. This joint will reduced to  $1/5^{th}$  scale for the experimental program.

### Table 5.1 Dimension details of prototype & model

| PROTOTYPE                  | 1/5 <sup>th</sup> MODEL |
|----------------------------|-------------------------|
| For Beam:                  | For Beam:               |
| Size : 230 x 600 x 4290 mm | Size : 150 x 200 x 430  |
| For Column:                | mm                      |
| Size : 400 x 600 x 3200 mm | For Column:             |
|                            | Size : 150 x 300 x 640  |
|                            | mm                      |

### 6. MATERIAL USED

## 6.1CEMENT:

#### **Table 6.1 Properties of cement**

| Type of      | Specific | Initial setting |
|--------------|----------|-----------------|
| Cement       | gravity  | time            |
| OPC-53 grade | 3.15     | 30 minutes      |

### **6.2 COARSE AGGREGATE**

#### Table 6.2 Properties of coarse aggregate

| Size of aggregate    | Specific gravity |
|----------------------|------------------|
| Passing through 20mm | 2.70             |
| sieve                |                  |

# 6.3 FINE AGGREGATE

#### Table 6.3 Properties of fine aggregate

| Size of aggregate    | Specific gravity |
|----------------------|------------------|
| Passing through 20mm | 2.70             |
| sieve                |                  |

# **6.4 GLASS FIBER REINFORCED POLYMER**

### Table 6.4 Properties of Glass fibre reinforced polymer

| Material properties   | Glass Fibre Reinforced<br>Polymer |
|-----------------------|-----------------------------------|
| Elastic modulus (MPa) | 17900                             |
| Poisson's ratio       | 0.25                              |

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 06 Issue: 05 | May 2019

www.irjet.net

# 7. LOADING MEASUREMENT

## **7.1 LOAD DEFLECTION BEHAVIOUR**

(a). Forward Cycles for Control Specimen ( $\Delta y = 2.6$  mm)

| Cycle<br>No | Max. Load in kN | Max. Deflection in mm |
|-------------|-----------------|-----------------------|
| 1           | 10              | 0.48                  |
| 2           | 20              | 1.51                  |
| 3           | 30              | 1.71                  |
| 4           | 40              | 3.16                  |
| 5           | 50              | 8.30                  |
| 6           | 60              | 15.42                 |

(b). Reverse Cycles for Control Specimen ( $\Delta y = 3.1$  mm)

| Cycle<br>No | Max. Load in kN | Max. Deflection in mm |
|-------------|-----------------|-----------------------|
| 1           | 10              | 0.83                  |
| 2           | 20              | 1.83                  |
| 3           | 30              | 3.49                  |
| 4           | 40              | 6.48                  |
| 5           | 50              | 13.9                  |

#### Table 7.1 Experimental Results of RC Beam-Column Joint

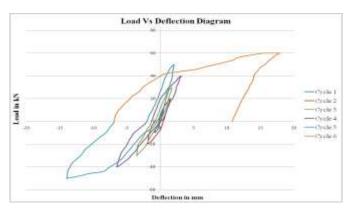
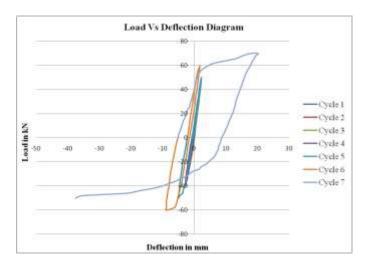



Figure 7.1 Load-Deflection Diagram

# 8. BEHAVIOUR OF GFRP WRAPPED BEAM-COLUMN JOINT

## (a). Forward Cycles for D70GFRP1 ( $\Delta y = 1.8 \text{ mm}$ )


| Cycle<br>No | Max. Load in kN | Max. Deflection in |
|-------------|-----------------|--------------------|
| No          |                 | mm                 |
| 1           | 10              | 0.32               |
| 2           | 20              | 0.53               |
| 3           | 30              | 1.04               |
| 4           | 40              | 1.15               |

| 5 | 50 | 1.13 |
|---|----|------|
| 6 | 60 | 1.85 |
| 7 | 70 | 6.3  |

# (b). Reverse Cycles for D70GFRP1 ( $\Delta y = 2.2 \text{ mm}$ )

#### Table 8.1 Experimental Results of GFRP Beam-Column Joint for D70GFRP1

| Cycle<br>No | Max. Load in kN | Max. Deflection in mm |  |
|-------------|-----------------|-----------------------|--|
| 1           | 10              | 0.26                  |  |
| 2           | 20              | 0.86                  |  |
| 3           | 30              | 1.8                   |  |
| 4           | 40              | 2.54                  |  |
| 5           | 50              | 3.81                  |  |
| 6           | 60              | 5.24                  |  |
| 7           | 70              | 29.5                  |  |



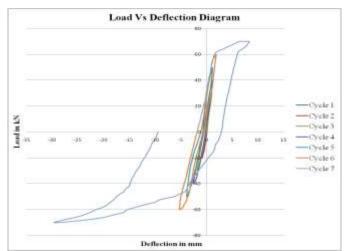
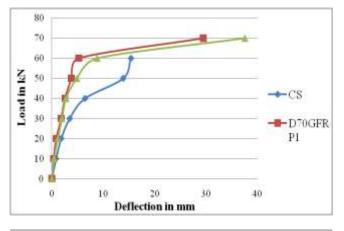




Figure 8.1 Load-Deflection Diagram for both D70GFRP1 and D70GFRP2 specimen

L

# 9. COMPARSION RESULT

#### 9.1 DEFLECTION BEHAVIOUR OF BEAM-COLUMN JOINT



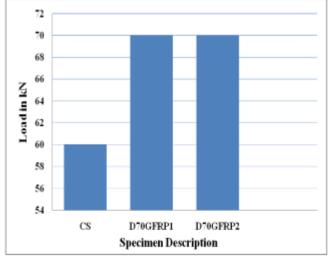



Figure 9.1 Equivalent Static Load - Deflection Diagram

# Table 9.1 Comparison results for Conventional &Retrofitted Specimens

| SI.<br>No | Paramete<br>rs of the                 | Control<br>specimen | Retrofitted specimens                             |                                                   |
|-----------|---------------------------------------|---------------------|---------------------------------------------------|---------------------------------------------------|
|           | specimen                              | (CS)                | Single<br>layer<br>specime<br>n<br>(D70GFR<br>P1) | Double<br>layer<br>specime<br>n<br>(D70GF<br>RP2) |
| 1         | Load<br>carrying<br>capacity<br>in kN | 60                  | 70                                                | 70                                                |
| 2         | ductility<br>factor                   | 6.19                | 9.31                                              | 10.45                                             |

### **10. CONCLUSIONS**

An experimental study was carried out on three numbers of Beam-Column joints which were tested undercyclic loading. Based on the investigation reported in earlier chapters, the following conclusions are drawn.

The structural behaviour of RCC beam-column joint exterior type has been studied analytically by using standard software package STAAD Pro.

In general, the retrofitted specimen has been able to regain its original strength. The ultimate load carrying capacity of retrofitted specimens was considerably 1.17 times greater than conventional concrete specimen.

Retrofitted specimen with single layer wrapping (D70GFRP1) has 60% more energy absorption capacity than control specimen. Double layer wrapping specimen (D70GFRP2) has 2.6 times greater than control specimen.

The ductility factor of the RC beam-column joint has been considerably increased by the way of GFRP wrapping. Single layer wrapping (D70GFRP1) shows 50% more ductile and Double layer wrapping specimen (D70GFRP2) gives 68.82% more ductile than conventional specimen.

### REFERENCES

- Halil Sezen, M (2012), "Repair and Strengthening of Reinforced Concrete Beam-Column Joints with Fibre-Reinforced Polymer Composites." Journal of composites for construction, Vol.No.16, pp. 499-506.
- [2] Kien Le-Trung and Ze-Jun, (2010) "Experimental investigation to strengthen the shear capacity of beam column joints using Carbon Fiber Reinforced Polymer materials" Journal of Structural Engineering, Vol.No. 58, pp. 1297-1305.
- [3] Lee.W.T ,Y.J. Chiou and Shih. M.H. (2010), "Reinforced concrete beam-column joint strengthened with carbon fiber reinforced polymer." Journal of Composite Structures, Vol.No.92, pp.48-60.
- [4] Lakshmi.G.A and Ramesh.G (2008), "Investigation on strengthening of beam column joints under cyclic excitation using FRP composites". International journal of Civil and Structural Engineering, Volume 1, No 2, pp. 65-78.
- [5] Gencoglu. M and Mobasher. B (2007), "The Strengthening of the Deficient RC Exterior Beam-Column Joints Using CFRP for Seismic Excitation." Structural Engineering, Mechanics and Computation, Vol.No.03, pp. 1993-1998.



- [6] Bhijit Mukherjee, A, and Joshi, M. (2005). "FRPC reinforced concrete beam column joints under cyclic excitation." Composite structures, 70(2), pp.185-199.
- [7] Bajpal.K.K, Murthy.C.V.R and Durgesh C Rai (2004), "Influence of fibre wrap retrofitting on gravity designed RC beam-column joints under cyclic loading." ACI Structural Journal.
- [8] Ahmed Ghobarah, A. Said (2002), "Shear strengthening of beam-column joints". Engineering Structures Vol.No. 24, pp. 881–888.