

Model and Structural Analysis of Two-Wheeler (Motorcycle) Rim using ANSYS Software

Kuldip Kumar¹, Manas Raj Mishra², Devendra Singh Chauhan³

¹M.Tech Scholar, Department of Mechanical Engineering, Rama University, Kanpur (U.P), India ²Asst. Professor, Faculty of Engg. & Technology, Rama University, Kanpur (U.P), India ³Asst. Professor, Department of Mechanical Engineering, Axis College, Kanpur (U.P), India ***

Abstract - Wheels play a vital role of vehicle suspension which guides the static and dynamic load during vehicle action. Conventional materials are used to produce the wheel rim, these are heavy in weight due to this over all weight of the vehicle is increases. Heavy weight of vehicle effect the fuel consumption, light weight vehicle delivers high mileage as compare to high weight vehicle with same capacity engine. Today the prices of fuels are increasing day by day so there are huge demands of cheep and fuel efficient vehicle. Regarding this scenario, reduction in weight of vehicle is the best step for achievement of cheep and fuel efficient vehicle. In a motorcycle engine is the heaviest unit after this wheel of motor cycle is the second heaviest unit. Wheel rim can be replaced from conventional materials to composite materials.

Polyetheretherketone (PEEK) is the best composite material for replacement of conventional materials wheel rim. PEEK has unique combination of mechanical properties, resistance to chemicals, wear, fatigue and creep as well as exceptionally high temperature resistance, up to 260°C (480°F). PEEK is selected due to their superior mechanical properties, durability and light in weight. In this paper entire wheel rim design for two wheeler rim was chosen and analyzed by applying different load and redesign the wheel rim again to minimize the deformation and material will be changed from aluminum to PEEK

(polyether ether ketone) Wheel rim design for two-wheeler is made by using NX 7.5, and Analysis has been done by ANSYS 14, software to determine the various stresses, strain and fatigue life of the wheel rim. The software has helped us really to achieve our goal. As the whole analysis is done by the means of software therefore result and observations are trustworthy

Key Words: Aluminium Alloy, Wheel Rim, PEEK, *ANSYS 14, etc.*

1. INTRODUCTION

and meet with our expectation.

The wheel is a part that permits efficient movement of an object across a surface where there is a force pressing the object to the surface. The spoke wheel rim assembly contributes the major weight addition in motorcycle after the engine. To overcome this disadvantage alloy wheels are invented. While comparing all alloy materials aluminum alloy is the best of other alloy materials [1].

The design of a motorcycle wheel contains several complexes and attempt has been made to meet the requirements of original equipment manufacturers (OEMs).By using UNIGRAPHICS (NX 7.5), it involves with the drawing requirements and design of a motorcycle wheel. The design in 6 degree of freedom (DOF) for characteristics and durability has been developed [2].

Automobile industry has a pressure for reduction in cost and to produce fuel efficient vehicles. Composite materials are the combination of two or more metals or nonmetals is known as composite materials. Generally composite materials are lighter and stronger than conventional metals. Thermoplastic composite materials consist of thermoplastic resins as matrix, reinforcement with traditional fibers as thermo sets matrix. They have shown great promise as materials for current and future automotive, aerospace and industrial applications. Composite material wheel is different from the light alloy wheel [3] and it is developed mainly for low weight. However, this wheel has inadequate consistency against heat and for best strength. PEEK (polyether ether ketone) polymer continues to successfully replace steel, aluminum, bronze, titanium, and other high-performance materials, because it offers an ideal combination of mechanical, thermal and aluminum spokes logical properties, combined with excellent resistance to grease, oils, acids and all other automotive fluids. PEEK is an ideal replacement for Aluminum alloy. PEEK is particularly useful in the automobile industry for its weight.

PEEK is three different types:1. PEEK with 30% Glass fiber,2. PEEK–90 HMF 20% Carbon fiber3. PEEK–90 HMF 40% Carbon fiber

Lighter wheels can improve handling by reducing unstrung mass, allowing suspension to follow the terrain more closely and thus improve grip, however not all alloy wheels are lighter than their steel equivalents. Reduction in overall vehicle mass can also help to reduce fuel consumption [4]. IRJET

International Research Journal of Engineering and Technology (IRJET)e-ISSNVolume: 06 Issue: 05 | May 2019www.irjet.netp-ISSN

e-ISSN: 2395-0056 p-ISSN: 2395-0072

2. EXPERIMENTAL

2.1 Steps used in Design

2.2 Design Processer

Vernier calipers used for measurement of Aluminum alloy wheel rim dimensions. As per the profile dimensions rim is drawn on the screen of the computer using UNIGRAPHICS (NX 7.5). After completion of rim drawing the model is imported in the ANSYS software.

2.3 Aluminium Alloy Wheel Analysis

First of all take the Aluminum alloy material composition i.e. LM 13 Material composition of LM13 is Al-Si (BS: LM13) alloy was used as the matrix material. The alloy contains 11.00 wt.% Si, 1.00wt.% Mg, 1.50 wt.% Ni, 1.00 wt.% Cu, 0.80wt.% Fe, 0.50 wt.% Mn and balance was Al.

Fig-1: 3D Model of Actual Wheel

Table-1: Design Parameters of Aluminum Alloy Wheel

Particulars	dimensions
Rim outer diameter	462mm
Rim width	57mm

Hub diameter144mmSpokes length121mmAngle between two spokes76.510

2.4 Stress Analysis of Actual wheel

Fig-3: Total Deformation in Al-alloy wheel at 250Kg load =0.03652mm.

Fig-4: Total Deformation in Polyetheretherketone wheel at 250Kg = 0.074496mm

International Research Journal of Engineering and Technology (IRJET)e-ISSVolume: 06 Issue: 05 | May 2019www.irjet.netp-ISS

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Fig-5: Equivalent Stress in Polyetheretherketone wheel at 250Kg =23.152Mpa

Fig-6: Total Deformation of PEEK 30% Glass Fiber Wheel at 250Kg (2452.50N) = 0.066889mm

Fig-7: Equivalent Stress in PEEK 30% Glass Fiber Wheel at 250Kg(2452.5 N) = 19.901Mpa

Fig-8: Total Deformation of PEEK90HMF20 Wheel at250Kg (2452.5N) = 0.123558mm

Fig-9: Equivalent Stresses in PEEK 90HMF20 Wheel at 250Kg 2452.5 N = 19.418Mpa

Material	Deformation		Equivalent Stress	
Aluminium Alloy	Min 0.032467mm Max 0.036525mm		22.008Mpa	
			24.76Mpa	
PEEK	Min 0.066219mm		20.579Mpa	
	Max	0.074496mm	23.152Mpa	
PEEK 30% glass	Min	0.059457mm	17.689Mpa	
IIDEI	Max	0.066889mm	19.901Mpa	
PEEK90HMF20 Mir		0.109829 mm	17.26MPa	
	Max	0.123558mm	19.418MPa	

ISO 9001:2008 Certified Journal

International Research Journal of Engineering and Technology (IRJET) e-ISSN

🝸 Volume: 06 Issue: 05 | May 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

PEEK90HMF40	Min	0053907mm	16.766MPa
	Max	0.060645mm	18.861MPa

2.5 Analysis Data of PEEK Material

Table-3: Mechanical Properties of PEEK

Mechanical property	Value	Unit
Density	1320	kg m^-3
Coefficient of Thermal Expansion	0.000046	C^-1
Specific Heat	1470 × 106	J kg^-1 C^-1
Compressive Yield Strength	118 × 106	Pa
Tensile Ultimate Strength	100 × 106	Pa
Reference Temperature	23	С
Young's Modulus	3.6 × 109	Pa
Poisson's Ratio	0.39	
Bulk Modulus	6.9608*1010	Pa
Shear Modulus	1.4 × 109	Ра

2.6 Static Analysis of PEEK-Material

- (1) Maximum load of 250Kg (2452.5N)
- (2) Fix the wheel at the bottom
- (3) Apply load at the center
- (4) Cylindrical support on outer hub area
- (5) Compression only support on rim Circumference

Fig-10: Modified 3D design of alloy wheel

Table-4: Design Parameters of Modified Wheel

Rim outer diameter	462mm
Rim width	57mm
Hub diameter	144mm
Spokes length	121mm
Angle between two spokes	76.510
Spokes thickness	44mm

Fig-11: Total Deformation in Modified wheel of PEEK at Maximum load of 250Kg (2452.5N) = 0.179253 mm

Fig-12: Equivalent Stress in Modified wheel of PEEK at Maximum load of 250Kg (2452.5N) = 17.997MPa

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 06 Issue: 05 | May 2019www.irjet.netp-ISSN: 2395-0072

 NUMAL BOCUTION
 NO
 NO

Fig-13: Total Deformation in PEEK30% Glass Fiber Modified Wheel at Maximum load of 250Kg (2452.5N) = 0.160829mm

Fig-14: Equivalent Stress in PEEK30% Glass Fiber Modified Wheel at Maximum load of 250Kg (2452.5N) =

Fig-15: Total Deformation in PEEK90HMF20 Modified Wheel at Maximum load of 250Kg (2452.5N) = 0.29701mm

Fig-16: Equivalent Stress in PEEK90HMF20 Modified Wheel at Maximum load of 250Kg (2452.5N) = 15.992MPa

Fig-17: Total Deformation in PEEK90HMF40 Modified Wheel at Maximum load of250Kg (2452.5N) = 0.145456mm

Table-5: Result Analysis	of different Material in Modified
	Design

Material	D	eformation	Equivalent Stress
Aluminium	Min	0.078027mm	16.801MPa
Alloy	Max	0.08778mm	18.901MPa
PEEK	Min	0.159336mm	15.997MPa
	Max	0.179253mm	17.997MPa
PEEK 30%	Min	0. mm	14.44MPa

International Research Journal of Engineering and Technology (IRJET) e-I

Volume: 06 Issue: 05 | May 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

glass fiber	Max	0.160829mm	16.245MPa
PEEK90H	Min	0. mm 14.215MPa	
MF20	Max	0.29701mm	15.992MPa
PEEK90H	Min	0. mm	12.621MPa
MF40	Max	0.145456mm	14.198MPa

3. RESULT AND DISCUSSION

Table-6: Comparison Analysis Data of Different Material

Material		Analysis Data of Actual Wheel		Analysis Data of Modified Wheel	
		Total Deformat ion	Equival ent Stress	Total Deformat ion	Equival ent Stress
Alumin	Minim	0.032467	22.008	0.078027	16.801
um	um	mm	MPa	mm	MPa
Alloy	Maxim	0.036525	24.76M	0.08778	18.901
	um	mm	Pa	mm	MPa
PEEK	Minim um	0.066219 mm	20.579 MPa	0. mm	15.997 MPa
	Maxim	0.074496	23.152	0.179253	17.997
	um	mm	MPa	mm	MPa
PEEK	Minim	0.059457	17.689	0. mm	14.44M
With	um	mm	MPa		Pa
30% Glass Fiber	30% Glass Fiber	0.066899 mm	19.901 MPa	0.160829 mm	16.245 MPa
PEEK -	Minim	0.109829	17.26M	0. mm	14.44M
90HMF	um	mm	Pa		Pa
20	Maxim	0.123558	19.418	0.29701	15.992
	um	mm	MPa	mm	MPa
PEEK -	Minim	0.053907	16.766	0. mm	12.621
90HMF	um	mm	MPa		MPa
40	Maxim	0.060645	18.861	0.145456	14.198
	um	mm	MPa	mm	MPa

Table-7: Comparison Data of Weight

Material	Actual Wheel	Modified Wheel	Percentage Reduction in Weight
Aluminum Alloy	5.300Kg	4.956Kg	6.5%
PEEK	2.844Kg	2.361Kg	55.45%
PEEK30% Glass Fiber	3.275Kg	2.719Kg	48.69%
PEEK90HMF20	2.952Kg	2.451Kg	53.75%
PEEK90HMF40	3.125Kg	2.594Kg	51.05%

From the above tables it is clear that modified wheel mass reduction is maximum 55.45 % in PEEK, after this it is 53.75% in PEEK90HMF20, 51.05% in PEEK90HMF40, 48.69% in PEEK30% Glass Fiber and minimum reduction in Aluminum Alloy i.e. 6.5%

3. CONCLUSION

From the above tables & discussion it is clear that PEEK is Best material for the replace of Aluminium material. Weight of Aluminum Wheel: 5.300 Kg Cost of Aluminum Wheel: - 15-20K Weight of Plastic Wheel: - 2.361Kg Cost of Plastic Wheel: - 8-10K Author gets the success to achieve the reduction in wheel rim weight & saving the cost of wheel rim (PEEK) material.

ACKNOWLEDGEMENT

Author wants to say thanks to his guide for their support and guidance. Finally author wants to say thanks to all people who support him directly or indirectly during this work.

REFERENCES

- Emmanuel M Adigio, Ebughni O Nangi. Computer Aided Design and Simulation of Radial Fatigue Test of Automobile Rim Using ANSYS. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). 2014;11(1):68–73.
- [2] Mohammad Zeeshan, Om Prakash Tiwari & Anil Yadav (2018) The design and analysis of a motorcycle wheel by using ansys International Journal of Advance Engineering and Research Development Volume 5, Issue 06, June -2018
- [3] Yadav PH, Ramdasi PG. Optimization of Car Rim Using OptiStruct. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT). 2012;2(3):10–15.

- [4] M. Saran Theja1, M. Vamsi Krishna (2013) Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 2 (Jul. - Aug. 2013)
- [5] Mr. Sasank Shekhar Panda, Mr. Dibya Narayan Behera, Mr. Satya Narayan Tripathy (2016) "modeling and structural analysis of alloy wheel using ANSYS" international journal of engineering sciences & research technology.
- [6] Machine Design Book by R.S khurmi
- [7] K.N.D. Malleswara Rao (2016) "MODEL OPTIMIZATION AND STRUCTURAL ANALYSIS OF CAR RIM" research gate