
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5835

Development Operations for Continuous Delivery

Supritha K1, Badari Nath K2

1Student, Dept. of Computer Science and Engineering, RV College of Engineering, Karnataka, India
2Assistant Professor, Dept. of Computer Science and Engineering, RV College of Engineering, Karnataka, India

---***--

Abstract - Development Operations (DevOps) is a
methodology that promotes development, testing and
deployment to be done in parallel so that applications or
services can be continuously delivered to the customers. The
major change that DevOps brings about is the automation of
manual tasks. This paper discusses the various automation
procedures carried out in a DevOps environment. The paper
demonstrates the use of various continuous integration tools
like Git version control system, Gerrit code review tool, Jenkins
Continuous integration server and SonarQube static code
analyzer. Any piece of code written must be built before testing
and it will be helpful to automate the build procedure to make
it faster and error free. The analysis of the build log files will
give the status of the build and a machine learning approach
has been followed for this purpose. During this process the
accuracies obtained by different supervised machine learning
algorithms has been compared. The paper also talks about
static code analysis with the help of SonarQube to help
maintain the code quality. The methodologies followed in the
paper demonstrate how automation in DevOps saves human
time and eliminates errors. It throws light on the performance
of different machine learning algorithms and provides a
method for code quality maintenance.

Key Words: Development Operations, Continuous
Delivery, SonarQube, Machine Learning, Test Packaging.

1. INTRODUCTION

There is a significant increase in competition in the software
market and hence organizations are focused on dedicating
resources to develop and deliver higher quality products in
an accelerated pace. Development Operations (DevOps) and
Continuous Delivery (CD) play a significant role in this
endeavor. These methods help in delivering products in an
accelerated pace all the while maintaining the quality of the
products. Continuous practices provide several benefits such
as (1) Quick feedback (2) Frequent and reliable releases (3)
Elimination of manual tasks through automation. Many
industrial cases show that continuous practices are making a
significant impact in software development industrial
practices across various sizes and domains of the
organization. The migration to continuous practices might
not be an easy task because many of the tools may not
support the highly complex and challenging nature of these
practices. An organization may have several customers with
a wide variety of requirements. Software’s will be written for
each requirement. Once the software is in use, it will be put

under maintenance. New versions of the software will be
released regularly, and they must be integrated with the
older versions. The changes made in the new version might
be very minute when compared with the older version,
hence only the new changes must be integrated, and this is
where continuous practices comes into picture. Many
organizations will be manufacturing hardware devices for
which the same organization will schedule periodic releases.
For example, in communication networks the base
transceiver stations will have hardware devices for which
the software must be written. The written source code will
have to be continuously monitored if it is meeting the
necessary quality requirements and SonarQube is one such
static code analysis tool. It provides several details about the
code quality like the number of bugs, vulnerabilities, code
smells, technical debt etcetera. Test packaging is one feature
in which all the source code written will have to be build
depending on the various build specifications and based on if
the status of the build (success/ failure) the packaging
activity will be carried out. These packages will have to be
tested and after all the test conditions have been passed the
software will be ready for release. Supervised machine
learning algorithms play an important role in classification
problems. The classification problem in our case is the result
of the build. After the build is completed a build log will be
created and analysis of this log file will indicate if the build is
a success or failure. The parameters that define the status
are considered as attributes and the status as the label.
Several build logs are labeled, and a training and test set is
formed. Machine learning algorithms like decision trees and
logistic regression can be trained with the training data and
tested on the test data. The accuracy thus obtained will tell
the performance of the supervised learning algorithm.

2. Background Study

A brief literature survey was carried out to gain
understanding about various concepts like continuous
practices, machine learning algorithms, technical debt and
SonarQube. Excerpts from a few of the papers/ journal
referred are as follows:

Mojtaba Shahina et. al. give an overall description and
relationship between various continuous practices like
continuous integration, continuous delivery and continuous
deployment. The source code written by the developer will be
committed to a repository. Continuous integration will clone
these repositories in the continuous integration servers to
build and test the code. Continuous delivery ensures that an

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5836

application is always in a production ready state after passing
all automated tests and quality tests. This practice has several
advantages like reduced development risks, lower costs and
faster feedback system. Continuous delivery consists of
acceptance test and manual movement to production.
Continuous deployment automatically and continuously
deploys the application to production or customer
environment. It consists of acceptance test with automatic
movement to production [1].

Carmine Vassallo et. al. have done a study on continuous
refactoring in continuous integration. Continuous refactoring
is the process of simplifying and clarifying the design of an
existing source code without changing its behavior. Some of
the key findings of the study were (1) Continuous integration
is the right context to apply refactoring. (2) Preventing
quality issues is better than fixing. (3) Developers like to
consider the output of static analysis tools while deciding
whether to refactor or not, however the results generated by
these tools might not be accurate which results in the
developer not trusting the tool. The tools must be improved
such that proper warnings are provided as to when
refactoring must be carried out. (4) Developers need to
perform refactoring continuously, but this operation is very
time consuming and dependent on surrounding development
team allocation. Thus, refactoring recommenders and
prioritization approaches should exploit effort and
community related factors while suggesting which
refactoring operations are suitable in a given development
context. (5) The refactoring opportunities must be
summarized by recommenders because some of the
developers were not aware of the refactoring tactics [2].

Qimin Cao et. al. demonstrate a method to analyze web http
log files and predict attacks using Decision trees. Web servers
are prone to attacks because of their high value. Anomaly
detection plays an important role in web security. The log
files can be manually analyzed but the length of the files is too
long, and attack methods are various. Hence the machine
learning method is proposed. The paper proposes a two-level
machine-learning algorithm. The data processing phase will
involve data extraction and data labeling. The decision tree
model is trained to classify normal and anomalous data sets.
The normal data set is manually checked for establishing
multiple Hidden Markov Models (HMM). The experimental
dataset is obtained from real industrial environment. The
experimental analysis shows higher detection rate accuracy
when compared to other models [3].

Makrina Viola Kosti et. al. discuss the methods for technical
debt assessment. Technical debt is somewhat like financial
debt. While development is in progress some code might be
written that is easy to implement at this point of time, but it
will have to be changed later to maintain efficiency. The
efficient code can also be implemented but it might take a
longer duration. The debt that is incurred while
implementing the easy solution is called as technical debt.
The most common ways to assess technical debt is (1)
structural proxies through quality metrics (2) monetized

proxies through the use of Software Quality Assessment
based on Lifecycle Expectations (SQALE). In this paper they
analyze the relationship between the two methods based on
data obtained from 20 open source software projects. A
regression model is built that shows the relationship between
the two methods [4].

3. METHODS

3.1 Experimental Setup

The various tools and programming languages used while
carrying out the experiment is as follows:

 Git Version Control System
 Gerrit Code Review Tool
 SonarQube 7.6 static code analyzer
 MobaXterm Terminal Simulator
 Jenkins Continuous Integration Server
 Python Integrated Development Environment

 Shell Scripting

3.2 Design Modules

The modules that make up the entire system are depicted in
Figure 1.

Fig -1: Design Modules
Chart -1: Name of the chart

Test Packaging

For the test package creation the user or Software
configuration Management engineer will give inputs to the
Jenkins CI server. Jenkins is an open source automation
server written in java programming language. It is used to
run automated scripts without human intervention. Each job
created in Jenkins when run, is called as a build. Jenkins can
be configured to provide users with an interface to enter

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5837

build parameters. Jenkins “Execute Shell” configuration can
be used to specify all the scripts that have to be called for a
job based on the required order. It can also be configured to
send email’s to specified recipients regarding the status of the
build like success or failure. The input for test packaging will
consist of the various build parameters specific to the type of
build. The code that has to be built must be cloned from the
Git repository. Git is a version control system that is used to
hold all the code changes made by developers. All updated
codes are available in the Git repo pertaining to the
organization. If any changes have to be made then the code
must be checked out from the repository and that cloned
workspace has to be used. All changes made can be merged
to existing code with the help of various Git commands, for
example: “git commit” command will commit the changes
made in current workspace to main Git branch in the
repository. Once user input is obtained the “perform build”
component will carry out all the necessary build steps and
generate a log file as output. This log file is analyzed and the
result will indicate the status of the build success/failure. If
the build is successful then the packaging procedure can be
carried out to get packages as an output.

Log File Analysis

The log file that is obtained as output after the build
procedure has to be manually analysed to check if the build
is a failure or a success. Since this procedure can be time
comsuming a machine learning approach is followed. The log
files of few older builds are labelled to form training and test
instances. Once these algorithms are trained, new log files
can be given as input to determine the status of the build in
lesser time. A comaprision of the accuracy of both the
learning models is carried out to determine the best model.

Static Code Analysis

Any code written must be analyzed to determine if it meets
the quality standards. SonarQube is a static code analyzer
that will recursively scan the code file present in each folder
and return the values for various metrics like bugs, code
smells, vulnerabilities etcetera. Based on the results
obtained it can be concluded if the code meets the quality
cutoff or not.

3.3 Flow Chart

Figure 2. gives the flow chart of the entire system. Packaging
and static code analysis is two events that happen in parallel.
For packaging the build environment is first set and build is
performed. The log file that is obtained is analyzed to check
the build status. On successful build packaging operation is
performed and if failure then code must be analyzed to fix
errors. In static code analysis the rules are generated in
SonarQube. Sonar scanner is run for each of the jobs and the
metric values are analyzed. If the values meet the cutoff then

the static code is approved for merged, if not then code
changes have to be made.

Fig – 2: Flow Chart

3.4 Implementation

Gerrit is a code review tool used to see side-by-side
difference viewing and commenting. It is used to make code
review simple and quick and it is used along with Git version
control system. Gerrit allows authorized contributors to
merge changes to the Git repository after review is
completed. The URL’s required for repository clone is
available in Gerrit according to the project. It also displays a
tree structure of the file paths involved in the project
structure. The automation script that has been written to
perform builds will refer Gerrit for cloning repositories.
Jenkins is a continuous integration tool that is used to trigger
jobs periodically or as and when needed. A Jenkins job is
created for this build. Jenkins job can be configured to accept
inputs from the user. The inputs provided for the build are

 Git branch type

 Release number

 Build type

 Build number

 Email id

The user email id is taken as an input parameter to send the
results of the build to the user. The input provided is first
validated and if any parameter does not meet the
requirement then the build will fail. Based on the input
provided by the user the Git repository is cloned. Next the
build environment is set, and the build command is executed.
The output of build completion is obtained in the form of a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5838

build log file. Now this build log file must be analyzed to
determine if the build is a success or not. For this process a
machine learning approach has been followed. The log file is
first subjected to a label data procedure where the file is
searched for the occurrence of three patterns and the size of
the log file is noted. The three patterns are:

 EPSILON build finished without Errors

 Done with: common

 Done with: src

These three patterns and the size of the file form a total of
four attributes and the status of the build forms the label. The
build is a success only if all these three patterns are found
and the size of the file is less than 6MB. If the pattern is
present, then the attribute will be given a binary value 1 and
if not then 0. If the build is successful then the label is 1, else
0. The build log file is given as an input and the output
obtained is a comma-separated file. This procedure is
repeated several times to obtain several rows that can be
classified as training and test dataset. Two supervised
learning algorithms are considered for analyzing the log file

 Decision trees

 Logistic regression

Both the training and test dataset are given, as an input to
both these algorithms and the output is the accuracy of the
algorithm. Accuracy is defined as (total correct classification /
total number of samples) *100. Decision trees provided
better accuracy than logistic regression. Next the input CSV
file provided to the algorithm will return the build status. If
the build is successful, then packaging will be performed else
a failure email will be sent to the user. The packages thus
created will have to be tested and validated before the final
merge.

SonarQube is an open source static code analysis tool. It
depicts the overall health of an application in terms of quality
and hence helps a developer to maintain the quality of code.
Quality profiles service of SonarQube plays and important
role, as this is where all the rules are defined. For example, a
rule can specify that a method should not have cognitive
complexity greater than 15. Sonar-way is the default rule
specified for all projects, but it is best practice to define own
rules depending on the project requirements. The rules must
be formatted in the form of an xml document and they can be
restored in quality profiles. The tags considered in the xml
are:

 Rule Name

 Language

 Repository Key

 Key

 Priority

The rules thus set can be used by a few projects or it can be
set as default so that all projects can use it. Once rules are
defined the projects must be cloned from Git repository to get
a working directory. In the working directory a few files need
not be considered for quality testing and hence these file
folders that must be eliminated forms the exclusions list. A
sonar-project.properties file is created that contains the file
folders in which cppcheck has to be run recursively. The
property file also contains details pertaining to the project
like:

 Project Key

 Project Name

 Project Version

 Project Modules

Cppcheck is an analysis tool for C/C++ code, unlike other
compilers it does not check for syntax errors. It detects errors
and bugs that compilers normally fail to detect. The goal is to
have no false positives. If cppcheck is not run properly in all
modules the errors displayed might be wrong and hence an
automated script will make the job error proof. SonarScanner
is a recommended scanner to analyze projects with
SonarQube. After exclusions are removed and cppcheck is
run, sonar-scanner is launched, and it will perform the
analysis and return the results on SonarQube. The URL
returned by the scanner will display the quality metrics of the
project like:

 Code Smells

 Bugs

 Technical Debt

 Vulnerabilities

A Jenkins job is created with the above-mentioned steps for
each of the projects that need sonar analysis. Figure 3 shows
the overall working of sonar static code analyzer.

Fig – 3: Sonar Analysis

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5839

3.4 Implementation

The build log files that are analyzed using supervised
learning algorithms return two different accuracies. The
accuracies obtained were:

 Decision Trees – 100%
 Logistic regression – 60%

The accuracy obtained in case of decision trees in 100%
because of the limited number of samples. However, decision
trees are giving a better performance when compared to
logistic regression.

SonarScanner is run periodically every time a code commit
happens. The main goal is to be notified if there are any
changes in the quality metrics when a new commit happens.
A job is designed such that the quality metrics of the current
run and previous run is compared and if the values are
greater than the previous run then the job will notify all
required personnel about the increased values and the
developer responsible for introducing the changes. The goal
is to maintain zero values for bugs and vulnerabilities and
lower values for code smells and technical debt. If the new
run gives lower than previous values, then these new values
will become the cutoff. Figure 4 shows the sonar scanner
results on SonarQube. Figure 5 sows the history of previous
scans. Figure 6 shows a graph of code coverage versus
technical debt. It depicts the reliability rating and security
rating.

Fig – 4: SonarQube Results

Fig – 4: SonarQube Results

Fig – 4: SonarQube Results

4. CONCLUSION

This paper throws light on how automation can help reduce
manual tasks in continuous practices. The packaging task
takes lesser time for completion. The various methods and
methodologies that are used and carried out in a day to day
continuous integration practice is demonstrated in this
paper. The machine learning algorithms can be used in other
applications as well if the labeling criteria are changed.
Better accuracy can be obtained if the number of samples is
increased. SonarQube has proven to be an excellent quality
analysis tool and it can be used for projects in other
languages as well if error detection tools other than
cppcheck are used.

REFERENCES

[1] M. Shahin, M. Ali Babar and L. Zhu, "Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices," in IEEE Access, vol. 5, pp. 3909-3943, 2017.

[2] C. Vassallo, F. Palomba and H. C. Gall, "Continuous
Refactoring in CI: A Preliminary Study on the Perceived
Advantages and Barriers," 2018 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Madrid, 2018, pp. 564-568.

[3] Q. Cao, Y. Qiao and Z. Lyu, "Machine learning to detect
anomalies in web log analysis", 2017 3rd IEEE
International Conference on Computer and
Communications (ICCC), Chengdu, 2017, pp. 519-523.

[4] M. V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G.
Pallas, I. Stamelos and L. Angelis, "Technical Debt
Principal Assessment Through Structural Metrics,"
2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),
Vienna, 2017, pp. 329-333.

[5] M. Brandtner, E. Giger and H. Gall, "Supporting
continuous integration by mashing-up software quality
information," 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5840

and Reverse Engineering (CSMR-WCRE), Antwerp,
2014, pp. 184-193.

[6] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A.
Ampatzoglou and L. Angelis, "The Developer's
Dilemma: Factors Affecting the Decision to Repay Code
Debt," 2018 IEEE/ACM International Conference on
Technical Debt (TechDebt), Gothenburg, 2018, pp. 62-
66.

[7] N. A. Ernst, S. Bellomo, I. Ozkaya and R. L. Nord, "What
to Fix? Distinguishing between Design and Non-design
Rules in Automated Tools," 2017 IEEE International
Conference on Software Architecture (ICSA),
Gothenburg, 2017, pp. 165-168.

[8] Y. Lu, X. Mao, T. Wang, G. Yin, Z. Li and H. Wang,
"Poster: Continuous Inspection in the Classroom:
Improving Students' Programming Quality with Social
Coding Methods," 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion
(ICSE-Companion), Gothenburg, 2018, pp. 141-142.

[9] D. Guamán, P. A. Quezada-Sarmiento, L. Barba-Guaman
and L. Enciso, "Use of SQALE and tools for analysis and
identification of code technical debt through static
analysis," 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI), Lisbon,
2017, pp. 1-7.

[10] M. Martignano, "Bounded model checking and abstract
interpretation of large C codebases," 2017 IEEE
International Workshop on Metrology for AeroSpace
(MetroAeroSpace), Padua, 2017, pp. 16-20.

[11] B. Barta, G. Manz, I. Siket and R. Ferenc, "Challenges of
SonarQube Plug-In Maintenance," 2019 IEEE 26th
International Conference on Software Analysis,
Evolution and Reengineering (SANER), Hangzhou,
China, 2019, pp. 574-578.

[12] J. Holvitie and V. Leppänen, "DebtFlag: Technical debt
management with a development environment
integrated tool," 2013 4th International Workshop on
Managing Technical Debt (MTD), San Francisco, CA,
2013, pp. 20-27.

[13] A. Martini, "AnaConDebt: A Tool to Assess and Track
Technical Debt," 2018 IEEE/ACM International
Conference on Technical Debt (TechDebt), Gothenburg,
2018, pp. 55-56.

[14] A. Shapochka and B. Omelayenko, "Practical Technical
Debt Discovery by Matching Patterns in Assessment
Graph," 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD), Raleigh, NC, 2016, pp.
32-35.

[15] P. Sutheebanjard and W. Premchaiswadi, "Fast convert
OR-decision table to decision tree," 2010 Eighth
International Conference on ICT and Knowledge
Engineering, Bangkok, 2010, pp. 37-40.

[16] D. V. Patil and R. S. Bichkar, "A Hybrid Evolutionary
Approach To Construct Optimal Decision Trees With

Large Data Sets," 2006 IEEE International Conference
on Industrial Technology, Mumbai, 2006, pp. 429-433.

[17] Y. Tao, D. Dong and P. Ren, "Notice of Violation of IEEE
Publication Principles Decision Trees Generation Based
on Fault Trees Analysis," 2009 International Forum on
Information Technology and Applications, Chengdu,
2009, pp. 178-180.

[18] Juan Sun and Xi-Zhao Wang, "An initial comparison on
noise resisting between crisp and fuzzy decision trees,"
2005 International Conference on Machine Learning
and Cybernetics, Guangzhou, China, 2005, pp. 2545-
2550 Vol. 4.

[19] H. Xie and F. Shang, "The study of methods for post-
pruning decision trees based on comprehensive
evaluation standard," 2014 11th International
Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), Xiamen, 2014, pp. 903-908.

[20] H. Yang, "Research on Cost Decision of Specialized-
Automobile Manufacturing Enterprise Based on the
Theory of Decision Tree," 2010 International
Conference on Digital Manufacturing & Automation,
Changsha, 2010, pp. 198-203.

[21] X. Chen and R. Ye, "Identification Model of Logistic
Regression Analysis on Listed Firms' Frauds in China,"
2009 Second International Workshop on Knowledge
Discovery and Data Mining, Moscow, 2009, pp. 385-
388.

[22] C. C. M. Chen, H. Schwender, J. Keith, R. Nunkesser, K.
Mengersen and P. Macrossan, "Methods for Identifying
SNP Interactions: A Review on Variations of Logic
Regression, Random Forest and Bayesian Logistic
Regression," in IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 8, no. 6,
pp. 1580-1591, Nov.-Dec. 2011.

[23] R. Serban, A. Kupraszewicz and G. Hu, "Predicting the
characteristics of people living in the South USA using
logistic regression and decision tree," 2011 9th IEEE
International Conference on Industrial Informatics,
Caparica, Lisbon, 2011, pp. 688-693.

[24] R. Ksantini, D. Ziou, B. Colin and F. Dubeau, "Weighted
Pseudometric Discriminatory Power Improvement
Using a Bayesian Logistic Regression Model Based on a
Variational Method," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 2, pp.
253-266, Feb. 2008.

[25] L. Wu and M. Li, "Applying the CG-logistic Regression
Method to Predict the Customer Churn Problem," 2018
5th International Conference on Industrial Economics
System and Industrial Security Engineering (IEIS),
Toronto, ON, 2018, pp. 1-5.

