Comparative Study of Super-Structure Stability Systems for Economic Considerations

Atharva Ramdurgkar ${ }^{1}$, Nikhil Naik ${ }^{2}$, Ms. Anusha P Gowda ${ }^{3}$
1,2Undergraduate Student, Department of Civil Engineering, Reva University, Bangalore-64
${ }^{3}$ Assistant Professor, Department of Civil Engineering, Reva University, Bangalore-64

Abstract

The scope of the study includes analysis and design and comparison of waffle slab, flat slab and conventional slab system. Design of the slab systems are done for different spacing/ grid size of column to find out which grid size of the column spacing or plan area, which slab type is economical. The plan includes $36 \times 36 \mathrm{~m}$ in which variation of column spacing $6 \times 6 \mathrm{~m}, 9 \times 9 \mathrm{~m}, 12 \times 12 \mathrm{~m}$ and vertical variations are 10 story with each storey height being 3.5 m for each system. Code referral basis are IS 456:2000 and IS 875, 1893:2000. Material overuse could be usually done if the sections and rebar quantity provided is in excess, that is either by over reinforcing or excess cross sectional area of elements. Hence to optimize the same, a comparative study of structural analysis for the above mentioned grid spacing is carried out (Limit State), and ultimately the best economical system is found out leading to less consumption of construction materials (10 percent wastage included).

Key Words: Structural systems, Flat slab, Waffle slab, Comparision, Costing

1. INTRODUCTION

Civil engineering has various branches among which structural engineering is a branch related to buildings whose elements are subjected to a bending moment, shear force, vertical, horizontal displacements, axial and shear forces. Analysis of such parameters can be done manually as well but since its a complex task, we rely on software such as ETABS, STAAD PRO, SAFE and many more. Among various softwares used for analysis we have used ETABS and SAFE. ETABS is used for the frame analysis for various cross sections of columns and beams and to find out the resulting shear, torsion, bending moment, deflection of the frame and slab and for the design of the same. In real life commercial construction, client with a property consults the architectural consultancy which further recommends or uses its in-house experts for the respective nature of jobs. Our scope comes under structural part, the available property area is $36 \times 36 \mathrm{~m}$, hypothetically, for the purpose of this project.

2. Literature Review:

K.N. MATE (June 2015) studied about the benefits of flat slab construction, its ease of getting constructed, placing
of formwork and workmanship. This comprehensive study helps us understand the selection of drop panel, sectional sizes, width of panel and detailing of reinforcement. His analysis was done in accordance to IS 456:2000.
D.RAMYA (October 2015) studied the differences in analysis and design of softwares such as STAAD PRO and ETABS. It was found that the reinforcement quantity provided by ETABS was 9.25% less than STAAD PRO hence leading to cheaper construction costs. She had analyzed a G+10 story building for the same.

3. METHODOLOGY

Manual calculations for selection of sections:-

Manual calculations for approximation of sections of members of all three structural systems such as calculations for beam design, column design, membrane slab design, column width drop, stiff slab and punching shear check for the systems were performed.

Modelling, Analysis and Design using ETABS AND SAFE:-

Definition of materials, frame sections, assigning load cases and combinations for the define d load patterns of live load $=3 \mathrm{KN} / \mathrm{m}$

And super imposed load of $2.5 \mathrm{KN} / \mathrm{m}$
Modelling of the sectional members is done and loads are assigned to the structure.

In our case the earthquake zone is taken as in Bangalore's which is zone II and winds speed of Bangalore as $33 \mathrm{~m} / \mathrm{s}$ is considered according to IS19893 :Part 3and 4. Structure is analyzed after assigning of base restraints as fixed and deformations are checked. Limitations of deformations are checked for span/350 or 20 mm whichever is less. Exceeding of limitation of any of the deformation demands to iterate the definition of sections design checks of sections is performed and results are checked for failures. Columns are sometimes subjected to over stress due to PMM ratio and reinforcement required exceeds the reinforcements provided. Beams can be subjected to shear or torsional failure. In all such cases member sections are
redefined. The sections are checked for rebar percentages and preferences of bar diameters are given.

Slab modelling, design and analysis is done in SAFE. Slab sections are checked for excessive deformations and failures due to excessive moments. In flat slab and waffle slab design moments along column and middle strip and along the drop are checked and accordingly required rebar area are provided.

4. Comparison:

After the modelling and analysis is done, the models are checked and comparison of intra-system for centre to centre column spacing of $6 \times 6 \mathrm{~m}, 9 \times 9 \mathrm{~m}$ and $12 \times 12 \mathrm{~m}$ is done.
The best economical intra-system is nominated for inter system comparison to find most economical system, taking into consideration all three systems.

5. Calculations:

Weight of concrete of all the elements segregated according to concrete grade of M30 and M40.
Where, M40 is used for columns .
M30 is used for beam and slab.
Total volume of concrete $=$ Mass of concrete in $\mathrm{Kg} / 2400$
$\mathrm{Kg} / \mathrm{m}^{3}$.
Weights are obtained in KN to convert it into Kg ,
$1 \mathrm{KN}=101.9 \mathrm{Kg}$.
Permissible deflection for Flexural members = Span/ 350 or 20 mm (whichever is less).
In our case deflection only for $6 \times 6 \mathrm{~m} \mathrm{c} / \mathrm{c}$ column spacing goes less than 20 mm i.e 17.14 mm .

For Earthquake load: Calculated as per IS-1893 (part 1): 2002

Seismic Definition

Earthquake zone - III (Z=0.36)
Response reduction factor - 5
Importance Factor - 1 (Very Important Building)
Rock and Soil Site Factor- 2 (Medium Soil)
Type of Structure- 1
Damping - 5\% (0.05)
Soil Type: Medium soil
Natural Time Period ($\left.\mathrm{T}_{\mathrm{a}}\right)-0.075 \mathrm{~h} 0.75\left(\mathrm{~T}_{\mathrm{a}}=0.73199 \mathrm{sec}\right)$

Sl.no	Item description	Rate
1.	CONCRETE	
1.1	M30	Rs. 4,200/- PER CUM
1.2	M40	Rs. 4,800/- PER CUM
$\mathbf{2 .}$	STEEL FE - 415	Rs. 55,000/- PER TONNE

5.1 Design calculations

(for selection of trial cross sections):

1. Design of flat slab(w/drop):

Depth $=1 / \mathrm{d}=26 \times \mathrm{MF} \quad$ (ref IS456 Pg 38)
Consider pt $\%=4 \%$
*Depth d= 177.51 mm .
Over all depth $=200 \mathrm{~mm}$.
$d=200-1 / 2-30$
$\mathrm{D}=165 \mathrm{~mm}$.
$\mathrm{W}=15.75$.

Load Calculations :-

Self wt. Of Slab $=\mathrm{tx} 25=0.2 \times 25=5$.
Floor finish $=2.5$
Dead load $=7.5 \mathrm{KN} / \mathrm{m}$.
Live Load = $3 \mathrm{KN} / \mathrm{m}$.
Total Dead Load $=10.5 \times 1.4=15.75 \mathrm{KN} / \mathrm{m}$.

Stiffness for slab:-

Longer span
For slab $=\mathrm{Ks}=4 \mathrm{EI} / \mathrm{L}=4 \times \mathrm{Ex}\left(\left(6000 \times 200^{3}\right) /(6000 \times 12)\right)$
$=2.6 \times 10^{6}$.
For column $=\mathrm{Kl}=4 \mathrm{EI} / \mathrm{L}=4 \times \mathrm{Ex}((400 \mathrm{x}$
$\left.\left.400^{3}\right) /(6000 \times 12)\right)=2.4380 \times 10^{6}$.
$\mathrm{a}_{\mathrm{c}}=1.066$
Shorter Span
$\mathrm{Ks}=4 \mathrm{EI} / \mathrm{L}=$ same
$\mathrm{Kc}=$ Same
LL/DL $=3 / 7.5=0.1<=0.5$
No need of pattern load check
Total design Moment
$\mathrm{M}_{0}=\mathrm{wln}^{2}=\left(\mathrm{wxlx} \ln ^{2}\right) / \mathrm{l}=425.160$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

REBAR AREA:

	-ve (depth= $162 \mathrm{~mm})$ (MS)	+ve(d= $162 \mathrm{~mm})$ (CS)	-ve(d= $162 \mathrm{~mm})$ (MS)	+ve(d=1 $62 \mathrm{~mm})($ $\mathrm{CS})$
moment	0.75 x 0.65 x M_{0} $=231.64$	0.35 x 0.60 x $\mathrm{M}_{0}=$ 99.78	0.65 x $\mathrm{M}_{0}=$ 77.217	0.35 x $\mathrm{M}_{0}=$ 66.528
Pt(\%)	0.556	0.57	0.433	0.37
Area(m m)	2780	1846.8	1402.92	1199.26

CHECK FOR 2 WAY SHEAR:
$\mathrm{d} / 2=250 / 2=125$
$\mathrm{B}_{0}=550 \times 4=2200 \mathrm{~mm}$
$\mathrm{Vu}=\left(6^{2}-0.55^{2}\right) \times 19.5 .5$
$\mathrm{Vu}=696.10 \mathrm{KN}$
$\mathrm{Tv}=\mathrm{Vu} / \mathrm{b}_{0} \mathrm{~d}=1.2656 \mathrm{~N} / \mathrm{mm}$
FLAT SLAB DESIGN: (6 x 6 m)
Drop $=250 \mathrm{~mm}$ thick
Falt slab $=200 \mathrm{~mm}$ thick
Column $=300 \times 300$
Loads Calculations: DL $=0.2 \times 25=5 \mathrm{kN} / \mathrm{m}$
$\mathrm{LL}=3 \mathrm{kN} / \mathrm{M}$
SDL $=2.5 \mathrm{kN} / \mathrm{M}$
TDL $=7.5 \mathrm{kN} / \mathrm{M}$
Depth of slab $=200 \mathrm{~mm}=\mathrm{D}$
$\mathrm{d}=162 \mathrm{~mm}$
Stiffness(LS = SS)
$\mathrm{K}_{\mathrm{s}}=4 \mathrm{EI} / \mathrm{L}$
$K_{S}=\left(4 \times E \times 6000 \times 200^{3}\right) / 6000 \times 12=9 \times 10^{6}$
$\mathrm{K}_{\mathrm{c}}=4 \mathrm{EI} / \mathrm{L}=\left(4 \times \mathrm{Ex} 400 \times 400^{3}\right) / 12 \times 6000$
$\mathrm{K}_{\mathrm{c}}=4 \mathrm{EI} / \mathrm{L}=1.42 \times 10^{6}$
$\alpha \mathrm{c}=0.157$
LL/DC $=3 / 7.5=0.4<=0.5$
Therefore there is no need for pattern load check.
Tc' $=\mathrm{k}_{\mathrm{s}} \mathrm{x}$ Tc
$\mathrm{K}_{\mathrm{s}}=0.5+300 / 300$
$\mathrm{K}_{\mathrm{s}}=1.5>1.0$
If $\mathrm{k}_{\mathrm{s}}>1$
Consider $\mathrm{k}_{\mathrm{s}}=1$
$\mathrm{Tc}=0.25 \sqrt{ } \mathrm{f}_{\mathrm{c}} \mathrm{k}=0.25 \sqrt{ } 30=7.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Tv}<\mathrm{Tc}$
No shear reinforcement required.
BEAM DESIGN OF 9x9m CONVENTIONAL SLAB:
$\mathrm{Mu}=\mathrm{Mulim}+\mathrm{M}_{2}$
$\mathrm{M}_{2}=\mathrm{Mu}-\mathrm{Mulim}$
Mulim $=0.36$ fck \times Xumax \times b x (d $-0.42 \mathrm{Xu})$ \qquad tension steel
$\mathrm{M}_{2}=0.87 \mathrm{fy}_{\mathrm{x}} \times \mathrm{Ast}_{2} \times\left(\mathrm{d}-\mathrm{d}^{1}\right)$ \qquad tension steel
$M_{2}=(f s c-f c c) \times \operatorname{Asc} \times\left(d-d^{\prime}\right)$. Compaction steel
$\mathrm{Xu} / \mathrm{d}=0.48$
Xumax $=0.48 \mathrm{xd}$
Xumax $=0.48 \times 600=288 \mathrm{~mm}$

1) $\mathrm{Mu}=196 \mathrm{KN}$

$$
\begin{aligned}
\text { Mulim } & =0.36 \mathrm{fck} \times \text { Xumax } \times \mathrm{b} \times(\mathrm{d}-0.42 \mathrm{Xu}) \\
\quad= & 0.36 \times 30 \times 288 \times 300 \times(600-0.42 \times 288) \\
\text { Mulim }= & 447 \mathrm{KNm} \\
\mathrm{Mu}= & \text { Mulim }+\mathrm{M}_{2} \\
\mathrm{M}_{2}= & 447-196 \\
= & 251 \mathrm{KNm} \\
\mathrm{M}_{2}= & 0.87 \mathrm{fy} \times \text { Ast }_{2} \times\left(\mathrm{d}-\mathrm{d}^{1}\right) \\
251= & 0.87 \times 415 \times \text { Ast } 2 \times(600-30) \\
\text { Ast }_{2}= & 1219.639 \mathrm{~mm}^{2}
\end{aligned}
$$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

```
\(M_{2}=(f s c-f c c) \times \operatorname{Asc} \times\left(d-d^{1}\right)\)
\(251=(355-13.5) \times\) Asc \(\times(600-30)\)
    Asc \(=1289.46 \mathrm{~mm}^{2}\)
\(\mathrm{C}=\mathrm{T}\)
0.36 fck Xub \(=0.87\) fyAst
Ast1 \(=(0.36 \times 30 \times 288 \times 300) /(0.87 \times 415)\)
Ast \(1=2584.46 . \mathrm{mm}^{2}\)
Tension steel \(=\) Ast \(1+\) Ast2 \(=2584.46+1219.639\)
Tension stell \(=3804.10 \mathrm{~mm}^{2}\)
Compression steel \(=1289.46 \mathrm{~mm}^{2}\)
```


Shear Reinforcement :

$\mathrm{W}=$ Self wt. Of slab acting on beam $=45+45$. (two tributaries)
$\mathrm{LL}=3 \mathrm{KN} / \mathrm{m}$
SDL $=2.5 \mathrm{KN} / \mathrm{m}$
Self wt. Of beam $=4.5 \mathrm{KN} / \mathrm{m}$
Total wt $=102.5 \mathrm{KN} / \mathrm{m} \times 1.5=153.75 \mathrm{KN} / \mathrm{m}$
$\mathrm{Vu}=\mathrm{wl} / 2=(153.75 \times 6) / 2=461.25 \mathrm{KN}$.
Critical section occurs at 'd' from support:-

* $461.25 / 3=$ Vuc/(3-0.6)

Vuc $=369$ KN
Pt \% =(Ast x 100) $/ \mathrm{bd}=2011 \%$ for M30,
Ast 100/bdtc

By interpolation,
2.0
0.84
$\underline{2.110 .8576}$
2.25
0.88
sDesign Shear Strength $=\mathrm{Tc}=0.8576 \mathrm{~N} / \mathrm{mm}^{2}$
Design Shear force $=$ Vus $=$ Vuc - Tc bd
$=369-\left(0.85 \times 300 \times 600 \times 10^{3}\right)$
Vus $=216$ KN.
$\mathrm{Vu}=0.87 \mathrm{fy}$ Asv $\sin \alpha$
Vus $=0.87 \times 415 \times 628.31 \times \sin 45^{\circ}$
Vus $=329 \mathrm{KN}$.
Shear force resisted by bent up bars $=329 / 2$
Shear force resisted by stirrups $=329-164=164 \mathrm{KN}$.
*Shear force resisted by stirrups=
Vus $=\sigma \operatorname{sv} \times(A s v / S v) \times d$
$=0.87$ fy Asv d/Sv
$164 \times 10^{3}=0.87 \times 415 \times 2 \times \pi / 4 \times 8^{2} \times 600 / \mathrm{Sv}$
$\mathrm{Sv}=132 \mathrm{~mm}$.
Minimum spacing $=126.515$

1) $0.7 \mathrm{~d}=450$
2) 300
3) $\mathrm{Sv}=132 \mathrm{~mm}$ (considered)

Provide 132 mm 2 legged c/c $18 \mathrm{~mm} \phi$ bars.

Slab design (membrane):-

$l y / l x=6 / 6=1<2$
*Two way slab

1) Depth of slab $=l / d=26$
$\mathrm{d}=\mathrm{l} /(26 \times \mathrm{MF})$
*d $=9000 / 26 \times 1.5=153.85 / 230$
Taken 200mm thick
$\mathrm{l}=25 \mathrm{~mm}$
$\mathrm{d}=200+25=225 \mathrm{~mm}$
2) Eff. Span
$l_{\mathrm{ff}}=\mathrm{l}_{\mathrm{x}}+$ depth $=9200 \mathrm{~mm}$
3) Load calculation

DL=0.225 $\times 25$
$\mathrm{DL}=5.625 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{LL}=3 \mathrm{KN} / \mathrm{m}^{2}$
SDL $=2.5 \mathrm{KN} / \mathrm{m}^{2}$

Total load $=11.125 \mathrm{KN} / \mathrm{m} \times 1.5=16.6875 \mathrm{KN} / \mathrm{n}$
$M \mathrm{X}=\mathrm{a}_{\mathrm{x}} \mathrm{wlx}{ }^{2}$
$\mathrm{My}=\mathrm{a}_{\mathrm{y}} \mathrm{wlx}{ }^{2}$
For $l_{y} / l_{x}, a_{x}=0.062$
$a_{y}=0.062$
$\mathrm{M}_{\mathrm{x}}=0.062 \times 16.7 \times 9000^{2}=83.86 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{y}}=0.062 \times 16.7 \times 9000^{2}=83.86 \mathrm{KNm}$

Check for depth :-

$\mathrm{M}_{\mathrm{d}}=83.86 \mathrm{KNm}$
$M_{d}=0.36 \mathrm{fck} \times$ Xumax x b x ($\mathrm{d}-0.42$ Xumax)
$83.86 \times 10^{6}=0.36 \times 30 \times 0.48 \mathrm{~d} \times 1000 \times(\mathrm{d}-0.42 \times 0.48 \times$ d)

$$
\begin{aligned}
& =5104 \mathrm{~d}-1045.0944 \mathrm{~d} \\
& =4138.9 \mathrm{~d}
\end{aligned}
$$

$\mathrm{d}=202.613<225 \mathrm{~mm}$

Calculation of steel :-

Ast $_{x}-0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{ }(1-4.6) /\left(f \mathrm{fk} \times \mathrm{bx} \mathrm{d} \mathrm{d}^{2}\right)\right] \times \mathrm{bx} \mathrm{d}$
Ast $_{\mathrm{y}}=1274.216 \mathrm{~mm}^{2}$
Ast $_{\mathrm{y}}=1274.216 \mathrm{~mm}^{2}$
$=\left[(\pi / 4) \times 16^{2} \times 1000\right] / 1274.216$
$=157 \approx 150 \mathrm{~mm}$
Provide 16mm dia bars @ 150mm c/c

COLUMN DESIGN:

$\mathrm{Pu}=0.45$ fck Ac +0.67 fy Asc
Axial load $\mathrm{Pu}=13427 \mathrm{KN}$
Axial load includes self weight of all the corner beams and slabs, Live load pof 3 KN and SDL of 2.5 KN ,on each floor.
$\mathrm{Ag}=\mathrm{Asc}+\mathrm{Ac}$
Assume pt $\%=5 \%$
Therefore Asc $=0.05 \mathrm{Ac}$
$13427 \times 10^{3}=\quad 0.45 \times 40 \times \mathrm{Ac}+0.67 \times 415 \times 0.05 \times$ Ac
Therefore $\mathrm{Ac}=421220.814 \mathrm{~mm}^{2}$
Size of a square column comes up to 650 mm ,
Since we are adopting minimum reinforcement and increasing the colum, n area for compensation, size of column to be adopted is $900 \times 900 \mathrm{~mm}$.

Hence, Asc $=0.05 \mathrm{Ac}$

$$
\begin{aligned}
& =0.05 \times 421220.814 \\
\text { Asc } & =21229.52903 \mathrm{~mm}^{2}
\end{aligned}
$$

Spacing $=($ Area of 1 bar $\times 1000) /$ Ast req.
Table -1:Cost considerations of concrete
$\left.\begin{array}{|c|c|l|l|}\hline \begin{array}{c}\text { Section } \\ \text { (Info arrangement according to below mentioned } \\ \text { sequence) } \\ \text { Row 1 Flat slab } 6 \times 6 \mathrm{~m}\end{array} & \text { Pieces } & \text { Total weight } \\ \text { Row 2.Conventional Slab 9x9m } \\ \text { Row 3.Waffle slab } 6 \times 6 \mathrm{~m}\end{array}\right) \quad$?

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 06 Issue: 05 | May 2019
www.irjet.net
p-ISSN: 2395-0072

Table -2 :Cost considerations of steel

BAR DIAMETE R 1.Conventi onal Slab9x9m 2.Flatslab 6x6m 3.Waffle slab 6x6m	$\begin{aligned} & \text { LENGHT(M } \\ & \text {) } \end{aligned}$	WEIGHT (MTON)	2]
$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 16 \\ & 18 \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & 108.82 \\ & 8325.96 \\ & 1495.64 \\ & 4494.74 \\ & 2281.12 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 7.39 \\ & .81 \\ & 7.09 \\ & 4.56 \\ & 20.92 \end{aligned}$	$\begin{aligned} & 3850 \\ & 406450 \\ & 99550 \\ & 389950 \\ & 250800 \\ & 1150600 \end{aligned}$
$\begin{aligned} & \hline 20 \\ & 22 \\ & 25 \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & \hline 7243.26 \\ & 56.2 \\ & 1918 \end{aligned}$	$\begin{aligned} & 17.86 \\ & 0.17 \\ & 7.93 \\ & 25.42 \end{aligned}$	$\begin{aligned} & 982300 \\ & 9350 \\ & 436150 \\ & 1398100 \end{aligned}$
$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 16 \\ & 18 \\ & 22 \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & 4705.14 \\ & 362.26 \\ & 378.84 \\ & 12145.56 \\ & 351.08 \\ & 74.66 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 0.32 \\ & 0.46 \\ & 19.17 \\ & 0.7 \\ & 0.22 \\ & 23.77 \end{aligned}$	$\begin{aligned} & 159500 \\ & 17600 \\ & 25300 \\ & 1054350 \\ & 38500 \\ & 12100 \\ & 1307350 \end{aligned}$

Table -3:Total cost (Steel+Concrete)

Structural Systems	Concrete cost for 10 Storey (?)	Steel cost for 1 Storey (?)	Total cost (?)
Conventio nal Slab (9x9m)	$36,57,44,044$	$11,50,600$	$36,68,94$, 644
Flat Slab (6x6m)	$39,49,66,098$	$13,98,100$	$39,63,64$, 198
Waffle Slab	$33,81,76,389$	$13,07,350$	$33,94,83$ $(6 \times 6 \mathrm{~m})$
		2799	

The one marked in grey is the cheapest.

Chart -1: Storey displacement for Conventional Slab 9x9m.

Chart -2: Storey displacement for Flat slab 6x6m.

Chart -3: Storey displacement for Waffle slab $6 \times 6 \mathrm{~m}$.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 06 Issue: 05 | May 2019
www.irjet.net

Fig -1: Reinforcement profile A for Conventional Slab 9x9m.

Fig -2: Reinforcement profile B for Conventional Slab 9x9m.

Fig -3: Reinforcement profile A for Flat Slab $6 \times 6 \mathrm{~m}$.

Fig -4: Reinforcement profile B for Flat Slab 6x6m.

Fig -5: Reinforcement profile for Waffle Slab $6 \times 6 \mathrm{~m}$.
As per clause 7.11.1 of IS 1893 (part-I):2002, the storey drift in any storey due to specified designed lateral force with partial load factor of 1.0, shall not exceed 0.004 times the storey height.Storey drifts are negligible for 10 storey as shown above for all three systems. The values so taken are from ETABS models. The reinforcement profiles are also mentioned below the storey drifts which mentioned the amount of reinforcements in positive and negative moment areas. The systems with $9 x 9 m$ for spacing on conventional slab and $6 \times 6 \mathrm{~m}$ for flat and waffle slab are so selected based on comparison of least of concrete and steel quantity requirements.

6. CONCLUSIONS AND INFERENCES:

- Waffle slab method consumes the least amount of concrete since most of the concrete below the neutral axis is removed as it is found that concrete above the neutral axis takes considerable amount of compressive stress.
- The Waffle part which contains rebars act as equidistantly placed beams in a ribbed manner and the load bearing capacity of the slab increases prominently with the stiffness increasing over the entire span of slab.
- Cross sectional dimensions of the frame elements increase as the c / c spacing increases.
- Deflection is considerably reduced as the cross section of vertical frame elements are increased rather than horizontal.
- Beam and Slab system is more prone to deflection rather than the other two as the slab element comprises of membrane as opposed to shell thin in flat slab and waffle slab.
- The concrete pricing for 10 storey and steel pricing for 1 storey are mentioned below and an inference can be made that waffle slab $6 \times 6 \mathrm{~m}$ comes out as the most economical structural system for a total span of $36 \times 36 \mathrm{~m}$ plot.

REFERENCES

- Plain \& Reinforced Concrete Code of Practice" Fourth Revision IS: 456:2000.
- IS 875:Part 2, 3
- IS1893-2002: Indian Standard Code of Practice for Criteria for Earthquake Resistance Design of Structures. RCC design by Pillai and Menon.
- K.N. Mate, Volume 4 Issue 6, June 2015 Study of Flat Slab, International journal of science and research (IJSR), pp.1106-1110.
- Mohana H.S, Volume 02 Issue 03, June-2015 Comparative Study of Flat Slab and Conventional Slab Structure Using ETABS for Different Earthquake Zones of India, International Research Journal Of Engineering and Technology (IRJET).pp. 1931-1936.
- RCC design handbook by Pillai and Menon.
- Public Works, Ports and Inland Water transport department Bengaluru Circle, Bengaluru 20182019 Schedule of Rates.

BIOGRAPHIES

Atharva
Ramdurgkar, Undergraduate student at Reva Univeristy, Bangalore-64, Karnataka.

Nikhi Naik, Undergraduate student at Reva University, Bangalore- 64, Karnataka.

Ms. Anusha P. Gowda, Assistant Professor at Reva University, Bangalore-64, Karnataka.

