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Abstract - A railway U-girder bridge is a kind of structure 
which is composed of a plate and two side girders. 
Compared with a concrete box-girder bridge and T-beam 
bridge, the U-shaped Bridge has many advantages. This has 
been widely used in railway and urban rail transit bridges 
U-shaped prestressed concrete bridge decks, simply 
supported, are now being increasingly used in railways and 
highways. Simplified methods of analysis are commonly 
used in design practice.  

It is especially suitable when a new or modified alignment 
structure for railway/highway use requires an increase in 
the vertical clearance beneath the bridge; this also reduces 
the earthwork in the approach embankments. This concept 
can be used for overpasses, under-crossings, viaducts and so 
on (Gibbens and Smith, 2004). The two webs are integrally 
connected to and positioned above and on either side of the 
deck slab, providing a U-shaped girder cross-section. The 
resulting requirement for the depth of the girder section 
below the passageway level is significantly lower, compared 
to the convectional beam-and-slab type deck; this is its main 
functional advantage.  
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1. INTRODUCTION 

The Euler-Bernoulli beam theory as well as the Vlasov thin-
walled beam theory does not take into account shear 
deformations due to shear forces. The shear effect, as well 
as Poisson’s effect, can be included by methods of theory of 
elasticity, but in that case the problem is no longer one-
dimensional. 

Thus, approximate methods to include the shear effect are 
developed; particularly in the analysis of displacements, by 
deriving an adequate stiffness matrix. The concept of shear 
factors, first introduced by Timoshenko was used as the 
ratio of the maximum shear stress to the average shear 
stress over a cross-section. Recent approaches to the 
problem are based on geometric assumptions or shear 
energy relations. Numerical examples comparing results 
obtained by different approaches can be found. 
Approximate analytical solutions for stresses along the 
beam cross-section contour as well as for stresses and 
displacements along the beam length are given 

1.1 Assumptions 

 Beams with cross-sections with one and two axes 
of symmetry are considered.  

 Poisson’s effect is ignored. (Its influence on both 
the stresses and the displacements in the case of 
common open cross-sections is small, even for 
extremely low ratios of beam length to cross 
section contour dimensions) 

 The warping effect, defined by the “non-uniform 
warping bending theory”, is also ignored. (This 
effect remains much localized close to the clamped 
ends, where by the non-uniform warping theories 
warping due to shear is restricted.) 

2. STRAINS AND DISPLACEMENTS 

The displacement of an arbitrary point S (x,s) at the middle 
line in the case of bending of thin-walled beams of open 
sections with one axis of symmetry can be expressed as 

    
  

  
    ∫    

 

 
            ---- (1) 

where w=w (x) is the displacement in the z-direction, i.e. 
the displacement of the cross-section middle line as a rigid 
line in the plane of symmetry, z = z (s) is the rectangular 
coordinate, u= u (x) is the displacement of the cross-section 
middle line as a rigid line in the x-direction,    =     (x, s) is 

the shear strain in the middle surface, s is the curvilinear 
coordinate of the middle line,   is the tangential axis on the 
curvilinear coordinate s; Oxyz is the orthogonal coordinate 
system, where the z-axis is the axis of symmetry (Fig. 1). 

Eq. (1) may be expressed as 

          ∫       
 

 
         ---- (2) 

Where          is the angular displacement of the 
middle line as rigid line with respect to the y-axis, 
orthogonal to the z-axis. It is assumed that the middle line 
rotates with respect to the y-axis as rigid line, expressed by 
the first member of Eq. (2), as in the case of the ordinary 
theory of bending; In addition, it is assumed that the 
middle line is displaced due to shear, expressed by the 
second and third members of Eq. (2) 
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Fig -1: Cross-section middle-line 

 

Fig -2: The equilibrium of the element of the wall 

The displacements can be separated as follows: 

w = wb + wa, u= ua       ----- (3) 

where wb = wb (x) is the displacement of the cross-
sections as plane sections in the z-direction, as in the case 
of the ordinary theory of bending, wa = wa (x) is additional 
displacement due to shear in the z-direction, ua = ua (x) is 
the additional displacement due to shear in the x-direction. 

                     ⁄             ⁄  ------- (4) 

The strain in the beam longitudinal direction may then be 
expressed as 

   
  

  
  

   

     
  

  
 ∫

    

  
  

 

 
                  ---------- (5) 

3. STRESSES AND DISPLACEMENT 

Hooke’s law may be simplified as 

                                                 -------(6) 

Where E is the modulus of elasticity and G is the shear 
modulus. 

Thus, 
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                 ---------(7) 

From the equilibrium of a differential portion of the 
beam wall (Fig. 2), it may be written 
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 ( )    (   )    ( )   -----(8) 

Where t = t(s) is the wall thickness and M is the starting 
point of the curvilinear coordinate s. 

If       ⁄            Referring to (7), one has 
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Eq. (9) may be rewritten as 

    
 

 
( 

   

   
  

  
   

   
  )    

  ∫     

  
   

 ∫    

  
                    

                                                                                                                                       ------ (10) 

where  
    

 ( ) is the moment of the cut-off portion of 

area with respect to the y-axis,      ( ) is the cut-off 
portion of the beam wall area with respect to the y-axis,    
is the Curvilinear coordinate of the cut-off portion of the 
beam wall area, from the free edge, i.e. where      . It is 

assumed that the normal stress given by Eq. (7) and the 
shear stress given by Eqs. (9) and (10) are constant across 
the wall thickness. 

4. Equilibrium equations 

It is assumed that the beam loads are reduced to loads 
     ( ) in the beam plane of Symmetry. 

 

   ∫                        ---------------- (11) 

where pz =pz (x, s) are the surface loads with respect to the 
z-axis and L is the cross-section middle line length. 

For a portion of the beam wall, the following equilibrium 
equations can be written 

∑   ∫
 (   )

  
          ∑    ∫

 (    )

  
          

                   ------------- (12) 

Eqs. (12) Can be rewritten as 

 ∑   ∫
 (   )
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∑   ∫
 (    )

  
                        ---------- (13) 

By integrating by parts one has 

∫
 (   )

  
           

 (    )

  
    

   ∫  
 

  
*
 (    )

  
+                         

----------------- (14) 

Where e1 and e2 are the boundaries, where        

Thus, 

∫
   

  
     ∫  

 

  
*
 (    )

  
+                 ---------- (15) 

By substituting Eqs. (7) and (9) one has 

    
   

      
   

            
   

       
   

         ---- (16) 

Where 

  ∫          ∫           ∫             -------- (17) 

If y is the centroid coordinate, when Sy = 0, Eqs. (16) take 
the following simple form 

   

             
   

                --------- (18) 

3. CONCLUSIONS 

A theory of bending of thin-walled beams with the 
influence of shear for sections with one and two axes of 
symmetry is developed. The theory is based on the 
classical Timoshenko bending theory. The shear factor 
with respect to the bending in the beam plane of 
symmetry is given in an analytical form. It is proved that 
the beam with a single symmetrical section, loaded in the 
plane of symmetry, is subjected also to 
tension/compression due to shear. Thus, a new factor of 
shear is given, with respect to tension/compression due to 
shear. 

In the case of a double symmetrical section this factor 
vanishes: the beam is subjected to bending with the 
influence of shear only. 

For various types of cross-sections with one and two axes 
of symmetry, the shear factors are given in the parametric 
forms. Stresses can be obtained in the analytical form both 
along the cross-section middle line and the beam length. 
Various boundary conditions and loadings are considered. 

Several examples are analyzed in comparison with the 
finite element method. Excellent agreements of the results 
for displacements are obtained, as well as for stresses. 
Some discrepancies for normal stresses are noticed at 
beam ends in the case of clamped ends, as a result of 

different boundary conditions, both in the presented 
theory and the finite element method. Corresponding 
cross-section functions are given in the appendix. 
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