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Abstract — Researchers have been trying to use machine-learning-based approaches since the mid-1990s to solve a number of 
various compiler optimization issues. These techniques primarily Machine Learning Techniques For Code Optimization 
enhance the quality of the obtained results and, more importantly, make it possible to address two main compiler 
optimization problems: optimization selection (choosing which optimizations to apply) and phase ordering (choosing the 
order to apply optimizations). Because of advancing applications, increasing number of compiler optimizations, and new 
target architectures, the compiler optimization space continues to grow. Generic optimization in compilers cannot fully 
leverage newly introduced optimizations and therefore cannot keep up with the pace of increasing options. The survey 
highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches, and 
finally, the influential papers of the field. 
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I. INTRODUCTION  

Compilers have been the backbone of computer science for quite some time now [1,2].These compilers generate a binary 
executable code which can be easily be understood by the machine which uses an LLVM (Low Level Virtual Machine) 
nowadays which uses some clever trickery to compile the code. LLVM provides optimizaztion features and these 
optimizations are implemented as passes by the developers, they do this so as to transform the code into an optimized 
version of the app, but the LLVM acts only on the intermediate representation layer which is one of the three layers in the 
compilation process. The three layers are, front-end, intermediate representation, and the backend. Optimising code 
manually is a very tedious task. Here we talk about many automatic methods for optimising code. Optimisation of the 
intermediate layer with the help of an LLVM contributes to a vital role in performance. 

Translation and optimization are the two major roles of compilers. The code received from high level languages is 
translated into an intermediate package which is further translated by the compiler into binary. Their second role is to 
optimise the code i.e find the best translation of the code possible. There are many code translation whose code 
translations are syntactically and logically correct but their performance would all vary drastically from each other. The 
majority of the studies or research involved in compiler optimisation is based on the aspect of performance. This aspect 
has been misnamed optimization because in the maximum number of cases, till lately finding the most effective translation 
became dismissed as too hard to discover and an unrealistic undertaking. The target was to develop compiler heuristic 
rules to change the code to improve performance. 

Optimization as an area has been studied since the 1800's. There are two fundamental reasons why the two fields have 
taken so long to converge. First is the advent of moore's law wherein the capacity of transistors doubled every year giving 
us twice the computational power every year, however the software wasn't able to bridge the gap. Secondly the computer 
architecture evolved so quick that every new generation has some new features for which then the developers and 
compiler developers have to take time to develop code and rather clever heuristics to utilize the hardware. Rather than 
relying on experts to do this repeatedly after a new architecture comes out. So instead of this we can train machine 
learning models that will learn how to optimise a compiler to make the code to run more efficiently. ML in this scenario is 
best tailored for code optimisation where the effect of performance is platform dependent. 

Machine Learning is about building systems that can learn from data. Learning means getting better at some task, given 
some performance measure. The ability of machine learning systems to predict based on previous information fed to it can 
be used to find the data point with the best outcome that is the closest  to the point of optimization. It’s in these kind of 
scenarios we find machine learning applicable to our problem. . 
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II. SUPERVISED LEARNING 

Supervised Learning is a type of machine learning in which a model is generated over a labelled training data [5, 6]. The 
machine is given labelled objects as training data from which it learns and predicts labels for unlabelled data.. 

A. Linear Models and SVMs 

Support vector machine is a kind of supervised learning algorithm which finds a hyperplane with highest margin in a a n-
dimensional space where n is the number of features.The hyperplane classifies the data point. [4] proposes to use SVM to 
train models which atutotunes the JIT compiler of IBM Testarossa and then builds a compilation plan. They have used 
scalar features to construct feature vectors and using SVM learning to experimentally test the quality of their model using  
single-iteration and 10-iteration scenarios on SPECjvm 98 benchmark suite 

B. Decision Trees and Random Forests 

Decision Tree is machine learning algorithm which could be used for both classification as well as regression problems. It 
graphically represents a tree which has all the possible solutions.A decision can be made based on conditions using 
decision trees. Random Forest is a ensemble bagging algorithm to get higher accuracy in predictions. It chooses decision 
trees randomly and gives the label which has most votes. This kind of learning model reduces variance among individual 
trees. 

[7] proposes to use supervised learning to compress the code. It uses IR structure of the compiler code and deduce a 
decision tree which separates IR code into a stream that compresses more efficiently. 

III. UNSUPERVISED LEARNING 

Unsupervised learning is used to group data in categories without any labels or classes explicitly being defined. This leads 
to test sample being unclassified and thus there is no incorrect or correct method to evaluate a solution[8,6]. Unsupervised 
learning is highly based on density estimation in statistics [9], but also consists of many methods focused on 
understanding and explaining the essential features such as evolutionary algorithm. Unsupervised learning has no goal or 
target but provides an area for model evaluation. An environment can check a given model based on parameters like the 
input value passed to the model function.  

A. Clustering Methods 

In unsupervised learning the most commonly used technique is clustering. This method helps in the optimization of the 
compiler by making clusters that are homogenous to each other and reduce sample size. Therefore scalars or nested loops 
should work with the same sequence. 

Another equally important perspective on clustering is to reduce the size of the compiler, which can be reduced to 
hundreds of orders. 

[10] the paper discusses a method to drastically reduce the time taken for training of the machine learning model based on 
auto-tuning. They use highly specific clustering techniques [11], after reducing the dimensions. They score the approach 
utilized based on an EEMBCv2 bench mark suite and showed a highly reduced training time by a factor of seven by the 
proposed method the paper.   

Martins et al.[ 12, 13] addressed the issue of phase-ordering through a clustering-based method of selecting similar 
functions. The paper proposes to utilize programming elements which ate encoded by the  DNA sequence and uses a the 
distance matrix which is calculated and according to this information constructs a tree for the optimization. 

Finally, the optimized compiler is added to the area where exploration speedup versus good and popularly known 
algorithms like Genetic algorithms is made and evaluated. 

B. Evolutionary Algorithms 

The premise of an evolutionary algorithm (to be further known as an EA) is quite simple and revolves around the process 
of natural selection and mutation. Candidate solutions in the optimization space are considered as individuals of a 
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population. Quality of solutions is evaluated based on some fitness functions. Population evolution occurs after repeated 
fitness function [ 6] has been applied. Some of the most notable techniques are briefly mentioned here.. 

The genetic algorithm is utilized in understanding and grasping the different compiler optimization problems that are 
based on Darwin’s theory of natural selection which talks about the processes that are the driving forces for evolution. One 
of the Genetic Algorithm heuristic is NSGA-II (Non-dominated Sorting Genetic Algorithm II) [14], a popularly known 
method for many multi-objective optimization problems and have several applications mostly in the computer 
architecture domain [ 15, 16]. The computational complexity of classic GA algorithms is increased by NSGA-II. 

Neuroevolution of Augmenting Topologies (NEAT)[17] is another interesting evolutionary model. The paper claims it to be 
a stronger model for learning complex problems because network topology and the weight of the parameters can be 
changed to generate a best-balanced fitness function. 

Cooper et al.[ 18, 19] used genetic algorithms to address the code size issue of the generated binaries. The results were 
compared with an iterative algorithm which generated a sequence of fixed optimization at random frequency as well. 
Based on the comparison, the paper concluded that a new fixed optimization sequences using their GAs that reduces the 
binary code size. 

Agakov et al.[20]  adapted several models to accelerate the exploration of an iterative piliation space. He utilized many 
different approaches like using identically distributed independent distribution and many more such techniques were 
exploited. iterative compilation, helped to gain significant speed when tested on unseen applications using these two 
models. A nearest-neighbour classifier is used to predict the best optimizations given an unseen application. Firstly, the 
tested model which had the lowest score by distance in the vector space feature is identified. Therefore, through the 
different models it understands and grasps the concept and probability distribution which needs to be utilized for 
providing the best optimization for neighbouring applications. The learned probability distribution is the used for the new 
application as the calculated best possible distribution. The methods utilized are exceedingly well optimized for 
calculating a uniform distribution of probabilities using RIC methodology. 

Kulkarni et al. suggests two different approaches to achieve both a better optimization technique selection[21] and 
ordering of different phases[22]. The correct compiler parameters are selected using NEAT and other tuning features 
which are static in nature to use the Hotspot compiler with specified benchmark suites.The paper proposes to utilize the 
NEAT for training the model and the called decision tree. This paper  advices to use an intermediate speed-up prediction 
method that used static features of the current state of the application being studied to query the model and induce the 
current best optimization to be used when addressing the phase-ordering issue. Thus, iteratively, an application-based 
sequence of compilers is formed. 

Classification Reference 

Supervised 

Learning 

Linear Model/SVMs [23,24,25,26,27,29,50,51] 

Decision 
Trees/Random 
Forests 

[30,31,7,32,33,34,21,35,36,37,38,39] 

Unsupervised 

Learning 

Clustering [24,12,13,40,10,52] 

Evolutionary 
Algorithms 

 

[20,41,42,43,44,45,18,19,46,47,48,49,21,22,35,13,4
0] 

 
CONCLUSION 

In the coming years with the advent of machine learning, AI and intelligent systems, these technologies are being 
increasingly applied to areas that involved a sizeable amount of human intervention especially in the field of high 
performance computing, in compiler design as described in the paper it has been increasingly used in code optimization 
problems as described above, other areas include auto-parallelization, security, and energy efficiency. Architecture that 
supports large-scale parallelism  can be exploited using compiler optimizations. Machine learning in recent times is has 
become more powerful due to the advent of  deep learning techniques to construct different heuristics. The machine 
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learning models allow these intelligent systems perform with minimal input from the developer. In this survey we have 
taken a comprehensive look at the research done in this area of optimising compilers by showing/comparing the different 
types of ml algorithms and their performance in code optimisation in the table above.We hope this survey will be 
resourceful to researchers,developers and help them create something new, creative and open up new avenues of 
research.. 
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