

Selection of Phase Change Material using Shenon Entropy and Vikor Method

Yadnesh Gulhane¹, Yash Ghayal², Ghanshyam Jorwar³, Sagar Gondkar⁴

^{1,2,3,4}UG Student of Mechanical Engg, ZCOER, Pune, Maharashtra, India

_____***_______ Abstract - Latent heat thermal energy storage (LHTES) with phase change materials (PCMs) earns attention as it anticipates high energy density and small temperature changes with melting/solidifying. Phase change materials (PCMs) are gaining attention in the fields of space cooling and heating in buildings, off-peak energy storage, solar applications and heat exchanger enhancement. Latent heat thermal energy storage (LHTES) offers a huge opportunity to reduce fuel dominance and habitat impact generated by consumption of fossil fuel. The use of phase change materials (PCM) is to store the sensible heat and latent heat, due to this large quantity of thermal energy is stored in smaller volumes. The popularity of Multi-criteria decision making (MCDM) methods is increasing in solving various PCM selection problems. This paper presents selection of Phase changing materials with the help of Vikor and Entropy methods.

Key Words: Phase Change Material, Latent heat thermal energy storage (LHTES), Vikor and Entropy Method.

1. INTRODUCTION

There is a widening interest in the heating due to the increasing demand for heating of water for different applications. However, the variable characteristic of heating system presents a challenge to applications that needs a constant energy supply. Recently, thermal Energy Storage (TES) has advantages of absorbing flowing heat and stores it. In recent comparison of TES systems, Latent Heat Thermal Energy Storage (LHTES) system charges and discharges the heat power by utilizing phase transformation of Phase Change Materials (PCMs). Being able to provide high storage density and constant temperature output, LHTES is regarded as a very promising energy storage technique.

This paper shows various heat storage materials and its selection procedure. Sensible heat storing devices are heavier in size and having less heat storing capacity as compared to latent heat storage devices.

1.1 Sensible heat storage systems

Sensible heat storage can be achieved by increasing the temperature. Materials used for an efficient sensible heat storage system should have high specific heat capacity and should be adaptable to the container material in which heat storage takes place. Number of materials are being

used today for sensible heat storage systems classified as liquid heat storage materials and solid heat storage materials . A list of different materials used for sensible heat storage materials include metals like aluminium, concrete, water, copper, steel, lead etc. These materials consists of high thermal conductivity and hence reduce charging and discharging time but they are having high density, low heat capacity, and are costly that make system expensive to use.

1.2. Latent heat storage systems

Latent heat storage materials undergo phase change from solid to liquid when they absorb heat. The requirements to store sufficient amount of latent heat in case of phase change materials is, they should have high latent heat of fusion, high specific heat, high thermal conductivity. The stability of the materials should be high for repeating thermal cycles. The materials should also have resistance to poison, corrosion and flame and should be available on bulk scale at lower price.

2. SELECTION OF PHASE CHANGE MATERIAL

The phase change material can be selected by following approach:

- Weighted sum method (WSM)
- VIKOR

2.1 Weighted sum method(WSM)

The weighted sum method, also called the simple additive weighted method, is one of the simplest and most widely used MCDM methods. In general, WSM deals with benefit criteria, for example, the thermal conductivity criteria are altered into benefit criteria. After the alteration, the lowest thermal conductivity criterion becomes the largest and the largest thermal conductivity becomes the lowest. Then, a normalized matrix can be created by dividing each criterion value by the sum of all criteria. Finally, the total score of each alternative is multiplied by its weight. The best option has the highest total score among all the options.

International Research Journal of Engineering and Technology (IRJET)

TRIET Volume: 06 Issue: 07 | July 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Phase change materia l	Meltin g point in deg.C	Latent heat of meltin g in J/gm	Solid ifyin g temp erat ure in deg.C	Latent heat of solidifyi ng in KJ/kg	Therm al condu ctivity in W/mK	PEG600 0/polyu rethelen e/graph ene PEG600 0/ti4o7 /sio2	59.4 59.8	150.5 129.5			29.9	20 0.45
n- octadec alamine /F- MWCNT 's	54.6	122.1	48.2	119.6	0.5322	The calcula as follows,	ation of S		-	es of PCN py weig		ented
paraffin / L-type MWCNT 's	58.4	172	50.6	180.39	0.39	Assuming (C ₁ , C ₂ ,,C matrix is			-		-	
paraffin /Anisotr opic graphen e Aerogel s	47.8	193.7	46.05	198.2	2.99		$ \begin{array}{cccc} z_{11} & z \\ z_{21} & \cdot \\ \vdots \\ z_{m1} & z_{n} \end{array} $					
Palmitric acid- steric acid	octa can redu graj n 53.5 9 xi graj n	ol/ ace phe e de 163 phe	53.8	160.5	0.341	where its e criterion. Step 1: Not	rmalize t	he decis	ion mat			
	nan at agro	opl e				Phase cha	ange	Melti ng point	Late nt heat of	Solid ifying temp	Late nt heat of solidi	Ther mal cond uctiv
octadec anol/ reduced graphen e oxide						materi	•	in deg.C	melti ng in J/gm	eratu re in deg.C	fying in KJ/k g	ity in W/m K
graphen e nanopla te	61	202.8	54	250.6	5.92	n- octadecala /F-MWCl	mine NT's	0.119 9894 51	0.098 8960 26	0.100 6473 17	0.093 0247 03	0.016 8125 65
agrogel palmitri						paraffin/ L MWCN	i-type	0.128 3403 66	0.139 3129 93	0.105 6588 01	0.140 3070 75	0.012 3250 01
c acid- graphen e oxide	60.45	101.23	60.05	101.49	1.02	paraffin/A ropic grap Aeroge	hene	0.105 0457 1	0.156 8891 08	0.096 1578 62	0.154 1596 66	0.094 4916 73

International Research Journal of Engineering and Technology (IRJET) e-IS

Volume: 06 Issue: 07 | July 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Palmitric acid- steric acid	0.117 7698 66	0.132 0233 59	0.112 3407 81	0.124 8366 62	0.010 7764 75
octadecanol/ reduced graphene oxide graphene nanoplate agrogel	0.134 0541 49	0.164 2597 38	0.112 7584 05	0.194 9163 09	0.187 0871 91
palmitric acid- graphene oxide	0.132 8454 64	0.081 9921 76	0.125 3915 22	0.078 9387 72	0.032 2346 17
PEG6000/polyu rethelene/grap hene	0.130 5379 75	0.121 5748 85	0.068 6991 02	0.101 0360 28	0.632 0513 23
PEG6000/ti4o7 /sio2	0.131 4170 18	0.105 0517 16	0.278 3462 1	0.112 7807 85	0.014 2211 55

Table -2: Normalized decision matrix

Step 2: Compute entropy

$$e_{ij} = -K \sum_{i=1}^{m} p_{ij} \ln p_{ij}, j = 1, 2, \dots, n$$

where,
$$K = \frac{1}{\ln m}$$

Properties	ej
Melting point in deg.C	0.998593561
Latent heat of melting in J/gm	0.988705317
Solidifying temperature in deg.C	- 0.954928466
Latent heat of solidifying in KJ/kg	1.858524155
Thermal conductivity in W/mK	11.63469677

Table -3: Entropy Calculation

Step 3: The weights of each criterion are calculated

$$W_{ij} = \frac{1 - e_j}{\sum_{i=1}^{n} (1 - e_j)}, j = 1, 2, \dots, n$$

Properties	Weights
Melting point in deg.C	-0.000122989
Latent heat of melting in J/gm	-0.00098769
Solidifying temperature in deg.C	-0.003941388
Latent heat of solidifying in KJ/kg	0.0750755689
Thermal conductivity in W/mK	0.929976379

Table -4: Calculation of weights

VIKOR Method

VIKOR was developed to solve decision problems based on various criterias. In the VIKOR model, probable ranking can be carried out by comparing the estimate of closeness to the perfect solution.

The VIKOR method has the following four steps .

Step 1 : Determine the positive-ideal solution q_i^* (PIS)

and negative ideal solution q_i^{-} (NIS)

$$q_{j}^{*} = \{\max q_{ij} | j \in I_{1}\}, q_{j}^{*} = \{\min q_{ij} | j \in I_{2}\}$$
$$q_{j}^{-} = \{\min q_{ij} | j \in I_{1}\}, q_{j}^{-} = \{\max q_{ij} | j \in I_{2}\}$$

where I_1 and I_2 are sets of benefit and thermal conductivity criteria, respectively.

	Meltin g point in deg.C	Latent heat of meltin g in J/gm	Solidif ying tempe rature in deg.C	Latent heat of solidifyin g in KJ/kg	Therm al condu ctivity in W/mK
$\frac{\text{MIN}}{q^*}$	0.1050 4571	0.0819 92176	0.0686 99102	0.078938 772	0.0107 76ss47 5
$\begin{array}{c} \mathbf{MAX} \\ q^{-} \end{array}$	0.1340 54149	0.1642 59738	0.2783 4621	0.194916 309	0.6320 51323

International Research Journal of Engineering and Technology (IRJET) e-15

www.irjet.net

Volume: 06 Issue: 07 | July 2019

Nega tive Min	0.1050 4571	0.0819 92176	0.0686 99102	0.078938 772	0.0107 76475
Posi tive Max	0.1340 54149	0.1642 59738	0.2783 4621	0.194916 309	0.6320 51323

Table-5: Determination of Positive and negative idealsolution

Step 2 : Compute the values a_i and b_i

$$a_{i} = \sum_{j=1}^{n} W_{ij}(q_{j}^{*} - q_{ij}) / (q_{j}^{*} - q_{j}^{-})$$

$$b_{i} = \max \left[W_{ij}(q_{j}^{*} - q_{ij}) / (q_{j}^{*} - q_{j}^{-}) \right]$$

where W_{tj} are the weights of criteria.

РСМ	a_i	b_i
гсм	u_i	D_i
n-octadecalamine/F-MWCNT's	0.0172866 34	0.009118 24
paraffin/ L-type MWCNT's	0.0405616 86	0.039725 52
paraffin/Anisotropic graphene Aerogels	0.1725892 22	0.125311 94
Palmitric acid-steric acid	0.0282359 8	0.029711 06
octadecanol/ reduced graphene oxide graphene nanoplate agrogel	0.3370533 8	0.263916 69
palmitric acid-graphene oxide	0.0309366 62	0.032120 35
PEG6000/polyurethelene/grap hene	0.9436972 81	0.929976 38
PEG6000/ti4o7/sio2	0.0227331 77	0.021906 94

Table-6: Determination of a_i and b_i

Step 3 : Compute the value R_i

$$R_i = v \frac{(a_i - a^*)}{(a^- - a^*)} + (1 - v) \frac{(b_i - b^*)}{(b^- - b^*)}$$

where $a^* = \min a_i$, $a = \max a_i$, $b^* = \min b_i$, $b = \max b_i$ and v is identified as a weight for planning of maximum group utility and (1-v) is the weight of the individual concern. Usually, the value of v is considered to be 0.5. However, v can set any value from 0 to 1.

РСМ	R_i
n-octadecalamine/F-MWCNT's	-0.00936
paraffin/ L-type MWCNT's	0.007236
paraffin/Anisotropic graphene Aerogels	0.05376
Palmitric acid-steric acid	0.001822
octadecanol/ reduced graphene oxide graphene nanoplate agrogel	0.128952
palmitric acid-graphene oxide	0.003096
PEG6000/polyurethelene/graphene	0.490612
PEG6000/ti4o7/sio2	-0.00245

Table-7: Calculation of R_i

Step 4 : Alternatives should be ranked as per the decreasing order of R_i

РСМ	Rank
n-octadecalamine/F-MWCNT's	7
paraffin/ L-type MWCNT's	4
paraffin/Anisotropic graphene Aerogels	3
Palmitric acid-steric acid	5
octadecanol/ reduced graphene oxide graphene nanoplate agrogel	2

Page 1320

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2

🕅 Volume: 06 Issue: 07 | July 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

palmitric acid-graphene oxide	8
PEG6000/polyurethelene/graphene	1
i Laoooo, polyareenerene, graphene	
PEG6000/ti4o7/sio2	6

Table-8: Ranking

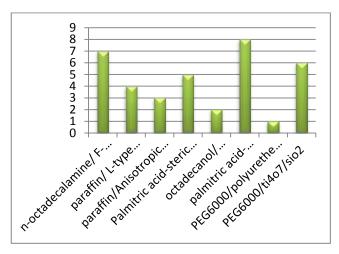


Chart -1: PCM v/s Rank

3. CONCLUSION

From the calculations of Shenon Entropy and VIKOR method, it is concluded that material having maximum thermal conductivity is selected for required application which is PEG6000/polyurethelene/grapheme. Also the material having highest rank is suitable for particular application.Proper selection of phase change material leads to efficient utilization of latent heat thermal energy storage system.

REFERENCES

- [1] Hsing-Chen Lee, Ching-Ter Chang, "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan,"
- [2] Abhay Dinker, Madhu Agarwal, G.D. Agarwal, "Heat storage materials ,geometry and applications: A review", Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, India., 6 October 2015.
- [3] Sara Tahan Latibari, Sayed Mojtaba Sadrameli "Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review," a Faculty of Engineering Technology, Laboratory of

Thermal Engineering, University of Twente, Enschede 7500 AE, The Netherlands.

BIOGRAPHIES

Yadnesh Gulhane "UG Student of Mechanical Engg, ZCOER ,Pune, Maharashtra, India "

Yash Ghayal "UG Student of Mechanical Engg, ZCOER ,Pune, Maharashtra, India "

Ghanshyam Jorwar "UG Student of Mechanical Engg, ZCOER ,Pune, Maharashtra, India "

Sagar Gondkar

"UG Student of Mechanical Engg, ZCOER, Pune, Maharashtra, India "