

Swarm optimization Technique for Economic Load Dispatch

Vikash Lomash¹, Sukhbir Singh²

¹M.Tech student,Electrical Power System, Ganga Technical Campus, MD University, Haryana, India ²Assistant Professor, Department of EEE, Ganga Technical Campus, MD University, Haryana,India

______***______

Abstract - Shortfall of Energy resources, increasing power generation price issue and ever-growing demand of electricity necessitates best economic dispatch in today's power systems. The major issue in power system is economic load dispatch (ELD) problem. Mainly it is an optimization problem and to reduce total generation cost of units is its main objective, while satisfying constraints. Economic load dispatch is the short-term determination of the most effective result of style of electrical power generation facilities, to satisfy the system load, at the bottom potential value, subject to transmission and operational constraints. This analysis paper tries to denote the numerical particularisation of Economic load dispatch issue arrangement utilizing delicate registering methodology in electrical era structure considering all completely different physical and power evoked system imperatives.

Key Words: Economic Load Dispatch (ELD), Problem formulation, Particle Swarm Optimization (PSO.)

1.INTRODUCTION

In the present power generation structures, there are many type of making units for example hydro, steam, and biomass so on. In like manner, the store solicitation sways for the season of every day and accomplishes different apex regards. During this means, it's basic choose on which manufacturing unit to off/on and what is more the request during which the units should be shut down basic intellectual process the price good thing about turning on and stopping. the whole work of figure and creating these evaluations is understood as burden dispatch. The monetary load dispatch infers that the generator's yield is permissible to alter within persuaded restrains so to require care of a selected load request contained by least fuel price.

2.ECONOMIC LOAD DISPATCH

Economic load dispatch is one of the key element of present days electrical power management system. The economic load dispatch (ELD) problem is one of the non-linear optimization problems in electrical power systems in which the main objective is to reduce the total electricity producing cost, while satisfying many type of equality and inequality constraints. The technique optimise the best ' power generation schedules to supply the essential the total coupled power demand alongwith transmission losses with reducing production cost. Economic load dispatch (ELD) is the online dispatch system which is used for the distribution of load among the various generating units. One of the substantial in operation tasks in grid is to scale back the full generation price. The fundamental issue in power system operation is the ELD. It is a crucial optimization problem and its main objective is to divide the required power demand among online generators The cost of power generation, particularly in fossil fuel plants, is extremely high and ELD helps in economy a substantial quantity of profits. The Economic load dispatch is that the name given to the method of apportionment the full load on a system between the assorted generating plants to attain the best economy of operation .economic operation is very important for a power system to return a profit on the capital invested. Various investigation on ELD are undertaken till date, as better clarification would result in major economical profit.

3. Problem Formulation

In electric power framework, load dispatch issue is a compelled streamlining and it tends to be as follows.[1-4]

Objective function to Minimize fuel cost (F),

$$F(Pi) = \sum_{i=1}^{NG} (aipi + biPi + ci) \qquad \$/h \qquad (1)$$

Where, a_i (Rs/MW2h), b_i (Rs/MWh) and c_i (Rs/h) are consumption coefficients of ith unit. The energy balance equation is given by as follows-

$$\sum_{I=1}^{NG} P_i = P_D + P_L \tag{2}$$

The inequality constraints is given by-

$$P_i^{\min} \le P_i \le P_i^{\max}$$
 (i = 1,2,3,...., NG) (3)

Where $a_i \ b_i \ c_i$ are fuel cost coefficients

Here P_D represent Load Demand.

 P_L represent power transmission Loss.

NG represent number of generation buses.

P_i represent real power generation and also known as decision variable.

The very simple and fairly accurate method of expressing power transmission loss P_L is through George's Formula using B-coefficients and mathematically can be expressed as:

$${}^{P}_{L} = \sum_{i=1}^{NG} \sum_{j=1}^{NG} {}^{P}g_{i} {}^{B}ij {}^{P}g_{j} MW$$
(4)

where, P_{gi} and P_{gj} represent real power of generations at the ith and jth buses respectively. B_{ij} is the loss coefficients factor which are constant for certain assumed conditions.

4. THERMAL CONSTRAINTS

In this system thermal power generation units must expertise dynamic temperature vacillate and during this implies it needs your season of venture to pass on a unit on the on the web. Similarly, thermal generation unit might be physically controlled. consequently a group half is expected to play out this excursion in movement. This prompts pleasant arrangements of repressions inside the power system action of thermal generation and on these lines it offer rise to differed necessities.

5. GENERATION CONSTRAINTS

So as to convince the estimated in matrix load request, the aggregate of all producing units on-line should approach the capacity framework load over the time horizon.

$$NG \\ \sum P_{ih}U_{ih} = D_h$$

i=1

Where, D_h represent load demand at hth hour. P_{ih} represent power output of ith unit hth hour U_{ih} represent On and Off status of the ith unit at the hth hour.

6. Unit Generation restrictions

The output power produced by the individual units must be inside max. and min. age limits i.e.

$$P_i(\min) \leq P_{ih} \leq P_i(\max)$$

Where, $P_{i(\min)}$ and $P_{i(\max)}$ represent the min. and max. power output of the ith unit.

7. Particle Swarm optimization

Particle Swarm enhancement (PSO) could be a swarm-based insight algorithmic guideline affected by the social conduct of creatures like a herd of feathered creatures finding a sustenance supply or a school of fish defensive them from a predator. This delicate figuring method first outlined by James Kennedy and Russell C. Eberhart in 1995 gets from 2separate thoughts ,swarm knowledge based generally off the police examination of swarming propensities by bound types of animals(such as fish and feathered creatures) and field of natural procedure calculation. A molecule in PSO is similar to a fowl or fish flying through a chase (issue) region. The development of each molecule is co-ordinate by a rate that has every size and course. each molecule position at any case of your time is impacted by its best position and furthermore the situation of the most straightforward molecule during a drawback territory. The exhibition of a molecule is estimated by a wellness worth, that is drawback explicit.

8. Mathematical Formulation Of Economic Load Dispatch

The swarm improvement count works by severally keeping up fluctuated contender plan inside chase region. For the (Pij) is season of each worry of the count, each contender course of action is processed by the objective work being propelled, choosing playful of that game plan. each contender plan will be thought of as molecule 'flying' through the cheery scene finding the most or on the contrary hand least of the objective work toward the start, the PSO count picks confident courses of action all over inside the interest region

$$V_{i}^{\text{new}} = w^* V_{ij} + C_1 R_1 (P_b^{\text{best}_{ij}} - P_{ij}) + C_2 R_2 (G^{\text{best}_j} - P_{ij}) \qquad (i = 1, 2, \dots NP, j = 1, 2, \dots NG)$$
(5)

$$P_{new} = P_{ij} + V_{new} \tag{6}$$

Where P is the power of j^{th} member of i^{th} particle at u^{th} iteration.

*C*1 and *C*2 are the acceleration constants.

w is the gauging capacity or idleness weight factor NP is the quantity of particles in a gathering NG is the quantity of individuals in a molecule R1, R2 is irregular number somewhere in the range of 0 and 1.

Introductory condition of a four - particle PSO algorithmic principle looking for the worldwide most during a onedimensional searching area. The searching area comprises of all the achievable arrangements together with target perform. It should be notable that the PSO algorithmic guideline has no information of the fundamental target perform, thus has no methodology of knowing whether some of the applicant arrangements are nearly or good ways from an area or world scoop.

8.1 PSO Algorithm and Flow Chart:

The PSO calculation program have just 3 stages, that are intermittent fully expecting some ceasing condition is combine.

1. Survey the wellness of each particle.

- 2. Update individual and world best wellness and positions
- 3. Update speed and position of each particle at every instance.

8.2 Flow Chart of Proposed PSO Algorithm

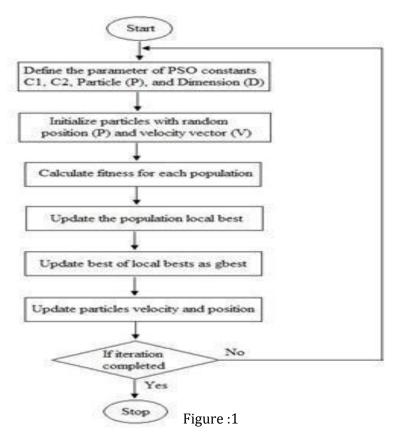
The speed is generally constrained to a particular generally worth. PSO utilizing eq. (5) is named the model. The particles inside the swarm are quickened to new positions by adding new speeds to their present positions. The new speeds are determined utilizing eq. (5) and places of the particles are refreshed utilizing eq. (6).

8.3 Implementation of Classical PSO for ELD solution

The main objective of ELD is to get the amount of genuine capacity to be produced by each dedicated generator, while Achieving a base generation cost inside the requirements.

The central matters of the usage of PSO parts are outlined inside the accompanying subsections.

1.Introduction of the swarm: For a populace size P, the particles are aimlessly created in the range 0-1 and set between the most and furthermore the base operational breaking points of the generators. In the event that there are N creating units, the ith molecule is portrayed as


Pi = (Pi1, Pi2, Pi3.....N).

The jth dimension of the ith particle is allocated a value of Pij as given below to satisfy the constraints.

Pij = Pjmin + r (Pjmax - Pjmin) Here r [0,1]

2. Characterizing the analysis function: The advantage of each individual particle inside the swarm is found utilizing a wellness capacity alluded to as assessment work. the popularpenalty work technique utilizes capacities to downsize the wellness of the molecule in extent to the size of the uniformity limitation infringement. The analysis operate is laid out to constrict the non-smooth worth capacity given by condition.

The evaluation function is given as Min f(x)=f(x)+ lambda (equality constraints)

3. Initialisation of P-best and G-best: The wellness esteems acquired higher than for the underlying particles of the swarm are set on the grounds that the underlying Pbest estimations of the particle. the best an incentive among all the Pbest esteems is known as G-Best.

Evaluation of velocity: The update in velocity is done by equation (6).

4.Check the speed limitations of the individuals from every person from the accompanying conditions. If, Vid (k+1) > Vd max, then Vid (k+1) = vd max, (6)

Vid (k+1) < Vd min then, Vid (k+1)=vd min

Where, Vdmin = -0.5 Pgmin, Vdmax = +0.5 Pg max

5. Change the part position of every individual Pg as per the condition.

Pgid(k+1) = Pgid(i) + Vid(k+1)

Pgid (k+1) must fulfill the requirements, to be specific as far as possible. In the event that Pgid (k+1) violates the requirements, at that point Pgid (k+1) must be changed towards the closest edge of the attainable arrangement.

6. If the investigation estimation of each individual is superior to anything past P-best, this worth is prepared to be P-best. In the event that the best P-best is superior to anything G-best, the most effectiveP-best is prepared to be G-best. The relating estimation of wellness capacity is spared.

7. On the off chance that the quantity of emphases arrives at the most extreme, at that point go to stage 10. Otherwise, go to step-2.

9. Result and discussion

So as to demonstrate the adequacy of the anticipated PSO algorithmic program for short Load dispatch downside, 3 varying sorts of register frameworks are taken with thought: 3 Units, 5 Units, and 6 Units.

1. The essential test framework comprises of 5-Generating units has been taken from IEEE 14-Bus System with a period variable load demand for one day.

2. The second test framework comprises of 3 and 6 Generating units has been taken from various investigation procedure in establishment with a period variable load request.

The relating results has been gotten utilizing Particle Swarm advancement Technique utilizing Population Size=50 and Maximum Iteration=30000. The Flow graph for ELDP utilizing swarm streamlining procedure is appeared in Figure-1. The MATLAB Simulation programming 7.12.0 (R2011a) is utilized to acquire the relating results.

Test System - 1

Table-1: 3- Unit test System Generator Characteristics

No. of Generating	Real Pow	er (MW)	Cost Coefficients			
Units	Pmax	Pmin	А	В	С	
1	215	40	1244.531	38.3058	0.003446	
2	320	120	1658.45	36.4562	0.0215	
3	310	115	1356.96	38.2568	0.01789	

The loss coefficient matrix for 3-unit system:

	0.000071	0.000031	0.000025
B =	0.000031	0.000069	0.000032
	0.000025	0.000032	0.000081

Table-II: 3-Unit generation System Result

S.No.	Techniques	Demand (MW)	P1 (MW)	P2 (MW)	P3 (MW)	Fuel Cost (Rs./h)
1	CS[20]	360	70.3125	156.125	130.015	18564.8
	MVO	360	70.1254	155.325	130.258	18565.5
	PSO	360	75.5612	144.365	126.245	18058.6
	CS[20]	440	93.4578	194.325	171.325	23112.8
	MVO	440	93.4651	194.325	171.258	23112.58
2	PSO	440	35.7854	158.478	253.456	22810.5
	CS[20]	550	105.55	212.7852	193.145	25465.85
3	MVO	550	105.1245	212.895	193.365	25468.57
	PSO	550	108.3652	161.5248	230.798	24973.52

Table-III: Comparison of result of 3-Unit generation System

S.No		FUEL COST (Rs./h)						
			Cuckoo					
	LOAD	Lambda	Search		Particle			
	DEMAND	Iteration	Algorithm	Multi Verse	Swarm			
	(MW)	Method	[20]	Optimization	Optimization			
1	340	18571.5	18564.8	18564.25	18058.85			
2	440	23145.9	23113.8	23112.65	22810.5			
3	510	25498.1	25465.2	25468.9	24978.5			

Test System-II Table-IV: 6-Unit test System Generator characteristics

No. of	Real Power				
Generating	(M)	W)	Cos	t Coefficier	nts
Units	Pmax	Pmin	А	В	С
1	126	15	756.4587	38.3058	0.15245
2	155	15	451.2541	46.2541	0.10597
3	230	40	1049.564	40.1023	0.02845
4	215	40	1243.532	38.7458	0.03578
5	330	135	1658.32	36.2564	0.02154
6	310	120	1356.485	38.0145	0.01625

The loss coefficient matrix for 6-unit system

	0.000021 0.000015	0.000019 0.000024	0.000025 0.000031	0.000032 0.000069	0.000085 0.000032
	0.000016	0.000017	0.000071	0.000031	0.000025
B =	0.000013	0.000065	0.000017	0.000024	0.000019
	0.000061	0.000013	0.000016	0.000015	0.000021
	0.000017	0.000015	0.000019	0.000026	0.000022

Table-V: 6-Unit generation System Result

S.No.	Techniques	Demand (MW)	P1 (MW)	P2 (MW)	P3 (MW)	P4 (MW)	P5 (MW)	P6 MW)	Fuel Cost (Rs./h)
1	CS[20]	610	23.865	10	95.6524	100.632	202.832	181.65	32094.5
	MVO	610	23.905	10	95.578	100.635	202.365	181.25	32094.8
	PSO	610	21.185	10	82.125	94.365	205.452	186.32	31444.5
	CS[20]	720	28.294	10	118.698	118.256	230.148	212.36	36912.5
	MVO	720	28.354	10	118.231	118.365	230.952	212.36	36912.8
2	PSO	720	24.975	10	102.985	110.254	232.361	219.34	36002.8
	CS[20]	810	32.582	15	140.584	135.365	257.125	243.54	41896.5
	MVO	810	32.545	15	140.841	136.254	257.685	243.85	41896.5
3	PSO	810	30.004	12	128.365	125.125	255.365	250.14	40662.8

Table-VI: Comparison of result of 6-Unit generation System

S.No	LOAD	FUEL COST (Rs./h)					
	DEMAND (MW)	Lambda Iteration Method	Cuckoo Search Algorithm [20]	Multi Verse Optimization	Particle Swarm Optimization		
1	610	32130.5	32094.5	32094.25	31444.55		
2	720	36946.8	36912.8	36912.52	36002.35		
3	810	41959.2	41896.5	41896.64	40662.09		

Table-VII: 5-Unit Test System Generator characteristics

UNITS	P max	P min	А	В	С
Unit1	252	10	0.00317	2.05	0
Unit2	145	20	0.0178	1.78	0
Unit3	110	15	0.0635	1.05	0
Unit4	125	10	0.00835	3.05	0
Unit5	50	10	0.0252	3.02	0

Table-VIII: 5-Unit generation System Result

Load Demand (MW)	No. of Itera.	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Fuel Cost Rs./h
150	30000	86.8596	26.0247	15.1238	10	10	21276.9
174	30000	107.5263	30.1855	15.1238	10	10	25878.5
221	30000	145.0365	38.4786	16.2541	10	10	33696.2
245	30000	163.9254	42.8512	17.8325	10	10	38238.4
260	30000	175.1457	44.6253	18.2536	10	10	41198.5
250	30000	167.1452	42.8145	17.6325	10	10	39036.7
228	30000	130.5241	35.2145	15.0315	10	10	34985.1
205	30000	131.0526	35.2315	15.3214	10	10	30422.5

10. Conclusion

In this paper, scholar conferred the solution of Economic load dispatch problem solution using Swarm optimization technique. This gives high accuracy and fast computational time. The result of 3 units , 5 units and 6 generating units are successfully evaluated using Swarm optimization technique. The subsequent print are determined throughout the research finding:

1.After analyzing Swarm optimisation technique we find that Fuel cost (FC) is a smaller amount than multi verse optimisation technique.

2. Most important thing about this research paper is that it has easy implementation, need less computational time and extremely less algorithm steps and parameters.

REFERENCES:

[1] Ebrahimi, J.Hosseinian, S.H. (2011), "Unit Commitment Problem Solution using Shuffled Frog Leaping Algorithm" IEEE Transactions on Power Systems, Vol. 26, Year 2011, pp. 573-581.

[2] Swarup, K.S and D.N. (2011), "A Hybrid Interior Point Assisted Differential Evolution Algorithm for Economic Dispatch" IEEE Transactions on Power Systems, Vol.: 26, Year 2011, pp. 541 – 549.

[3] Manteaw E.D and Odero N.A (2012) , "Multi Objective Environmental/Economic Dispatch Solution ABC_PSO Hybrid Algorrithm ", International Journal of Science and research publication , volume 2 issue 12, December 2012 pp. 1-7.

[4] Taher Niknam and Faranak Golestaneh (2013), "Enhanced Bee Swarm Optimization Algorithm for Dynamic Economic Dispatch "IEEE Transactions on Power Systems, Vol 7, Year 2013, pp. 754 – 762

[5] Prof. Vikrant Sharma, Tung N.S , Rana R., and Guleria V. (2013), "Fuzzy Logic Controller Modelling for Economic Dispatch and Unit Commitment in Electrical Power System" International Journal ,Volume-2, Issue-10, October 2013 pp. 34-40

[6] Tao Ding And Rui Bo (2014), "Big-M Based MIQP Method for Economic Dispatch with Disjoint Prohibited Zones "IEEE Transactions on power systems, vol. 29, no. 2, march 2014pp 976-977