

Parametric Study of Grid Connected PV System with Battery for Single **Family House**

Vishwanath P. Mohite¹, Milind C. Butale²

¹PG Student, Electrical Engineering Department, PVPIT, Budhgaon, Maharashtra, India ²Asst. Professor and PG Co-ordinator, Electrical Engineering Department, PVPIT, Budhgaon, Maharashtra, India ***______

Abstract:- The environmental effects and load demand of electricity are the main factor driving towards renewable energy. The main aim is to demonstrate the model based methods for a grid connected solar PV system for Single family house that is for domestic application. As the Nonrenewable energy sources is about to end, future of human energy needs is in Renewable energy. In this paper, Photovoltaic system connected to Grid is simulated using the Pvsyst software. In this study PVsyst software is used to design a grid connected PV system for geographical site chosen in India is located in Maharashtra, in the region of Karad, in the East of Kasegaon. Detailed system configuration, system losses and system output are determined here in this study.

Key Words: PVSYST, Nonrenewable Energy

INTRODUCTION I.

Nonconventional energy is the future of human. Because of high consumption and the crices in availability of fossil fuel resource nonconventional energy (solar, wind ect.) is subject to great interest over the last decades. Solar energy is an emerging nonconventional energy source using all over the globe at micro as well as utility scale.

Solar energy is captured in a variety of ways, the most common of which is with photovoltaic solar panels that convert the sun's rays into usable electricity. Solar energy is a clean, inexpensive, renewable power source that is harnessable nearly everywhere in the world. Any point where solar radiations hits the surface of the any place on the earth is a potential location to convert solar energy in to electrical energy. And since solar power comes from the sun, it represents a limitless supply of power. Solar panels are mainly installed in three different forms: residential, commercial, and utility. Residential-scale solar is typically installed on rooftops of homes or in open land and is generally between 5 and 20 kilowatts (kW), depending on the required demand of consumer. Commercial solar energy projects are generally installed at a largerscale than residential solar energy projects.

So solar energy can provide solutions of all the present and future problems related to electricity. Solar power is the conversion of solar radiations into electricity, directly using photovoltaic (PV).Photovoltaic's convert light of sun into an electric current using the photovoltaic modules. A photovoltaic system consists of a PV array, battery, inverterand charge controller ect. The photovoltaic modules convertssolar radiations that is solar energy into dc power. If there is ac loads, the system requires inverter to convert direct current into alternating current.

There are mainly two types in photovoltaic system such as grid connected and standalone. Grid connected photovoltaic systems send electricity directly to the electrical network with operating parallel to the conventional energy source. In Grid-connected systems generation of electricity is done near the point of use, so that there is no need of the transmission and distribution lines. Its performance depends on the local wheather condition, orientation and inclination of the photovoltaic arrays, and inverter performance connected with it. Whereas, in stand-alone system there is no interaction with a utility grid, the generated power directly connected to the load. In some cases the photovoltaic systems does not directly supply a load, battery enery storage system is needed. The battery bank stores energy when the power supplied by the PV modules exceeds load demand and releases it backs when the PV supply is insufficient. This standalone PV power generation is utilized in house for the electrification purpose. A wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. System designers and installers use simpler tools for sizing the PV system. Generally scientists and engineers uses more involved simulation tools for improvements. Software tools related to photovoltaic systems can be classified into prefeasibility analysis, sizing, and simulation.

PVSYST is a one of the dedicated PC software package for PV systems. The software was developed by the University of Geneva, Switzerland. It integrates prefeasibility, sizing and simulation support for PV systems. After defining projected location and calculated consumer energy demand, the user can selects the different components from a product database and the software automatically calculates the size of the whole photovoltaic system. In present study design, optimization and cost analysis of a solar power plant at residential rooftop as well as on utility scale in India is to be discussed.3

II. LITERATURE REVIEW

G. M. Tina (2009) presented Photovoltaic systems

combined with either some form of storage, e.g. Battery Energy Storage System (BESS), or direct load control can play a role in achieving more economical operation of the electric utility system while enhancing reliability with additional energy sources. The proposed system may operate in multioperation modes, normal operation, power dispatching, and power averaging, according to coordinate control of both BESS and grid inverters

Angel A. Bayod-Rújula(2017) presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs) and related to feed-in tariff policies. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities

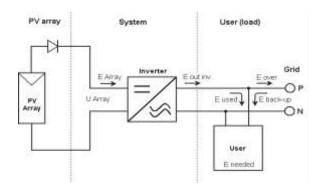
RachitSrivastava (2017) introduced Grid connected photovoltaic system simulated using the Pvsyst software. In this study PVsyst software is used to design a grid connected PV system for Madan Mohan Malaviya University of Technology, Gorakhpur in India

Dr. J.S. Rajashekar(2018) introduces The actual system explores opportunities to explore towards the production. environmental friendly energy The environment effects and load demand of electricity are the main factor driving towards renewable energy. The main goal is to demonstrate the model based methods for a grid connected solar PV system for domestic & commercial application.

Krishan Kumar (2018) Presented simulation of solar photovoltaic system and the cost analysis of these solar PV systems. This work is done with real time radiation of sun and actual output of solar PV system. The experiment has done at different locations

C.P. Kandasamy (2013) presented efficient PV system is designed for gridconnected environment using PVsyst software. For Gridconnected PV system, the viability of installing 1 MW plant invarious places of southern part of Tamilnadu are considered

Surabhi Sharma (2018) presents solar photovoltaic system design case study of an academic institution using PVsyst. The performance of the photovoltaic system depends on geographical location, solar irradiance, type of PV module and orientation of the module.


PriyaYadav (2015) discussed detailed methodology to design and simulate aphotovoltaic system using PVsyst software. Using the measured global solar radiationdata for Hamirpur, more accurate results are produced. Itis concluded that design of a PV system is entirely location dependent.

III. RESEARCH METHODOLOGY

Using Pvsyst software center, it's a computational research. PVsyst is software for simulating stand-alone and grid-connected PV systems. System location is in Karad near area. On the grounds of prior inquiry, validation will be carried out.GRID CONNECTED SOLAR PV SYSTEM –

A grid-connected solar PV power plant is being installed using PVsyst Software to power generation, economic feasibility of some of the locations in INDIA. Proposed model shown in figure of the grid-connected PV system. The validation location of Rethae Bk at the eastern of Kasegaon is used.

It is a computational study using Pvsyst software facility. PVsyst is simulation software able to simulate both stand alone and grid connected PV systems. Validation will conduct on the basis of previous investigation.

IV. CASE STUDY AND VALIDATION

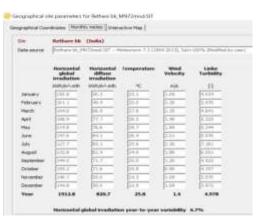
Fig 1 : Location of the system to Case study

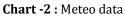
The geographical site chosen in India is located in Maharashtra, in the region of Karad, in the East of Kasegaon It lies on 17.16° N latitude and 74.22° E longitude. It consists in a single family house, used as a family residence during the whole year.

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 06 Issue: 08 | Aug 2019www.irjet.netp-ISSN: 2395-0072

			-	•
 ратана рас		[40	
 			- 1	
世常	TE ::			

Chart -1 : Geographical Location and Meteorology


Load Estimation


In a house following appliances are common and table 1 shows appliances with their rating and load estimations.

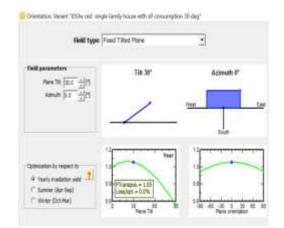

LOAD	WATTS	Q	HO	TOTAL	TOTAL
		U	UR	WATTS	WATTS-
		А	/D		HOUR/DAY
		Ν	AY		
		Т			
		Ι			
		Т			
		Y			
TV	150	1	3	150	450
CFL	20	3	4	60	240
FAN	40	2	2	80	160
Total in					
Watts				290	850≅1000

Table 1 : Load estimations

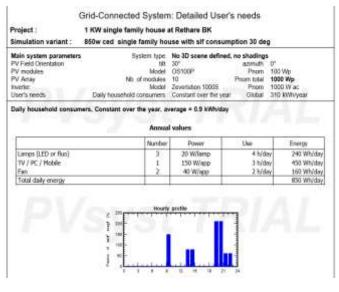

So a house load is = 1 kW or 850 Wh/day

Fig -1: Plane tilt and Azimuth

Table 2 : Result For a tilt of 30°

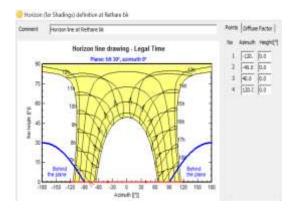


Fig -2: Horizon

International Research Journal of Engineering and Technology (IRJET) e-

Volume: 06 Issue: 08 | Aug 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Chart -3: Module and Inverter

			10 M (c)
Main system parameters	System type	No 3D scene defined, no shadi	ings
PV Field Orientation	58	30° szimu	th 0°
PV modules	Model	OS100P Pro	m 100 Wp
PV Array	Nb. of modules	10 Pnom to	tal 1000 Wp
Inverter	Model	Zeventution 1000G Proc	am 1000 Wac
User's needs	Daily household consumers	Constant over the year Glob	al 310 kWhiyear
Main simulation results		1 1987 1	
System Production	Produced Energy	1559 kWh/year Specific pro	d 1559 kWh/kWp/yea
	Performance Ratio PR	76.15% Solar Fraction 3	SF 83.19%
Battery ageing (State of Weal	cycles SOW	90.9% Static S0	W 90.0%
	Battery lifetime	10.0 years	

V. RESULTS

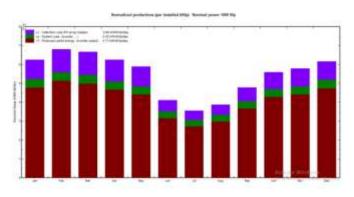


Table 3: Normalized production per installed KW

850w ced single family house with slf consumption 30 deg Balances and main results

	1000	Diffice	T_Anh	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
		kith/b ²	kt/h/h ²	*	kwh/m²	ktth/m ²	kate	kwh	ktth	kith.
January	150.6	50.20	23.14	193.7	190,5	162.7	26.35	21.95	126.6	4.402
February	161.1	49,40	24.98	190.5	187.3	157.2	23.80	19.82	124.2	3.976
Harch	194.6	66.90	27.75	206.9	202.2	169.3	26.35	21.95	133.0	4.402
April	198.9	77,70	29.52	187.5	182.6	153.6	25.50	21.24	119.1	4.263
Hay	214.8	36.60	29.73	182.6	177.0	150.4	26.35	21.95	115.1	4.402
June	147.6	94.32	25.42	123.5	119.1	105.9	25.50	21.24	73.8	4.260
July	127.7	85.10	25.59	110.4	106.7	95.7	26.35	21.95	62.0	4,402
August	132.8	82,40	24.91	119.9	116.2	103.6	26.35	21.95	70.7	4,402
September	149.0	71.70	25.00	143.6	139.8	122.0	25.50	20.92	89.6	4.584
October	155.2	71.60	25.79	173.5	169.5	145.9	26.35	21.95	111.0	4.402
November	140.7	55.00	24.27	173.5	170.3	145.5	25:50	21.24	111.6	4.290
December	144.8	55.00	22.89	191.7	188.1	161.3	26.35	21.95	125.1	4.402
Tear	1912.8	820.70	25.83	1996.9	1945.4	1673.3	310.25	258.10	1262.6	52, 154

Table 3: Balances and main result

Gn	d-Connected System	n. Simulai	on parameters	
Project : 1	KW single family house	at Rethare B	к	
Geographical Site	Rethare bk		Country	India
Situation Time defined as	Legal Time Albedo			572 m
Meteo data:	Rethare bk	Meteonom 7 Synthetic	.2 (1994-2013), Set#10	X9% (Modified by user)
Simulation variant : 85	Ow ced single family ho		C. C. S. S. C. S. S. C. S.	0
11 N. 16	Simulation date	29/08/19 09h	20	
Simulation parameters	System type	No 3D scene	defined, no stadings	
Collector Plane Orientation	Tat	30*	Azimuth	0*
Models used	Transposition	Perez	Diffuse	Perez Meteonorm
Herizon	Free Horizon			
Near Stadings	No Shedings			
Storage	Kind	Self-consump	6on	
		When excess	solar power is availabl	111
User's needs :	Deily household consumers average	Constant over 0.9 kWh/Day		
PV Array Characteristics		an an an		
PV module Drightal Pvityst database Number of PV modules Total number of PV modules Array global power Array operating characteristics Total area	Manufacturer In series Nb. modules Nominal (STC)	10 modules 10 1000 Wp 154 V	in parallel Unit Nom. Power At operating cond. Empp Cell area	100 Mp
Inverter		Zevertution		
Original PVsyst database Characteristics	Matufacturar Operating Voltage	Zeversolar	Unit Nom. Power	1.00 #Wite:
Inverter pack	Nb. of inventions	1 units	Total Power Pnom ratio	1.0 kWec 1.00
Battery Battery Pack Characteristics	Model Manufacturer No. of units	Hoppecka	VL OP25 12-70	
	Voltage Discharging min. SOC	24 V	Norvinel Capacity Stored energy	
Battery input charger	Max. charging power		Max/Euro efficiency	97.0/95 C %
Battery to Grid inverter	Model Max. discharging power	Generic 0.1 kV/lac	Max / Euro efficiency	97.0/95.0 %
PV Array loss factors				
Thermal Loss factor	Uc (const)	20.0 Wim#K	Us (wind)	0.0 WINK / m/s
Wring Ohmic Loss	Global array res.		Rear Property	1.5 % at STC

Table 4: Report of PV system connected to Grid

VI. CONCLUSIONS

In this study PVSYST software is used to design a grid connected PV system for residensial load in particular geographical sitein India. Detailed system configuration, system output and system losses are determined in this study. From the simulation optimal size of the PV system is determined that is able to supply the electricity to the Domestic load throughout the year

Also, this study present a simple but efficient grid-Photovoltaic system for a domestic load that can meet the daily load demands. The result shows that the constant over the year, daily load requirement of a house is 0.9 KWh/day

VII. FUTURE SCOPE:

Future work to complete this project, Grid Connected PV system using Battery Storage with Utility Grid functionality, there is a great need of designing the control system that would control the designed inverter power of this paper. The control shall be able to integrate the inverter with Household load and also with Utility grid available. The second important work is the inverter

prototype. After the simulation of the inverter power stage obtained the next step is the implementation of the actual system. However, it can be introduced and analyzed in the real-time setting with the assistance of LabVIEW. Component selection and rating is another job to do. Standard values are required in future job in order to adapt to certain operating settings.

REFERENCES

- [1] Tara M. Tina, Member, IEEE, and F. Pappalardo "Grid-Connected Photovoltaic System with Battery Storage System into MarketPerspective"publicationat:https://www.resea rchgate.net/publication/224163209 in October 2009
- [2] Angel A. Bayod-Rújula, A.Burgio, Z. Leonowicz, Menniti,A. Pinnarelli, and N.Sorrentino "Recent Developments of Photovoltaics Integrated withBatteryStorageSystems and Related Feed-In Tariff Policies: A Review "International Journal of PhotoenergyVolume 2017, Article ID 8256139
- [3] RachitSrivastava and Vinod Kumar Giri"Design of Grid Connected PV System Using Pvsyst".African Journal of Basic & Applied Sciences 9 (2): 92-96, 2017ISSN 2079-2034© IDOSI Publications, 2017
- [4] Rekhashree1, Dr. J.S Rajashekar. Study on Design and Performance Analysis of Solar PV RooftopStandalone and On Grid System Using PVSYST. International Journal of Engineering Research and Technology 2018; Volume 5, Issue7.
- [5] Krishan Kumar1, M. A. Ansari "Simulation based Solar PV System: A Cost-Effective Study" International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 11 (2018) pp. 8894-8898
 © Research India Publications.
- [6] C.P. Kandasamy "Solar Potential Assessment Using PVSYSTSoftware"2013 International Conference on Green Computing, Communication and Conservation of Energy
- [7] Surabhi Sharma "Solar PV System Design Using PVsyst: A Case Study of an Academic Institute" 2018 International Conference on Control, Power, Communication and Computing Technologies
- [8] PriyaYadav "Simulation and Performance Analysis of a lkWp Photovoltaic System Using PVsyst" 2015 International Conference on Computation of Power, Energy, Information and Communication.

[9] PVsyst, "PVSYST" [Online].Available: www.pvsyst.com/en/[Accessed052019]