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ABSTRACT:- This paper presents bending analysis of functionally graded beam curved in elevation using higher order 
theory, which includes both shear deformation and thickness stretching effects. Various symmetric and non-symmetric 
sandwich beams with FG material in the core or skins under the uniformly distributed load are considered. MATLAB code 
and Navier solutions are developed to determine the displacement and stresses of FG sandwich beams for various power-
law index, skin-core-skin thickness ratios and boundary conditions. Numerical results are compared with those predicted 
by other theories to show the effects of shear deformation and thickness stretching on displacement and stresses. 
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1. INTRODUCTION 
 

The concept is to make a composite material by varying the microstructure from one material to 
another material with a specific gradient. This enables the material to have the best of both materials. If it is for 
thermal, or corrosive resistance or malleability and toughness both strengths of the material may be used to 
avoid corrosion, fatigue, fracture and stress corrosion cracking. The transition between the two materials can 
usually be approximated by means of a power series. Beams can be analysed using classical beam theory, 
Timoshenko beam theory and equivalent single layer theories [1-11].  

 
 Huu-Tai Thai et. al. [12] presented static behaviour of functionally graded (FG) sandwich beams by 

using a quasi-3D theory, which included both shear deformation and thickness stretching effects. Finite 
element model (FEM) and Navier solutions were developed to determine the displacement and stresses of FG 
sandwich beams for various power-law index, skin-core-skin thickness ratios and boundary conditions. It 
concluded that the effect of normal strain is important and should be considered in static behaviour of 
sandwich beams. Nguyen et al. [13] presented bending, buckling and free vibration of axially loaded 
rectangular functionally graded beams using the first-order shear deformation theory. Effects for the power-
law index, material contrast and poisson’s ratio on the displacements, stresses, natural frequencies, critical 
buckling loads and load-frequency curves as well as corresponding mode shapes are investigated. Jiang and 
Ding [14] presented analytical solutions for orthotropic density functionally graded cantilever beams using the 
superposition principle and the trial and error method. It is recommended that these analytical solutions can 
serve as benchmarks for numerical methods such as finite element method, the boundary of method, etc. Li 
[15] developed a new unified approach for analysing the static and dynamic behaviour of functionally graded 
beams considering rotary inertia and shear deformation. In this study authors have reduced the Euler-Bernoulli 
and Rayleigh beam theories from the Timoshenko beam theory. Benatta et al. [16] applied high order flexural 
theories for short functionally graded symmetric beams under three point bending. The general solutions for 
displacement and stresses are obtained. Benatta et al. [17] also presented an analytical solution for static 
bending of simply supported functionally graded hybrid beams subjected to transverse uniform load based on 
higher order shear deformation beam theory. Analytical method is by Sallai. Sallai et al.[18] for bending 
analysis of simply supported sigmoid functionally graded material beam subjected to a uniformly distributed 
transverse loading using various shear deformation theories. Li et al. [19] develop the higher order shear 
deformation theory for bending of functionally graded beams. The FG beams of various end conditions 
including free, hinged, lamped and elastically restrained are considered. The general solutions for displacement 
and stresses are presented and concluded that not only deflection but also internal stresses strongly depend on 
the gradient variation of material properties. Giunta et al.[20] propose the several higher order refined theories 
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for the linear static analysis of functionally graded beams via a unified formulation. It is observed that 
Bernoulli-Euler and Timoshenko theories are the particular cases of a unified formulation. A Navier type, closed 
form solution is obtained for bi-directional FGM beam. 
 
1.1 Functionally graded materials 
 

There are two types of graded structures which can be prepared in case of FGM, continuous structure 
and stepwise structure In case of continuous graded structure, the change in composition and microstructure 
occurs continuously with position on the other hand in case of stepwise, microstructure feature changes in 
stepwise manner, giving rise to a multi-layered structure with interface existing between discrete layers.  

 

1.2 FGM Application 

FG materials are preferred due to delamination, matrix cracks, stress concentration and other damage 
mechanisms which are often observed in fibrous composite laminates. Most commonly used FG materials are 
ceramic and metal. Functionally graded materials are having attractive properties such as high thermal 
resistance, high impact resistance, increases the bond strength and reduce the residual stress, thermal stress 
and crack driving forces. A low-cost ceramic-metal functionally graded material would be ideal for wear-
resistant linings in the mineral processing industry. Such a material would comprise a hard ceramic face on the 
exposed side, a tough metal face on the rear side that can be bolted or welded to a support frame, and a graded 
composition from metal to ceramic in between. The gradation would enhance the toughness of the ceramic face 
and also prevent ceramic-metal de-bonding. 

 

2. METHODOLOGY 
 
Functionally graded curved sandwich beam under consideration 

 
Fig.2.1 Functionally graded curved sandwich beam 

 
Consider a functionally graded sandwich beam curved in elevation with length L and rectangular cross-section 
b × h, with b being the width and h being the height and with radius of curvature R. 
  
2.1 Displacement fields 
 
The displacement field of the present higher order shear deformation theory is given by, 
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where, ,  are the axial and transverse displacements, ,  are the axial displacements of
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2.2 Strains 
 

The non-zero normal and transverse shear strains associated with the displacement field in equation 
are obtained within the framework of linear theory of elasticity,  
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2.3 Stresses 
 

The stress-strain relationship at any point in the beam is given by the two dimensional Hooke’s law as 
follows, 
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where, x is normal stress, xz  is transverse shear stress, E is Young’s modulus and x  is normal strain, 


 is 
Poisson’s ratio. 
 

2.4 Principle of virtual work 
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2.5 Governing Equations 
 

The governing equations can be obtained by integrating the derivatives of the varied quantities by parts 
and collecting the coefficients of 0,  0,    andx zu w     
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 2.6 Method of solution 
 
The Navier method is used for static analysis in the simply supported sandwich beam. Field can be assumed 
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By substituting these equation into equations (5), four differential equations can be obtained as 
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3. NUMERICAL RESULTS AND DISCUSSION  
 
The material properties of metal, ceramic and FGM layers are as the following 
 
Emetal = 70 GPa and Eceramic = 380 GPa 
 
Non-dimensional maximum axial and transverse deflection of the beam are considered as 
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Table 1: The maximum transverse deflection of single layer FG curved beam 

 

L/h p   w    

  R=5 R=10 R=20 R=50 R=100 Straight beam 

        

5 0 2.4776 2.4778 2.4778 2.4778 2.4778 2.4778 

 1 4.8587 4.8456 4.8391 4.8352 4.8339 4.8326 

 2 6.2263 6.2094 6.201 6.1961 6.1944 6.1928 
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Table 2: The maximum normal stress x of single layer FG curved beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: The maximum normal stress z  of single layer FG curved beam 
 

L/h P    
 

 

   

  R=5 R=10 R=20 R=50 R=100 Straight 
Beam 

5 0 -0.3121 -0.3074 -0.3052 -0.3039 -0.3035 0.303 

 1 0.3211 0.3507 0.3656 0.3745 0.3775 0.3805 

 2 0.3696 0.407 0.4258 0.437 0.4408 0.4446 

 5 -0.3821 0.3932 0.4137 0.426 0.4302 0.4343 

 10 0.3683 0.4155 0.4393 0.4537 0.4584 0.4632 

 5 7.6173 7.5993 7.5904 7.585 7.5833 7.5815 

 10 8.5354 8.5148 8.5046 8.4985 8.4965 8.4944 

10 0 2.3191 2.3192 2.3192 2.3193 2.3193 2.3193 

 1 4.592 4.5785 4.5717 4.5677 4.5664 4.5651 

 2 5.8515 5.8341 5.8255 5.8204 5.8187 5.817 

 5 6.9954 6.977 6.9679 6.9624 6.9606 6.9588 

 10 7.7705 7.7495 7.739 7.7327 7.7307 7.7286 

100 0 2.2664 2.2666 2.2666 2.2666 2.2666 2.2666 

 1 4.5034 4.4897 4.483 4.4789 4.4776 4.4762 

 2 5.727 5.7095 5.7009 5.6957 5.694 5.6923 

 5 6.7891 6.7705 6.7613 6.7558 6.754 6.7522 

 10 7.5167 7.4955 7.4849 7.4786 7.4765 7.4744 

L/h P   
 

   

  R=5 R=10 R=20 R=50 R=100 Straight 
Beam 

5 0 3.1112 3.1254 3.1325 3.1368 3.1382 3.1396 

 1 4.8295 4.8467 4.855 4.8598 4.8614 4.863 

 2 5.6526 5.6708 5.6796 5.6848 5.6865 5.6882 

 5 6.6694 6.6904 6.7006 6.7066 6.7086 6.7105 

 10 7.9737 7.9991 8.0113 8.0186 8.021 8.0233 

10 0 6.1442 6.176 6.1918 6.2014 6.2046 6.2077 

 1 9.5303 9.5684 9.5869 9.5978 9.6013 9.6049 

 2 11.1312 11.1718 11.1913 11.2028 11.2066 11.2104 

 5 13.0739 13.1207 13.1433 13.1567 13.1611 13.1655 

 10 15.6496 15.706 15.7334 15.7495 15.7549 15.7602 

100 0 61.1879 61.5167 61.6811 61.7797 61.8126 61.8455 

 1 94.886 95.2795 95.4701 95.5825 95.6197 95.6566 

 2 110.7456 111.1645 111.3666 111.4856 111.5248 111.5639 

 5 129.8731 130.356 130.5903 130.7286 130.7743 130.8198 

 10 155.5221 156.1043 156.3874 156.5547 156.61 156.6651 

x

z
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10 0 -0.456 -0.4456 -0.4406 -0.4377 -0.4367 0.4358 

 1 -0.6581 -0.6404 -0.6314 -0.6259 -0.6241 -0.6222 

 2 -0.7472 -0.7295 -0.7205 -0.715 -0.7132 -0.7113 

 5 -0.6834 -0.6899 -0.6934 -0.6955 -0.6962 -0.6969 

 10 -0.5941 -0.6015 -0.6054 -0.6078 -0.6086 -0.6094 

100 0 -4.0057 -3.8981 -3.8466 -3.8164 -3.8064 3.7965 

 1 -6.905 -6.73 -6.6404 -6.586 -6.5677 -6.5494 

 2 -7.7549 -7.5798 -7.4902 -7.4358 -7.4176 -7.3993 

 5 -6.5667 -6.6298 -6.663 -6.6834 -6.6903 -6.6972 

 10 -5.61 -5.6812 -5.7188 -5.742 -5.7498 -5.7577 

 
Table 4: The maximum shear stress xz of single layer FG curved beam 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

CONCLUSION: 
 

Based on a higher order shear deformation theory, MATLAB code and Navier solutions are developed to 
determine the displacement and stresses of FG sandwich beams. This theory includes both shear deformation 
and thickness stretching effects. Single layer functionally graded straight and curved beams are considered. 
Numerical results are compared with those predicted by other theories to show the effects of shear 
deformation and thickness stretching on the displacement and stresses. 
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