
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 809

Development and Integration of GUI Application with the PCI Express

IP-Core VHDL Application

Kavya S1, J.C Narayana Swamy2

1M.Tech Student, Dept of ECE, Bangalore Institute of Technology
2Assistant Professor, Dept of ECE, Bangalore Institute of Technology

 ---***---

Abstract - High bandwidth video bus is a video interface
protocol identified in avionics devices for large bandwidth
requirements, low latency and uncompressed digital video
transmission. This protocol is used to interface system(s) of
aircraft to the display in the cockpit. Current day technology
uses the Line Replaceable Units (LRU) based on the Field
Programmable Gate Array (FPGA) Internet Protocol (IP) cores
for communication between two systems. These
communication protocols are implemented using FPGA and
FPGA integrated modules based Peripheral Component
Interconnect (PCI) are used as part of the implementation.
These integrated modules are interfaced with the host
computers in order to communicate the real LRU as analogous
to the aircraft communication. Host machines therefore need
to be integrated with the necessary GUI implementation to
interact with the PCI Express bus. This paper discusses the
development and integration of GUI implementation for PCI
Express IP-core with VHDL implementation using JUNGO
(WinDriver) device drivers for memory write/read
transactions and data transfer for discrete and continuous
data.

Key Words: PCI Express; Graphical User Interface; Data
Simulator, JUNGO, Chipscope

1. INTRODUCTION

PCI Express is a standard type of connection for internal
devices in a computer. It is a serial expansion bus standard
operating at multi-gigabit data rates. It uses a serial interface
and allows point-to-point interconnection between the
devices. PCI Express provides lower latency and better rate
of data transfer compared to the PCI and PCI-X technologies.
To enable communication between these devices, device
drivers are required, which can be generated using tools like
JUNGO (WinDriver) [4].

The JUNGO (WinDriver) tool generates an example code to
communicate with devices from the user end operating in
byte level write or read transaction (s) and for viewing the
configuration registers. The example application generated
by the tool was studied, installed and executed. With this
example application as the basis, an application adapted to
the requirements of data communication was developed.

2. RELATED WORK

The paper [1], examines the improvement of PCI-e interface
utilized for fast data transfer to PC. This serial bus

architecture has many advantages over parallel PCI bus. The
application that require low speed can utilize just a single
path of PCI-e wherein applications that requires fast transfer
of data can use 2,4,8,16 or 32 lanes of PCI-e depending on
speed requirement. Data transfer speed of PCI Express is 2.5
Giga bits per second per lane. The PCI Express interface on
virtex-6 series of FPGA is detailed.

The paper [2], introduces the interface between the host
computer and the evaluation board of Xilinx ZC706
containing Zynq-7000 XC7Z045, All Programmable System-
On-Chip (APSoc) device using PCI Express. It also details the
Linux-based write/read operation implementation, allowing
information transfers in both the directions via PCI express
bus. The performance comparison of the data transfer time
at different rates have been detailed.

3. PROPOSED WORK

To establish a communication between the IP-core under
test and the host computer, a Xilinx PCI Express IP-core
needs to be developed with an appropriate application
interfaces. The host computer, writes/reads from/to the
specified offset of the memory (in the FPGA) as required by
the application. The FPGA blocks include the PIO example
design and Xilinx’s PCI Express IP-Core. The example PIO
design includes a single memory buffer to demonstrate
write/read operations of the PCI-e IP-Core. The write port of
it is interfaced for writing the data received from the host
computer. The read port of the memory is interfaced for
reading and looping the data back to host computer. Thus
the PIO example application provides a means of testing the
PCI Express IP-core write and read operations and is
observed on Chipscope.

To interface the PCI Express IP-core with the IP-core under
test, the application will provide two parts, a write port to
take in the data from the IP-core under test and to send the
same to the host computer and a read port to read the data
sent from the host computer.

Under this effort, it is proposed to disconnect read port of
the memory in PIO and to provide the same interface to the
IP-core under test for reading the data sent from the host
computer. To provide the IP-core under test with a write
port to enable it to send the data to the host computer, it is
suggested that a second memory be added with its write
port as an interface to the IP-core under test. The read port

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 810

of this memory is suggested as an interface to the PCI
express IP-core for the transmission to the host computer of
the information obtained from the IP-core under test.

To enhance the user experience, the sample GUI Application
generated by the JUNGO tool for the inserted Xilinx SP-605
Evaluation Board should be modified to display the
definitions of the configuration registers.

4. METHODOLOGY

 For the SP-605 evaluation board, Xilinx’s PCI Express IP-
core and the Xilinx example Programmed Input Output (PIO)
design are produced. This PIO design is altered according to
the requirement. This altered IP is called PCI Express based
Data Simulator. On the SP-605 evaluation board, this data
simulator IP is flashed to the FPGA. A tool called JUNGO is
used to generate the required device drivers. The JUNGO
tool’s Driver Wizard implementation will produce a generic
GUI Application together with the Device drivers. The
resulting sample application is tailored by modifying the
generated forms and created additional forms. This
customized GUI is called Data Simulator GUI.

Fig -1: SP-605 Evaluation Board [7]

 Device drivers are installed on the host computer and the
Data simulator GUI Application is launched to initiate PCI
Express transactions. One of the key features of the
customized configuration space form is that it provides the
user with bit-wise detailed information and thus relieves the
user of the need to refer to the PCI Express texts in order to
understand the values and their indications.

5. TESTING

5.1 Development of VHDL based Data Simulator

 Xilinx’s Programmed Input Output (PIO) design is
modified to include two buffers, the write and the read
buffer which is to be provided as an interface to the
communication IP-core under test. This modified PIO is
integrated with the Xilinx’s PCI Express IP-core to form the
data simulator.

Fig -2: Data Simulator

During write operation from the host computer, the data
sent from the GUI application by the user received by receive
engine of the Data Simulator IP-core on FPGA and the data is
written into write buffer and then writes the flag. While
performing a read operation from the host computer, it waits
for the flag to receive and then reads it in the TX Engine on
FPGA. The TX Engine reads the data from that particular
address of the read buffer and transmits data on host
computer which is read to the user application.

Fig -3: Flowchart for write and read operations in VHDL
application

 Figure 3, shows the flowchart for the read and write
operations which we have followed in VHDL Application.
The waveforms of both the data write and data read
operation to its write and read buffer are observed on the
Chipscope using the Xilinx’s Chipscope ILA design unit.

 First, initialize the count value to the starting address of
write memory. After initializing the count value, check if the
read data is available. If the read data is available, then
perform write data state as shown in the flowchart above. If
not, then go back to idle state. In write data state, check if the
counter value has reached the maximum address. If it has

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 811

reached the maximum address, then reinitialize counter
value to first write location. If not, then increment the
counter value by “1”. After completion of read, clear the read
data status of that particular address.

5.2 Device driver Generation

 The PCI Express Device driver for the built-in PCI Express
interface module is produced using the JUNGO tool. The
instrument produces an Information File (INF) with all the
libraries needed for the chosen built-in module. Figure 5
demonstrates the flow diagram of the device generation
driver. When the built-in FPGA module is inserted into the
PCI Express slot, the operating system of the host computer
detects device details such as Device Identification (ID) and
Vendor Identification (ID). The information will be displayed
in the Driver Wizard. Select the device, generate and install
the INF. This will install the card’s base drivers. The details
of the device driver generation and installation process are
outlined in Figure 4.

Fig -4: Device Driver Generation Flow Chart

5.3 Graphical User Interface Development for

Data Simulator

 In the Laboratory desktop setup, the simulation data/IP-
core configuration data/debug data is typically transmitted
via the PCI Express bus to the IP-core being tested. One of
the critical requirements in this context is the
communication with FPGA of data from the host computer
application to an external device such as an embedded
module (SP-605).

 In this case, the host’s data will be sent to FPGA and vice
versa. The PCI Express data simulator GUI application
integrates the JUNGO drivers and communicates the data on
the host computer via the PCI Express bus, the IP-core being
tested on the FPGA and the data simulator IP-core on the
same FPGA as well. The Main Windows form Application
(sample form) to access the device is created by JUNGO Tool
as shown in the Figure 5.

Fig -5: Sample form Generated by JUNGO Tool

5.3 Modified GUI for performing Memory

write/read Transactions

 The Figure 6 is a modified GUI Application for write/read
transactions. The Drivers that are created by JUNGO tool is
capable of transmitting single “Double Word” (DWORD),
whereas the real prerequisite is to transmit the data
continuously. The single DWORD transmitting driver will be
used by GUI Application and also designed it to transmit
write counter value to write buffer.

 The user can browse and select any text file through file
transfer button and transfer the data continuously. The data
will be converted to hexadecimal and perform write and
read operations. This is the prerequisite which has been
realized. For converting the data which is in text format into
hexadecimal string in C#, “StringBuilder” function can be
used.

 In the modified Application Form, there are two radio
buttons. One will allow the user to select “Data transfer” to
perform write/read operations by manually giving the data
and the other radio button will allow the user to select “File
transfer “where the user can browse and select any text file
and size of the file will be automatically displayed to perform
write/read operations. The first radio button (Data transfer)
allows the user to provide manual hexadecimal data in
“Input for write transactions” for write/read operations.
Selection of “File transfer” allows the user to browse the
path of the file where the input of the data is provided and
that will be displayed in “File path”. Once the path is chosen,
size of the file will be reflected automatically in “File size”.
The “data transfer” is chosen by default, if the “file transfer”
is selected, then the “data transfer” button will be disabled.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 812

Fig -6: Modified Application form for write/read
transactions

 There are four textboxes as shown in the Figure 8. The first
textbox (Top left) writes the data which is in ASCII format as
chosen by the file. Once it is written into the memory, it
converts the ASCII format of the provided data into
hexadecimal format and writes it in the second textbox
(bottom left). Then the received hexadecimal data will be
read in the third textbox (bottom right) and the hexadecimal
data which is read from the memory will be converted back
to ASCII format and displays it in fourth textbox (Top right)
in order to verify the input data which was provided earlier.

 The write/read transaction(s) will be performed and a log
will be displayed simultaneously in order to verify the
operations which are being performed. These all conversion
of ASCII to Hexadecimal and vice versa will be written and
read to/from the memory at once by clicking on the “Start”
button. To perform write/read operation separately, the
user can make use of the buttons “write” and “read” which is
shown in the Figure 9. To perform write operation, the data
will be written by clicking on the “write” button. Similarly,
for the read operation, if we want to read the data from the
memory then by clicking on the “read” button, the data will
be read.

 The write and read operations were performed and the
waveforms were observed on the Chipscope.

6. RESULTS

6.1 PCI Express Data Simulator Application
screenshots

 While performing a write operation from the host
computer, the data sent by the user from the GUI Application

is received by Receive Engine of the Data Simulator core
and written into the write buffer. The write transaction
waveforms observed on the Chipscope are as shown in
Figure 7.

Fig -7: Write operation with Address and Data

 Fig -8: Read operation with Request from Rx Engine

 For read operation, the host computer sends a read request
to the RX-Engine. The RX-Engine sends the first 3 Double
Words (DW’s) of the request, which contain the FMT type,

Write data

REQ from RX Engine

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 813

requester ID and the address to the TX-Engine. The TX-
Engine transmits the header DW’s (3 DW’s provided by the
RX-Engine which contain FMT type, requester ID, address
along with the data read from the read buffer to the host
computer. The read request from host computer to the data
simulator is shown in Figure 8 and the data transmission
from data simulator to the host computer is as shown in
Figure 9.

Fig -9: Read operation with Data

7. CONCLUSION AND FUTURE WORK

In this Project, we have presented a case for establishing
communication link between the IP-core under test on the
FPGA (SP-605 evaluation) board and host computer using
PCI Express IP. The waveforms are observed on the
Chipscope for write and read operations.

Additionally, elaborated and generated device drivers from
the JUNGO (WinDriver) tool which help to have a
communication from the GUI Application with the PCI
Express card. By selecting the default BAR address, transfer
modes, transfer type and offset value, memory write/read
transaction(s) were performed and later verified the
transmission of data on Chipscope Pro Analyzer. The PCI
Express based data simulator GUI is tested successfully for
discrete as well as continuous data.

The data was communicated with the Xilinx SP-605
evaluation hardware board and checked for accuracy. The
sample GUI provided by the JUNGO tool is modified to
transmit random hexadecimal data along with text and word
file. This is converted into hexadecimal format so as to

perform the write and read operation.

In future the bus master DMA implementation may be
considered, for the purpose of faster transfer of data
between host and the Data Simulator IP, which is required to
cater to the IP-cores under test that demand higher data
rates and also to enhance the GUI for improved user
experience.

ACKNOWLEDGEMENT

We express our thanks to the Department of Electronics and
Communication, Bangalore Institute of Technology (BIT),
Bengaluru for supporting the work.

REFERENCES

[1] Vijitha C.V, Najla A.P, Jayaraj.U, Kidav M.E “PCI Express
Interface Development and Simulation for High Speed
Data Transmission” Applied Electronics, VCEW, Tamil
Nadu, India Mtech Electronics Design Technology,
NIELIT, Calicut, India Scientist, NIELIT, Calicut, India.

[2] Rjabov A, Sudnitson A, Skliarova I (2016) Interaction of
Zynq-7000 devices with general purpose computers
through PCI Express: a case study. In: Proceedings of
MELECON 2016.

[3] PCI Express system Architecture by Ravi Budrak, Don
Anderson, Tom Shanley

[4] WinDriver PCI/ISA User’s Manual by JUNGO Connectivity
Ltd.

[5] Spartan-6 FPGA Integrated Endpoint Block for PCI
Express User Guide.

[6] PCI-e Technology by Mike Jackson and ravi Budrak

[7] http://www.xilinx.com/SP-605

[8] JUNGO Connectivity Ltd Version 12.3.0

Data from Read buffer

http://www.xilinx.com/SP-605

