

## Freight and Margin Optimisation in Building Material Industry using Data Analytics and Network Optimisation Technique (Case Study: Indian Ceramic Product Manufacturing Company)

Sanjeeva<sup>1</sup>, Akash Kumar<sup>2</sup>

<sup>1</sup>S.P. Jain Institute of Management and Research, Mumbai, Maharashtra, India, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, India. <sup>2</sup>Indian Institute of Technology (ISM) Dhanbad, Jharkhand, India. \*\*\*

**Abstract** - This case study aims at understanding the cause of spiraling freight cost and dwindling margin of a building material company in a country in South Asia. In this study, sales data, transportation data and margin variation in different geographies of the country were analyzed and optimisation of freight and profit margin were done using the concept of network optimization tool and data analytics tools like Solver. The results of analysis throw pleasant surprises in the form of potential improvements above 30%.

*Key Words*: Average Radial Distance, Freight Index, Freight Optimisation, Margin Optimisation

### **1. INTRODUCTION**

Optimization means maximizing the return at a given risk level or risk is minimized for a given expected return [1]. According to the great management consultant Peter Drucker, "Knowledge has to be improved, challenged and increased constantly, or it vanishes." In reference to a supply chain, without constant study, a company can lose sight of how its supply chain impacts the entire business [2]. This case study is about a building material company in a country in South Asia which has 6 number of manufacturing locations across the country and 26 number of sales hubs. Before the study, the scenario was as follows. The average radial distance over which the finished goods were being transported was 768 miles and the freight index of the company was 3.10 cents/ton/mile. Total weight of material transported from all manufacturing locations in a month was 36 thousand tons on average. The total average freight for the transportation of the finished goods in a month was approximately USD 900,000. Also, the total operating margin of the company was stagnating at USD 5 million per month for last couple of years. We analysed the data to calculate average radial distance and freight index for each manufacturing location. We found that these indices varied from one manufacturing location to another. Further, we tried to analyse the relationship between average radial distance and freight index. Whereas, overall, a good degree of correlation was shown, some manufacturing locations didn't conform to the relationship. Considering the fact that each manufacturing location demonstrated its own pattern of SCM cost, we inferred that SCM networks of all or at least some manufacturing locations were not optimised. Considering this and also the fact that freight bill was considerably high, we decided to carry out network optimisation.

## 1.1 Aims & Objective

This study was carried out with following objectives:

- To optimize the cost of transportation of finished goods.
- To maximise the profit of the company by analysing the contribution (Price realised variable cost) variation in different geographies of the country and optimising the same.

## 2. METHODOLOGY

Following concepts and approach were used in this study

# 2.1 Concept of Average Radial Distance and Freight Index

**Average Radial Distance** is the weighted average distance (by weight) from a manufacturing location over which the finished products are being transported. This index gives us an indication about how well the manufacturing location is located with respect to the market.

**Freight Index** is defined as cents spent to transport 1 ton of finished products over 1 mile.

We calculated this index for all the manufacturing locations. This index provides an indication about freight cost efficiency of each manufacturing location.

We have deliberately selected MS Excel for our analysis because we realized that this is not only the most widely available analytics tool but also the most easily grasped. Besides, smaller companies may not find costly software justifiable unless they have had opportunity to fully appreciate the benefit of analytics; and MS Excel can fill this space.



International Research Journal of Engineering and Technology (IRJET) Volume: 06 Issue: 09 | Sep 2019 www.irjet.net

**Calculation Framework:** 

For a particular manufacturing location:

Let total quantity dispatched per month to each sales hub from that manufacturing location be T1, T2, T3.....,TN

Let Distance of each sales hub from that manufacturing location be D1, D2, D3......,DN.

Let Freight per ton from the manufacturing location to each sales hub be F1, F2, F3......,FN.

Total tonnage =  $\Sigma$  Ti

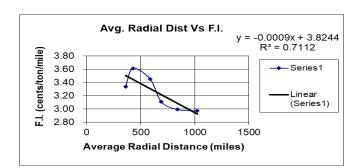
Total freight =  $\Sigma$  Fi Ti

Total Ton-miles =  $\Sigma$  Ti Di

Total freight /miles =  $\Sigma$  (Fi Ti / Di)

Freight Index for the manufacturing location (F.I.) = (Total freight /miles) / Total tonnage =  $[\Sigma (Fi Ti / Di)] / [\Sigma Ti]$ 

Average Radial Distance = Total Ton-miles / Total tonnage =  $[\Sigma Ti Di] / [\Sigma Ti]$ 


Using above concept, Freight Index and Average Radial Distance of all the manufacturing locations were calculated.

Having calculated the above parameters for individual manufacturing locations, the Freight Index of the Company was calculated which came out to be 3.10 cents/ton/mile. Average Radial Distance before optimisation was 768 miles. As a result of Network Optimisation, the Average Radial Distance came down to 529miles. This in turn lead to significant freight saving.

It may apparently seem that a manufacturing location with lower Average Radial Distance would have lower average freight. But, through our study, we busted this myth and brought a different perspective through the concept of Freight Index (FI). Freight Index looks at freight with respect to not only per unit weight moved, but also per unit distance moved.

#### Relation between Average radial distance and Freight Index of individual manufacturing location:

| Manufacturing locations                                              | Freight Index<br>(cents/ton/mile) | Average Radial<br>Distance<br>(miles) |
|----------------------------------------------------------------------|-----------------------------------|---------------------------------------|
| RAK04                                                                | 3.34                              | 362                                   |
| NUK03                                                                | 3.61                              | 429                                   |
| WED02                                                                | 3.45                              | 588                                   |
| JIV06                                                                | 3.11                              | 691                                   |
| NEP01                                                                | 2.99                              | 839                                   |
| JAR05                                                                | 2.97                              | 1023                                  |
| Correlation Coefficient<br>between FI and Average<br>Radial Distance | -0.84                             |                                       |



From above table and graph, it can be very well seen that there is a very high degree of negative correlation between average distance moved and Freight Index. This explains, to a great extent, why Freight Index of JAR05, NEP01 and JIV06 are low and that of NUK03, RAK04 and WED02 are high. Manufacturing location with longer average radial distance have lower freight per ton per mile. This is so because a vehicle is better utilized if it moves continuously for longer period of time before every stoppage for loading/unloading.

At the same time, we also realised that the Freight Index of WED02 and NUK03 are higher than that predicted by the regression formula. This shows that apart from distance, there are other reasons which are jacking Freight Index of WED02 and NUK03. Some of these reasons have to do with terrain, local labour situation and so on. For example, geographies with different terrain tend to have higher F.I. Geographies with high labour cost also tend to have higher F.I.

Further, a considerably high value of R- square in the above graph shows high degree of predictability of this equation.

Thus, freight equation developed during this study started being used to benchmark and develop clean sheet costing for use during freight negotiation.

## 2.2 Concept of Network Optimisation for optimisation of Freight and Margin

#### • Freight Optimisation:

First of all, sales data i.e. dispatched quantities from each manufacturing location to each sales hub were collected and then the data were organised in the following format:

**Tonnage matrix:** This matrix contains the total dispatched quantities in tons from each manufacturing location to respective sales hub (Table 1).

**Distance Matrix:** This matrix contains the distance of each manufacturing location from respective sales hub (Table 2).

After arranging data in such format, we optimised the dispatch pattern from each manufacturing location to all sales hub by using Network optimisation technique. While optimising the pattern following assumptions were made:

**IRJET** Volume: 06 Issue: 09 | Sep 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

- I. Production capacity of each manufacturing location was considered constant i.e. total dispatched quantity from a particular manufacturing location was considered constant.
- II. Total demand of each sales hub was considered constant.

Considering all these factors, the analytical tool called 'Solver', calculates optimal scenario showing which manufacturing location should serve which market to minimise the total freight for the company.

Although, this analysis has been done at product category level, for the sake of simplicity, we are producing analysis result for all the products taken together.

The optimised tonnage matrix is shown in Table 3.

Table 1 As – Is Scenario (For freight optimisation study)

| Tonnage Matrix showing As - Is dispatch pattern<br>(Average Monthly 'tons') |       |       |              |             |       |       |       |  |  |
|-----------------------------------------------------------------------------|-------|-------|--------------|-------------|-------|-------|-------|--|--|
| Sales                                                                       |       | Μ     | lanufacturin | g locations |       |       | Total |  |  |
| Hubs                                                                        | NEP01 | WED02 | NUK03        | RAK04       | JAR05 | JIV06 | TOTAL |  |  |
| 01LED                                                                       | 309   | 171   | 9            | 0           | 743   | 51    | 1282  |  |  |
| 02CUL                                                                       | 118   | 47    | 21           | 0           | 791   | 214   | 1192  |  |  |
| 03AHG                                                                       | 25    | 73    | 51           | 0           | 541   | 32    | 722   |  |  |
| 04AHC                                                                       | 388   | 158   | 43           | 9           | 1467  | 185   | 2250  |  |  |
| 05MOB                                                                       | 0     | 288   | 190          | 52          | 611   | 0     | 1141  |  |  |
| 06NUP                                                                       | 0     | 79    | 153          | 0           | 608   | 184   | 1024  |  |  |
| 07A0G                                                                       | 321   | 1     | 80           | 16          | 97    | 49    | 564   |  |  |
| 08GAN                                                                       | 45    | 8     | 29           | 0           | 20    | 25    | 127   |  |  |
| 09LOK                                                                       | 295   | 98    | 93           | 16          | 913   | 932   | 2348  |  |  |
| 10DYH                                                                       | 401   | 55    | 322          | 121         | 492   | 79    | 1470  |  |  |
| 11ZIV                                                                       | 69    | 68    | 43           | 52          | 174   | 491   | 897   |  |  |
| 12WUG                                                                       | 18    | 16    |              | 0           | 82    | 120   | 236   |  |  |
| 13JIV                                                                       | 56    | 31    | 96           | 121         | 140   | 0     | 445   |  |  |
| 14UHB                                                                       | 57    | 25    | 22           | 0           | 181   | 161   | 445   |  |  |
| 15DNI                                                                       | 211   | 0     | 95           | 0           | 1012  | 251   | 1569  |  |  |
| 16IAJ                                                                       | 146   | 147   | 142          | 0           | 784   | 107   | 1326  |  |  |
| 17MHA                                                                       | 336   | 149   | 56           | 0           | 734   | 0     | 1275  |  |  |
| 18NRE                                                                       | 846   | 16    | 286          | 439         | 1456  | 624   | 3668  |  |  |
| 19LAC                                                                       | 418   | 41    | 146          | 182         | 351   | 1113  | 2252  |  |  |
| 20VRT                                                                       | 282   | 0     | 197          | 5           | 462   | 558   | 1504  |  |  |
| 21DAM                                                                       | 370   | 78    | 219          | 233         | 399   | 365   | 1664  |  |  |
| 22I0C                                                                       | 267   | 9     | 73           | 311         | 484   | 548   | 1693  |  |  |
| 23EHC                                                                       | 958   | 48    | 188          | 332         | 698   | 1248  | 3473  |  |  |
| 24BUH                                                                       | 152   | 15    | 168          | 33          | 182   | 49    | 598   |  |  |
| 25NAB                                                                       | 345   | 45    | 0            | 230         | 567   | 517   | 1703  |  |  |
| 26IRT                                                                       | 160   | 0     | 132          | 214         | 468   | 579   | 1552  |  |  |
| Total                                                                       | 6591  | 1668  | 2855         | 2366        | 14457 | 8484  |       |  |  |

Table 2 Distance Matrix (For freight optimisation study)

|       | Distance Matrix (Miles)       |                                     |      |      |      |      |  |  |  |  |  |  |  |
|-------|-------------------------------|-------------------------------------|------|------|------|------|--|--|--|--|--|--|--|
| Sales | Sales Manufacturing locations |                                     |      |      |      |      |  |  |  |  |  |  |  |
| Hubs  | NEP01                         | NEP01 WED02 NUK03 RAK04 JAR05 JIV06 |      |      |      |      |  |  |  |  |  |  |  |
| 01LED | 956                           | 500                                 | 1313 | 0    | 719  | 1175 |  |  |  |  |  |  |  |
| 02CUL | 925                           | 519                                 | 1238 | 0    | 1063 | 1081 |  |  |  |  |  |  |  |
| 03AHG | 963                           | 963 531 1313 0 728 1175             |      |      |      |      |  |  |  |  |  |  |  |
| 04AHC | 1100                          | 719                                 | 1500 | 1738 | 863  | 1331 |  |  |  |  |  |  |  |

© 2019, IRJET | Impact

Impact Factor value: 7.34

05MOB 06NUP 07A0G 08GAN 09L0K 10DYH 11ZIV 12WUG 13JIV 14UHB 15DNI 16IAJ 17MHA 18NRE 19LAC 20VRT 21DAM 22I0C 23EHC 24BUH 25NAB 26IRT 

 Table 3

 Optimised Scenario (For freight optimisation study)

|              | Tonnage Matrix showing optimum dispatch pattern considering same<br>production capacity of each manufacturing location and same demand of<br>each sale hub |                         |       |       |       |       |      |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------|-------|-------|------|--|--|--|--|--|
|              | (Average Monthly 'tons')                                                                                                                                   |                         |       |       |       |       |      |  |  |  |  |  |
| Sales<br>Hub |                                                                                                                                                            | Manufacturing locations |       |       |       |       |      |  |  |  |  |  |
|              | NEP01                                                                                                                                                      | WED02                   | NUK03 | RAK04 | JAR05 | JIV06 |      |  |  |  |  |  |
| 01LED        | 0                                                                                                                                                          | 0                       | 0     | 0     | 1282  | 0     | 1282 |  |  |  |  |  |
| 02CUL        | 0                                                                                                                                                          | 0                       | 0     | 485   | 707   | 0     | 1192 |  |  |  |  |  |
| 03AHG        | 0                                                                                                                                                          | 0                       | 0     | 0     | 722   | 0     | 722  |  |  |  |  |  |
| 04AHC        | 0                                                                                                                                                          | 0                       | 0     | 0     | 2250  | 0     | 2250 |  |  |  |  |  |
| 05MOB        | 1141                                                                                                                                                       | 0                       | 0     | 0     | 0     | 0     | 1141 |  |  |  |  |  |
| 06NUP        | 1024                                                                                                                                                       | 0                       | 0     | 0     | 0     | 0     | 1024 |  |  |  |  |  |
| 07A0G        | 564                                                                                                                                                        | 0                       | 0     | 0     | 0     | 0     | 564  |  |  |  |  |  |
| 08GAN        | 0                                                                                                                                                          | 0                       | 0     | 0     | 127   | 0     | 127  |  |  |  |  |  |
| 09LOK        | 0                                                                                                                                                          | 0                       | 0     | 0     | 2348  | 0     | 2348 |  |  |  |  |  |
| 10DYH        | 0                                                                                                                                                          | 0                       | 0     | 0     | 0     | 1470  | 1470 |  |  |  |  |  |
| 11ZIV        | 0                                                                                                                                                          | 0                       | 0     | 0     | 0     | 897   | 897  |  |  |  |  |  |
| 12WUG        | 0                                                                                                                                                          | 0                       | 236   | 0     | 0     | 0     | 236  |  |  |  |  |  |
| 13JIV        | 0                                                                                                                                                          | 0                       | 0     | 0     | 0     | 445   | 445  |  |  |  |  |  |
| 14UHB        | 0                                                                                                                                                          | 0                       | 0     | 445   | 0     | 0     | 445  |  |  |  |  |  |
| 15DNI        | 0                                                                                                                                                          | 0                       | 0     | 0     | 1569  | 0     | 1569 |  |  |  |  |  |
| 16IAJ        | 0                                                                                                                                                          | 0                       | 0     | 0     | 1326  | 0     | 1326 |  |  |  |  |  |
| 17MHA        | 0                                                                                                                                                          | 0                       | 0     | 0     | 1275  | 0     | 1275 |  |  |  |  |  |
| 18NRE        | 3668                                                                                                                                                       | 0                       | 0     | 0     | 0     | 0     | 3668 |  |  |  |  |  |
| 19LAC        | 0                                                                                                                                                          | 0                       | 0     | 0     | 2252  | 0     | 2252 |  |  |  |  |  |
| 20VRT        | 0                                                                                                                                                          | 1504                    | 0     | 0     | 0     | 0     | 1504 |  |  |  |  |  |
| 21DAM        | 0                                                                                                                                                          | 0                       | 0     | 48    | 0     | 1616  | 1664 |  |  |  |  |  |
| 22I0C        | 194                                                                                                                                                        | 0                       | 916   | 0     | 0     | 583   | 1693 |  |  |  |  |  |
| 23EHC        | 0                                                                                                                                                          | 0                       | 0     | 0     | 0     | 3473  | 3473 |  |  |  |  |  |
| 24BUH        | 0                                                                                                                                                          | 0                       | 0     | 0     | 598   | 0     | 598  |  |  |  |  |  |
| 25NAB        | 0                                                                                                                                                          | 0                       | 1703  | 0     | 0     | 0     | 1703 |  |  |  |  |  |
| 26IRT        | 0                                                                                                                                                          | 164                     | 0     | 1388  | 0     | 0     | 1552 |  |  |  |  |  |
| Total        | 6591                                                                                                                                                       | 1668                    | 2855  | 2366  | 14457 | 8484  |      |  |  |  |  |  |

Having optimised the dispatched pattern, the savings in freight bill was calculated whose summary is tabulated below:

| As Is Condi      | As Is Condition |  |                               | ndition |
|------------------|-----------------|--|-------------------------------|---------|
| Total Dispatched |                 |  | Total Dispatched              |         |
| Tonnage          | 36,421          |  | Tonnage                       | 36,421  |
| As Is Ton-Miles  | 2,79,75,275     |  | <b>Optimum Ton-</b> 1,92,74,2 |         |

ISO 9001:2008 Certified Journal



International Research Journal of Engineering and Technology (IRJET)

Volume: 06 Issue: 09 | Sep 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

|                                    |          | Miles                              |          |
|------------------------------------|----------|------------------------------------|----------|
| As Is                              |          | Optimum                            |          |
| transportation bill<br>@ 3.10 F.I. |          | transportation bill<br>@ 3.10 F.I. |          |
| • • •                              | 0 (7 71) | • • •                              | F 07 022 |
| (cent/ton/mile)                    | 8,67,713 | (cent/ton/mile)                    | 5,97,833 |
| As Is Average                      |          | Optimum Average                    |          |
| Radial Distance (in                |          | Radial Distance (in                |          |
| Miles)                             | 768      | Miles)                             | 529      |

Total savings from the freight optimisation came out to be USD 270,000 per month.

#### **Evaluation of Capacity - Demand Scenarios:**

NEP01 manufacturing location is running at 50% capacity utilization. Given this, a case is considered when NEP01 runs at 100% capacity utilization. Now, we wanted to analyse how distribution pattern would get impacted. For the analysis of the case, three scenarios have been considered and in all the scenario, network optimisation is carried out.

**Scenario I** – When production capacity of NEP01 is doubled, it is assumed that in As-Is condition the increased production would be subsumed by all the markets proportionately because of proportionate increase in demand in all markets.

Table 4 and Table 5 shows the As-Is and Optimised condition tonnage matrices for this scenario respectively.

#### Table 4 As-Is Condition (For freight optimisation with enhanced capacity - Scenario I)

|       | Tonna | ge Matrix sl | howing As   | - Is disnat | ch natterr | 1     |       |
|-------|-------|--------------|-------------|-------------|------------|-------|-------|
|       |       |              | age Month   |             | en putterr | -     |       |
| Sales |       | Ма           | nufacturing | g Locations |            |       | m , 1 |
| Hubs  | NEP01 | WED02        | NUK03       | RAK04       | JAR05      | JIV06 | Total |
| 01LED | 618   | 171          | 9           | 0           | 743        | 51    | 1591  |
| 02CUL | 236   | 47           | 21          | 0           | 791        | 214   | 1310  |
| 03AHG | 49    | 73           | 51          | 0           | 541        | 32    | 747   |
| 04AHC | 776   | 158          | 43          | 9           | 1467       | 185   | 2638  |
| 05MOB | 0     | 288          | 190         | 52          | 611        | 0     | 1141  |
| 06NUP | 0     | 79           | 153         | 0           | 608        | 184   | 1024  |
| 07A0G | 642   | 1            | 80          | 16          | 97         | 49    | 885   |
| 08GAN | 90    | 8            | 29          | 0           | 20         | 25    | 172   |
| 09LOK | 591   | 98           | 93          | 16          | 913        | 932   | 2643  |
| 10DYH | 802   | 55           | 322         | 121         | 492        | 79    | 1871  |
| 11ZIV | 138   | 68           | 43          | 52          | 174        | 491   | 966   |
| 12WUG | 36    | 16           |             | 0           | 82         | 120   | 254   |
| 13JIV | 112   | 31           | 96          | 121         | 140        | 0     | 501   |
| 14UHB | 113   | 25           | 22          | 0           | 181        | 161   | 502   |
| 15DNI | 422   | 0            | 95          | 0           | 1012       | 251   | 1780  |
| 16IAJ | 292   | 147          | 142         | 0           | 784        | 107   | 1472  |
| 17MHA | 672   | 149          | 56          | 0           | 734        | 0     | 1611  |
| 18NRE | 1692  | 16           | 286         | 439         | 1456       | 624   | 4513  |
| 19LAC | 835   | 41           | 146         | 182         | 351        | 1113  | 2669  |
| 20VRT | 564   | 0            | 197         | 5           | 462        | 558   | 1786  |
| 21DAM | 740   | 78           | 219         | 233         | 399        | 365   | 2034  |
| 22I0C | 534   | 9            | 73          | 311         | 484        | 548   | 1960  |
| 23EHC | 1915  | 48           | 188         | 332         | 698        | 1248  | 4430  |
| 24BUH | 304   | 15           | 168         | 33          | 182        | 49    | 750   |
| 25NAB | 689   | 45           | 0           | 230         | 567        | 517   | 2048  |
| 26IRT | 320   | 0            | 132         | 214         | 468        | 579   | 1712  |
| Total | 13183 | 1668         | 2855        | 2366        | 14457      | 8484  |       |

Table 5 Optimised Condition (For freight optimisation with enhanced capacity - Scenario I)

|       | Tonnage Matrix showing optimum dispatch pattern considering same<br>production capacity of each manufacturing location and same demand of<br>each sale hub |                                     |      |      |       |      |      |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|------|-------|------|------|--|--|--|--|--|--|
|       | (Average Monthly 'tons')                                                                                                                                   |                                     |      |      |       |      |      |  |  |  |  |  |  |
| Sales |                                                                                                                                                            | Manufacturing Locations             |      |      |       |      |      |  |  |  |  |  |  |
| Hub   | NEP01                                                                                                                                                      | NEP01 WED02 NUK03 RAK04 JAR05 JIV06 |      |      |       |      |      |  |  |  |  |  |  |
| 01LED | 0                                                                                                                                                          | 0                                   | 0    | 0    | 1591  | 0    | 1591 |  |  |  |  |  |  |
| 02CUL | 0                                                                                                                                                          | 0                                   | 0    | 0    | 1310  | 0    | 1310 |  |  |  |  |  |  |
| 03AHG | 0                                                                                                                                                          | 0                                   | 0    | 0    | 747   | 0    | 747  |  |  |  |  |  |  |
| 04AHC | 0                                                                                                                                                          | 0                                   | 0    | 0    | 2638  | 0    | 2638 |  |  |  |  |  |  |
| 05MOB | 1141                                                                                                                                                       | 0                                   | 0    | 0    | 0     | 0    | 1141 |  |  |  |  |  |  |
| 06NUP | 1024                                                                                                                                                       | 0                                   | 0    | 0    | 0     | 0    | 1024 |  |  |  |  |  |  |
| 07A0G | 885                                                                                                                                                        | 0                                   | 0    | 0    | 0     | 0    | 885  |  |  |  |  |  |  |
| 08GAN | 0                                                                                                                                                          | 0                                   | 0    | 0    | 172   | 0    | 172  |  |  |  |  |  |  |
| 09LOK | 0                                                                                                                                                          | 0                                   | 0    | 0    | 2643  | 0    | 2643 |  |  |  |  |  |  |
| 10DYH | 676                                                                                                                                                        | 0                                   | 0    | 0    | 490   | 705  | 1871 |  |  |  |  |  |  |
| 11ZIV | 0                                                                                                                                                          | 0                                   | 0    | 0    | 0     | 966  | 966  |  |  |  |  |  |  |
| 12WUG | 0                                                                                                                                                          | 0                                   | 254  | 0    | 0     | 0    | 254  |  |  |  |  |  |  |
| 13JIV | 0                                                                                                                                                          | 0                                   | 0    | 0    | 0     | 501  | 501  |  |  |  |  |  |  |
| 14UHB | 0                                                                                                                                                          | 0                                   | 0    | 502  | 0     | 0    | 502  |  |  |  |  |  |  |
| 15DNI | 0                                                                                                                                                          | 0                                   | 0    | 0    | 1780  | 0    | 1780 |  |  |  |  |  |  |
| 16IAJ | 0                                                                                                                                                          | 0                                   | 0    | 0    | 1472  | 0    | 1472 |  |  |  |  |  |  |
| 17MHA | 0                                                                                                                                                          | 0                                   | 0    | 0    | 1611  | 0    | 1611 |  |  |  |  |  |  |
| 18NRE | 4513                                                                                                                                                       | 0                                   | 0    | 0    | 0     | 0    | 4513 |  |  |  |  |  |  |
| 19LAC | 2115                                                                                                                                                       | 0                                   | 553  | 0    | 1     | 0    | 2669 |  |  |  |  |  |  |
| 20VRT | 118                                                                                                                                                        | 1668                                | 0    | 0    | 0     | 0    | 1786 |  |  |  |  |  |  |
| 21DAM | 0                                                                                                                                                          | 0                                   | 0    | 152  | 0     | 1881 | 2034 |  |  |  |  |  |  |
| 22I0C | 1960                                                                                                                                                       | 0                                   | 0    | 0    | 0     | 0    | 1960 |  |  |  |  |  |  |
| 23EHC | 0                                                                                                                                                          | 0                                   | 0    | 0    | 0     | 4430 | 4430 |  |  |  |  |  |  |
| 24BUH | 750                                                                                                                                                        | 0                                   | 0    | 0    | 0     | 0    | 750  |  |  |  |  |  |  |
| 25NAB | 0                                                                                                                                                          | 0                                   | 2048 | 0    | 0     | 0    | 2048 |  |  |  |  |  |  |
| 26IRT | 0                                                                                                                                                          | 0                                   | 0    | 1712 | 0     | 0    | 1712 |  |  |  |  |  |  |
| Total | 13183                                                                                                                                                      | 1668                                | 2855 | 2366 | 14457 | 8484 |      |  |  |  |  |  |  |

Having optimised the dispatched pattern, the savings in freight bill was calculated whose summary is tabulated below:

| Scenario I - When NEP01 capacity doubles and all the demands are<br>subsumed by all the markets |             |  |                                                                   |             |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------|--|-------------------------------------------------------------------|-------------|--|--|--|--|
| As Is Cond                                                                                      | ition       |  | Optimised Co                                                      | ndition     |  |  |  |  |
| Total Dispatched<br>Tonnage                                                                     | 43,013      |  | Total Dispatched<br>Tonnage                                       | 43,013      |  |  |  |  |
| As Is Ton-Miles                                                                                 | 3,33,43,800 |  | Optimum Ton-<br>Miles                                             | 2,30,67,718 |  |  |  |  |
| As Is<br>transportation<br>bill @ 3.10 F.I.<br>(cent/ton/miles)                                 | 10.24.220   |  | Optimum<br>transportation<br>bill @ 3.10 F.I.<br>(cent/ton/miles) | 7 15 405    |  |  |  |  |
| As Is Average<br>Radial Distance<br>(in Miles)                                                  | 10,34,229   |  | Optimum Average<br>Radial Distance<br>(in Miles)                  | 7,15,495    |  |  |  |  |

**Scenario II** – When production capacity of NEP01 is doubled, it is assumed that in As-Is condition the increased production would be subsumed by only South and West markets proportionately because of proportionate increase in demand in South and West markets. It is also assumed that the demand of North and East markets would remain unchanged.

Table 6 and Table 7 shows the As-Is and Optimised condition tonnage matrices for this scenario respectively.

L

IRJET

International Research Journal of Engineering and Technology (IRJET)

T Volume: 06 Issue: 09 | Sep 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

| Table 6                                        |
|------------------------------------------------|
| As-Is Condition (For freight optimisation with |
| enhanced capacity - Scenario II)               |

|               | Tonnage Matrix showing As - Is dispatch pattern<br>(Average Monthly 'tons') |              |              |              |             |              |             |       |  |
|---------------|-----------------------------------------------------------------------------|--------------|--------------|--------------|-------------|--------------|-------------|-------|--|
| Sales         | Region                                                                      |              | М            | lanufacturin | g Locations |              | r           | Total |  |
| Hubs<br>01LED | N&E                                                                         | NEP01<br>309 | WED02<br>171 | NUK03<br>9   | RAK04<br>0  | JAR05<br>743 | JIV06<br>51 | 1282  |  |
| 02CUL         | N&E                                                                         | 118          | 47           | 21           | 0           | 791          | 214         | 1192  |  |
| 03AHG         | N&E                                                                         | 25           | 73           | 51           | 0           | 541          | 32          | 722   |  |
| 04AHC         | N&E                                                                         | 388          | 158          | 43           | 9           | 1467         | 185         | 2250  |  |
| 05MOB         | S&W                                                                         | 0            | 288          | 190          | 52          | 611          | 0           | 1141  |  |
| 06NUP         | S&W                                                                         | 0            | 79           | 153          | 0           | 608          | 184         | 1024  |  |
| 07AOG         | S&W                                                                         | 757          | 1            | 80           | 16          | 97           | 49          | 1000  |  |
| 08GAN         | N&E                                                                         | 45           | 8            | 29           | 0           | 20           | 25          | 127   |  |
| 09LOK         | N&E                                                                         | 295          | 98           | 93           | 16          | 913          | 932         | 2348  |  |
| 10DYH         | S&W                                                                         | 946          | 55           | 322          | 121         | 492          | 79          | 2015  |  |
| 11ZIV         | N&E                                                                         | 69           | 68           | 43           | 52          | 174          | 491         | 897   |  |
| 12WUG         | N&E                                                                         | 18           | 16           |              | 0           | 82           | 120         | 236   |  |
| 13JIV         | N&E                                                                         | 56           | 31           | 96           | 121         | 140          | 0           | 445   |  |
| 14UHB         | N&E                                                                         | 57           | 25           | 22           | 0           | 181          | 161         | 445   |  |
| 15DNI         | N&E                                                                         | 211          | 0            | 95           | 0           | 1012         | 251         | 1569  |  |
| 16IAJ         | N&E                                                                         | 146          | 147          | 142          | 0           | 784          | 107         | 1326  |  |
| 17MHA         | S&W                                                                         | 792          | 149          | 56           | 0           | 734          | 0           | 1731  |  |
| 18NRE         | S&W                                                                         | 1994         | 16           | 286          | 439         | 1456         | 624         | 4816  |  |
| 19LAC         | S&W                                                                         | 984          | 41           | 146          | 182         | 351          | 1113        | 2819  |  |
| 20VRT         | S&W                                                                         | 665          | 0            | 197          | 5           | 462          | 558         | 1887  |  |
| 21DAM         | S&W                                                                         | 872          | 78           | 219          | 233         | 399          | 365         | 2166  |  |
| 22IOC         | S&W                                                                         | 629          | 9            | 73           | 311         | 484          | 548         | 2055  |  |
| 23EHC         | S&W                                                                         | 2258         | 48           | 188          | 332         | 698          | 1248        | 4773  |  |
| 24BUH         | S&W                                                                         | 358          | 15           | 168          | 33          | 182          | 49          | 805   |  |
| 25NAB         | S&W                                                                         | 812          | 45           | 0            | 230         | 567          | 517         | 2171  |  |
| 26IRT         | S&W                                                                         | 377          | 0            | 132          | 214         | 468          | 579         | 1769  |  |
| Total         |                                                                             | 13183        | 1668         | 2855         | 2366        | 14457        | 8484        |       |  |

#### Table 7 Optimised Condition (For freight optimisation with enhanced capacity - Scenario II)

| Tonnage | Tonnage Matrix showing optimum dispatch pattern considering same production capa<br>each manufacturing location and same demand of each sale hub<br>(Average Monthly 'tons') |       |       |              |             |       |       |       |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------|-------------|-------|-------|-------|--|--|--|--|
| Sales   | Region                                                                                                                                                                       |       | Μ     | lanufacturin | g Locations |       |       | Total |  |  |  |  |
| Hub     | Region                                                                                                                                                                       | NEP01 | WED02 | NUK03        | RAK04       | JAR05 | JIV06 | TOTAL |  |  |  |  |
| 01LED   | N&E                                                                                                                                                                          | 0     | 0     | 0            | 0           | 1282  | 0     | 1282  |  |  |  |  |
| 02CUL   | N&E                                                                                                                                                                          | 0     | 0     | 0            | 0           | 1192  | 0     | 1192  |  |  |  |  |
| 03AHG   | N&E                                                                                                                                                                          | 0     | 0     | 0            | 0           | 722   | 0     | 722   |  |  |  |  |
| 04AHC   | N&E                                                                                                                                                                          | 0     | 0     | 0            | 0           | 2250  | 0     | 2250  |  |  |  |  |
| 05MOB   | S&W                                                                                                                                                                          | 1141  | 0     | 0            | 0           | 0     | 0     | 1141  |  |  |  |  |
| 06NUP   | S&W                                                                                                                                                                          | 1024  | 0     | 0            | 0           | 0     | 0     | 1024  |  |  |  |  |
| 07A0G   | S&W                                                                                                                                                                          | 1000  | 0     | 0            | 0           | 0     | 0     | 1000  |  |  |  |  |
| 08GAN   | N&E                                                                                                                                                                          | 0     | 0     | 0            | 0           | 127   | 0     | 127   |  |  |  |  |

| 09LOK | N&E | 0     | 0    | 0    | 0    | 2348  | 0    | 2348 |
|-------|-----|-------|------|------|------|-------|------|------|
| 10DYH | S&W | 1414  | 0    | 0    | 0    | 247   | 355  | 2015 |
| 11ZIV | N&E | 0     | 0    | 0    | 0    | 0     | 897  | 897  |
| 12WUG | N&E | 0     | 0    | 236  | 0    | 0     | 0    | 236  |
| 13JIV | N&E | 0     | 0    | 0    | 0    | 0     | 445  | 445  |
| 14UHB | N&E | 0     | 0    | 0    | 445  | 0     | 0    | 445  |
| 15DNI | N&E | 0     | 0    | 0    | 0    | 1569  | 0    | 1569 |
| 16IAJ | N&E | 0     | 0    | 0    | 0    | 1326  | 0    | 1326 |
| 17MHA | S&W | 0     | 0    | 0    | 0    | 1731  | 0    | 1731 |
| 18NRE | S&W | 4816  | 0    | 0    | 0    | 0     | 0    | 4816 |
| 19LAC | S&W | 709   | 0    | 448  | 0    | 1662  | 0    | 2819 |
| 20VRT | S&W | 219   | 1668 | 0    | 0    | 0     | 0    | 1887 |
| 21DAM | S&W | 0     | 0    | 0    | 152  | 0     | 2014 | 2166 |
| 22I0C | S&W | 2055  | 0    | 0    | 0    | 0     | 0    | 2055 |
| 23EHC | S&W | 0     | 0    | 0    | 0    | 0     | 4773 | 4773 |
| 24BUH | S&W | 805   | 0    | 0    | 0    | 0     | 0    | 805  |
| 25NAB | S&W | 0     | 0    | 2171 | 0    | 0     | 0    | 2171 |
| 26IRT | S&W | 0     | 0    | 0    | 1769 | 0     | 0    | 1769 |
| Total |     | 13183 | 1668 | 2855 | 2366 | 14457 | 8484 |      |

Having optimised the dispatched pattern, the savings in freight bill was calculated whose summary is tabulated below:

| Scenario II - Wh    | Scenario II - When NEP01 capacity doubles and all the demands are<br>subsumed by S & W markets |   |                     |             |  |  |  |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------|---|---------------------|-------------|--|--|--|--|--|--|--|--|--|
| As Is Condi         | tion                                                                                           |   | Optimised Cor       | dition      |  |  |  |  |  |  |  |  |  |
| Total Dispatched    |                                                                                                |   | Total Dispatched    |             |  |  |  |  |  |  |  |  |  |
| Tonnage             | 43,013                                                                                         |   | Tonnage             | 43,013      |  |  |  |  |  |  |  |  |  |
| As Is Ton-Miles     |                                                                                                |   | Optimum Ton-        |             |  |  |  |  |  |  |  |  |  |
|                     | 3,29,86,596                                                                                    |   | Miles               | 2,34,02,348 |  |  |  |  |  |  |  |  |  |
| As Is               |                                                                                                |   | Optimum             |             |  |  |  |  |  |  |  |  |  |
| transportation      |                                                                                                |   | transportation bill |             |  |  |  |  |  |  |  |  |  |
| bill @ 3.10 F.I.    |                                                                                                |   | @ 3.10 F.I.         |             |  |  |  |  |  |  |  |  |  |
| (cent/ton/miles)    | 10,23,150                                                                                      |   | (cent/ton/miles)    | 7,25,874    |  |  |  |  |  |  |  |  |  |
| As Is Average       |                                                                                                | 1 | Optimum Average     |             |  |  |  |  |  |  |  |  |  |
| Radial Distance (in |                                                                                                |   | Radial Distance (in |             |  |  |  |  |  |  |  |  |  |
| Miles)              | 767                                                                                            |   | Miles)              | 544         |  |  |  |  |  |  |  |  |  |

**Scenario III** – When production capacity of NEP01 is doubled, it is assumed that in As-Is condition the increased production would be subsumed by only North and East markets proportionately because of proportionate increase in demand in North and East markets. It was also assumed that the demand of South and West markets would remain unchanged.

Table 8 and Table 9 shows the As-Is and Optimised condition tonnage matrices for this scenario respectively.

#### Table 8 As-Is Condition (For freight optimisation with enhanced capacity - Scenario III)

| 04AHC | N&E | 0    | 0 | 0 | 0 | 2250 | 0 | 2250 | 1                                                                           |             |      | -     |       |       |       |       |       |
|-------|-----|------|---|---|---|------|---|------|-----------------------------------------------------------------------------|-------------|------|-------|-------|-------|-------|-------|-------|
| 05MOB | S&W | 1141 | 0 | 0 | 0 | 0    | 0 | 1141 | Tonnage Matrix showing As - Is dispatch pattern<br>(Average Monthly 'tons') |             |      |       |       |       |       |       |       |
| 06NUP | S&W | 1024 | 0 | 0 | 0 | 0    | 0 | 1024 | Sales Manufacturing Locations                                               |             |      |       | Total |       |       |       |       |
| 07AOG | S&W | 1000 | 0 | 0 | 0 | 0    | 0 | 1000 | Hubs                                                                        | Hubs Region |      | WED02 | NUK03 | RAK04 | JAR05 | JIV06 | TOLAI |
| 08GAN | N&E | 0    | 0 | 0 | 0 | 127  | 0 | 127  | 01LED                                                                       | N&E         | 1481 | 171   | 9     | 0     | 743   | 51    | 2454  |



International Research Journal of Engineering and Technology (IRJET)

JET Volume: 06 Issue: 09 | Sep 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

| 02CUL | N&E | 566   | 47   | 21   | 0    | 791   | 214  | 1640 |
|-------|-----|-------|------|------|------|-------|------|------|
| 03AHG | N&E | 118   | 73   | 51   | 0    | 541   | 32   | 815  |
| 04AHC | N&E | 1862  | 158  | 43   | 9    | 1467  | 185  | 3724 |
| 05MOB | S&W | 0     | 288  | 190  | 52   | 611   | 0    | 1141 |
| 06NUP | S&W | 0     | 79   | 153  | 0    | 608   | 184  | 1024 |
| 07A0G | S&W | 321   | 1    | 80   | 16   | 97    | 49   | 564  |
| 08GAN | N&E | 216   | 8    | 29   | 0    | 20    | 25   | 298  |
| 09LOK | N&E | 1416  | 98   | 93   | 16   | 913   | 932  | 3469 |
| 10DYH | S&W | 401   | 55   | 322  | 121  | 492   | 79   | 1470 |
| 11ZIV | N&E | 331   | 68   | 43   | 52   | 174   | 491  | 1159 |
| 12WUG | N&E | 85    | 16   |      | 0    | 82    | 120  | 304  |
| 13JIV | N&E | 269   | 31   | 96   | 121  | 140   | 0    | 657  |
| 14UHB | N&E | 271   | 25   | 22   | 0    | 181   | 161  | 660  |
| 15DNI | N&E | 1013  | 0    | 95   | 0    | 1012  | 251  | 2371 |
| 16IAJ | N&E | 699   | 147  | 142  | 0    | 784   | 107  | 1880 |
| 17MHA | S&W | 336   | 149  | 56   | 0    | 734   | 0    | 1275 |
| 18NRE | S&W | 846   | 16   | 286  | 439  | 1456  | 624  | 3668 |
| 19LAC | S&W | 418   | 41   | 146  | 182  | 351   | 1113 | 2252 |
| 20VRT | S&W | 282   | 0    | 197  | 5    | 462   | 558  | 1504 |
| 21DAM | S&W | 370   | 78   | 219  | 233  | 399   | 365  | 1664 |
| 2210C | S&W | 267   | 9    | 73   | 311  | 484   | 548  | 1693 |
| 23EHC | S&W | 958   | 48   | 188  | 332  | 698   | 1248 | 3473 |
| 24BUH | S&W | 152   | 15   | 168  | 33   | 182   | 49   | 598  |
| 25NAB | S&W | 345   | 45   | 0    | 230  | 567   | 517  | 1703 |
| 26IRT | S&W | 160   | 0    | 132  | 214  | 468   | 579  | 1552 |
| Total |     | 13183 | 1668 | 2855 | 2366 | 14457 | 8484 |      |

| 26IRT | S&W | 0    | 164  | 848  | 66 | 0 | 474  | 1552 |
|-------|-----|------|------|------|----|---|------|------|
| 25NAB | S&W | 0    | 0    | 1703 | 0  | 0 | 0    | 1703 |
| 24BUH | S&W | 598  | 0    | 0    | 0  | 0 | 0    | 598  |
| 23EHC | S&W | 0    | 0    | 0    | 0  | 0 | 3473 | 3473 |
| 22I0C | S&W | 1693 | 0    | 0    | 0  | 0 | 0    | 1693 |
| 21DAM | S&W | 773  | 0    | 0    | 0  | 0 | 891  | 1664 |
| 20VRT | S&W | 0    | 1504 | 0    | 0  | 0 | 0    | 1504 |
| 19LAC | S&W | 2252 | 0    | 0    | 0  | 0 | 0    | 2252 |
| 18NRE | S&W | 3668 | 0    | 0    | 0  | 0 | 0    | 3668 |

Having optimised the dispatched pattern, the savings in freight bill was calculated whose summary is tabulated below:

| Scenario III - W    | Scenario III - When NEP 01 capacity doubles and all the demands are<br>subsumed by N & E markets |  |                          |            |  |  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------|--|--------------------------|------------|--|--|--|--|--|--|--|--|
| As Is Condi         | tion                                                                                             |  | Optimised Con            | dition     |  |  |  |  |  |  |  |  |
| Total Dispatched    |                                                                                                  |  | Total Dispatched         |            |  |  |  |  |  |  |  |  |
| Tonnage             | 43,013                                                                                           |  | Tonnage                  | 43,013     |  |  |  |  |  |  |  |  |
| As Is Ton-Miles     | 3,43,42,35                                                                                       |  | <b>Optimum Ton-Miles</b> | 2,26,35,54 |  |  |  |  |  |  |  |  |
|                     | 4                                                                                                |  | -                        | 7          |  |  |  |  |  |  |  |  |
| As Is               |                                                                                                  |  | Optimum                  |            |  |  |  |  |  |  |  |  |
| transportation      |                                                                                                  |  | transportation bill      |            |  |  |  |  |  |  |  |  |
| bill @ 3.10 F.I.    |                                                                                                  |  | @ 3.10 F.I.              |            |  |  |  |  |  |  |  |  |
| (cent/ton/miles)    | 10,65,202                                                                                        |  | (cent/ton/miles)         | 7,02,090   |  |  |  |  |  |  |  |  |
| As Is Average       |                                                                                                  |  | Optimum Average          |            |  |  |  |  |  |  |  |  |
| Radial Distance (in |                                                                                                  |  | Radial Distance (in      |            |  |  |  |  |  |  |  |  |
| Miles)              | 798                                                                                              |  | Miles)                   | 526        |  |  |  |  |  |  |  |  |

**Inference:** Summary of the transportation bills in all 3 scenarios are tabulated below:

|                    | Transportation Bi | 11                  |
|--------------------|-------------------|---------------------|
|                    | As Is Condition   | Optimised Condition |
| Scenario I         | 10,34,229         | 7,15,495            |
| Scenario II (S&W)  | 10,23,150         | 7,25,874            |
| Scenario III (N&E) | 10,65,202         | 7,02,090            |

From the above table, we can see that Scenario III in the optimised condition has lowest freight bill. Thus, company would be most benefitted if demand rises specifically in North and East regions to consume entire additional production from NEP01 manufacturing location.

In this context, it is interesting to note that Scenario III had highest freight bill in As-Is Condition. This might be due to the fact that North and East regions are farther away from the manufacturing location NEP01.

However, after optimiser is run, a redistribution takes place to optimise the freight as a result of which, Scenario III gets the lowest freight bill. Thus, our study helped bust a 'myth' in minds of business team.

| Table 9                                            |
|----------------------------------------------------|
| Optimised Condition (For freight optimisation with |
| enhanced capacity - Scenario III)                  |

| Tonnage | Matrix shov<br>each n |       | ing location            |       | lemand of |       |       | acity of |  |
|---------|-----------------------|-------|-------------------------|-------|-----------|-------|-------|----------|--|
| Sales   | Region                |       | Manufacturing Locations |       |           |       |       |          |  |
| Hub     | Region                | NEP01 | WED02                   | NUK03 | RAK04     | JAR05 | JIV06 | Total    |  |
| 01LED   | N&E                   | 0     | 0                       | 0     | 0         | 2454  | 0     | 2454     |  |
| 02CUL   | N&E                   | 0     | 0                       | 0     | 1640      | 0     | 0     | 1640     |  |
| 03AHG   | N&E                   | 0     | 0                       | 0     | 0         | 815   | 0     | 815      |  |
| 04AHC   | N&E                   | 0     | 0                       | 0     | 0         | 3724  | 0     | 3724     |  |
| 05MOB   | S&W                   | 1141  | 0                       | 0     | 0         | 0     | 0     | 1141     |  |
| 06NUP   | S&W                   | 1024  | 0                       | 0     | 0         | 0     | 0     | 1024     |  |
| 07A0G   | S&W                   | 564   | 0                       | 0     | 0         | 0     | 0     | 564      |  |
| 08GAN   | N&E                   | 0     | 0                       | 0     | 0         | 298   | 0     | 298      |  |
| 09LOK   | N&E                   | 0     | 0                       | 0     | 0         | 1640  | 1829  | 3469     |  |
| 10DYH   | S&W                   | 1470  | 0                       | 0     | 0         | 0     | 0     | 1470     |  |
| 11ZIV   | N&E                   | 0     | 0                       | 0     | 0         | 0     | 1159  | 1159     |  |
| 12WUG   | N&E                   | 0     | 0                       | 304   | 0         | 0     | 0     | 304      |  |
| 13JIV   | N&E                   | 0     | 0                       | 0     | 0         | 0     | 657   | 657      |  |
| 14UHB   | N&E                   | 0     | 0                       | 0     | 660       | 0     | 0     | 660      |  |
| 15DNI   | N&E                   | 0     | 0                       | 0     | 0         | 2371  | 0     | 2371     |  |
| 16IAJ   | N&E                   | 0     | 0                       | 0     | 0         | 1880  | 0     | 1880     |  |
| 17MHA   | S&W                   | 0     | 0                       | 0     | 0         | 1275  | 0     | 1275     |  |

© 2019, IRJET

L

| ISO 9001:2008 Certified Journal | Page 843



Our second observation is that the difference between highest freight bill and lowest freight bill in As-Is Condition is USD 42,052. This reduces to USD 23,784 in optimised condition. Thus, no matter which demand scenario emerges in future, difference in freight bills would not be significant.

Besides, since Scenario I is the most likely scenario, the intensity of risk of higher freight bill is only USD 13,405. So, management can safely opt for increasing the capacity utilisation in NEP01 manufacturing location.

#### • Optimisation of Contribution Margin

While optimising the freight network, it was realized that the company is realizing different margin for different products in different markets. Therefore, an optimisation analysis to maximize the overall margin of the company from the market was also carried out.

To carry out this analysis, the data were organised in the following format:

Contribution Margin = Realised Selling price – Variable cost of product in the market.

**Margin Matrix:** This matrix contains the margin on different products in different markets (Table 10).

**Tonnage Matrix:** This matrix contains the total dispatched quantities in tons from each manufacturing location to respective sales hub during a month (on average) (Table 11).

After arranging data in such format, we optimised the dispatch pattern from each manufacturing location to all sales hub by using Network optimisation technique. While optimising the dispatch pattern following assumptions were made:

- I. Total production capacity of a manufacturing location for a product was considered constant.
- II. Total demand of each sales hub was considered constant.

Although, this analysis had been carried out for all the manufacturing locations, but for the sake of simplicity, we are producing data of the manufacturing location with highest potential. Product wise details of all manufacturing locations would have been too cumbersome to be included in this note.

In this case study, we found that margin was not only dependent on freight, but it is a factor of following parameters, among others:

I. Freight: Lower the freight from the manufacturing location, lower the landed cost of product and hence higher margin

- II. Competition: Less presence of competitors in a market, higher the margin, since supply creates pressure on price
- III. Local taxes: Higher the local taxes, lower the margin
- IV. Relative cost of manufacturing at different manufacturing location: If two manufacturing locations serve the same market, one with lower cost of manufacturing would fetch better margin

Considering all these factors, the analytical tool called 'Solver', calculates optimal scenario showing which manufacturing location should serve which market to maximise the margin.

The optimised margin matrix is shown in Table 12.

|       | Margin Matrix in USD per ton |      |      |          |      |      |      |  |  |  |  |  |  |  |
|-------|------------------------------|------|------|----------|------|------|------|--|--|--|--|--|--|--|
| Sales |                              |      |      | Products |      |      |      |  |  |  |  |  |  |  |
| Hubs  | BM66                         | BM99 | BM43 | BM16     | PG66 | AW34 | AW36 |  |  |  |  |  |  |  |
| 01LED | 179                          | 122  | 90   | 310      | 59   | 51   | 77   |  |  |  |  |  |  |  |
| 02CUL | 169                          | 87   | 78   | 296      | 55   | 55   | 74   |  |  |  |  |  |  |  |
| 03AHG | 169                          | 86   | 89   | 292      | 50   | 51   | 71   |  |  |  |  |  |  |  |
| 04AHC | 126                          | 74   | 42   | 218      | 50   | 45   | 50   |  |  |  |  |  |  |  |
| 05MOB | 58                           | 82   | 69   | 312      | 41   | 34   | 41   |  |  |  |  |  |  |  |
| 06NUP | 54                           | 40   | 31   | 44       | 51   | 41   | 52   |  |  |  |  |  |  |  |
| 07A0G | 67                           | 130  | 38   | 297      | 55   | 17   | 66   |  |  |  |  |  |  |  |
| 08GAN | 37                           | 16   | 49   | 97       | 45   | 41   | 61   |  |  |  |  |  |  |  |
| 09LOK | 167                          | 129  | 92   | 303      | 49   | 33   | 30   |  |  |  |  |  |  |  |
| 10DYH | 80                           | 77   | 106  | 238      | 62   | 70   | 84   |  |  |  |  |  |  |  |
| 11ZIV | 75                           | 108  | 99   | 318      | 66   | 67   | 91   |  |  |  |  |  |  |  |
| 12WUG | 153                          | 86   | 59   | 289      | 39   | 41   | 57   |  |  |  |  |  |  |  |
| 13JIV | 74                           | 61   | 106  | 327      | 59   | 57   | 79   |  |  |  |  |  |  |  |
| 14UHB | 152                          | 45   | 50   | 208      | 51   | 49   | 70   |  |  |  |  |  |  |  |
| 15DNI | 195                          | 58   | 37   | 230      | 75   | 35   | 37   |  |  |  |  |  |  |  |
| 16IAJ | 151                          | 90   | 96   | 299      | 47   | 40   | 20   |  |  |  |  |  |  |  |
| 17MHA | 214                          | 106  | 70   | 287      | 55   | 25   | 44   |  |  |  |  |  |  |  |
| 18NRE | 55                           | 69   | 62   | 264      | 45   | 34   | 58   |  |  |  |  |  |  |  |
| 19LAC | 94                           | 71   | 62   | 229      | 61   | 47   | 53   |  |  |  |  |  |  |  |
| 20VRT | 69                           | 50   | 63   | 217      | 54   | 43   | 54   |  |  |  |  |  |  |  |
| 21DAM | 34                           | 87   | 57   | 287      | 51   | 33   | 64   |  |  |  |  |  |  |  |
| 22I0C | 76                           | 78   | 46   | 295      | 67   | 38   | 71   |  |  |  |  |  |  |  |
| 23EHC | 107                          | 81   | 62   | 230      | 61   | 45   | 58   |  |  |  |  |  |  |  |
| 24BUH | 62                           | 122  | 111  | 319      | 61   | 39   | 33   |  |  |  |  |  |  |  |
| 25NAB | 99                           | 103  | 103  | 321      | 66   | 51   | 68   |  |  |  |  |  |  |  |
| 26IRT | 43                           | 101  | 18   | 295      | 69   | 34   | 52   |  |  |  |  |  |  |  |

Table 10 Margin Matrix (For Margin Optimisation study)

Table 11 As – Is Scenario (For Margin Optimisation study)

|                | Tonnage Matrix showing As is Dispatch in ton |      |      |      |      |      |      |     |  |  |  |  |  |  |
|----------------|----------------------------------------------|------|------|------|------|------|------|-----|--|--|--|--|--|--|
| Sales Products |                                              |      |      |      |      |      |      |     |  |  |  |  |  |  |
| Hub            | BM66                                         | BM99 | BM43 | BM16 | PG66 | AW34 | AW36 |     |  |  |  |  |  |  |
| 01LED          | 114                                          | 31   | -    | -    | 22   | 69   | 20   | 257 |  |  |  |  |  |  |
| 02CUL          | 47                                           | 11   | -    | -    | 107  | -    | 20   | 185 |  |  |  |  |  |  |
| 03AHG          | 3                                            | -    | -    | -    | 17   | -    | -    | 20  |  |  |  |  |  |  |
| 04AHC          | 90                                           | 3    | 2    | 2    | 33   | 27   | 117  | 274 |  |  |  |  |  |  |

ISO 9001:2008 Certified Journal

Page 844



International Research Journal of Engineering and Technology (IRJET)

**ET** Volume: 06 Issue: 09 | Sep 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

| 05M0B | 1,530 | 274  | 8  | 29  | 763  | 174  | 750  | 3529 |
|-------|-------|------|----|-----|------|------|------|------|
| 06NUP | 1,523 | 115  | 5  | 8   | 899  | 299  | 287  | 3135 |
|       |       |      |    |     |      |      |      | 942  |
| 07A0G | 540   | 48   | 2  | 6   | 130  | 65   | 151  | 52   |
| 08GAN | 18    | -    | -  | -   | 9    | 14   | 12   | 504  |
| 09LOK | 127   | 34   | 1  | -   | 206  | 25   | 112  |      |
| 10DYH | 212   | 45   | 2  | 4   | 16   | 140  | 179  | 597  |
| 11ZIV | 21    | 3    | 0  | 2   | 24   | 36   | 52   | 138  |
| 12WUG | 36    | -    | -  |     | 19   | 6    | -    | 61   |
| 13JIV | 82    | -    | -  | -   | -    | -    | -    | 82   |
| 14UHB | 19    | -    | -  | -   | 43   | -    | -    | 63   |
| 15DNI | 23    | 13   | 0  | 27  | 57   | 9    | 109  | 238  |
| 16IAJ | 14    | 1    | 7  | -   | 3    | 31   | 61   | 117  |
| 17MHA | 61    | 37   | 8  | 7   | 9    | 36   | 43   | 201  |
| 18NRE | 532   | 62   | 7  | 0   | 134  | 60   | 50   | 846  |
| 19LAC | 249   | 4    | 1  | 0   | 37   | 32   | 3    | 326  |
| 20VRT | 194   | -    | -  | -   | 150  | -    | -    | 344  |
| 21DAM | 464   | 43   | 10 | 10  | 120  | 41   | 192  | 880  |
| 2210C | 281   | 2    | 7  |     | 5    | 4    | 8    | 307  |
| 23EHC | 611   | 369  | 18 | 11  | 275  | 14   | 137  | 1435 |
| 24BUH | 212   | 2    |    | 4   | 5    | 7    | 36   | 265  |
| 25NAB | 349   | 13   | 4  | 2   | 72   | 75   | 143  | 657  |
| 26IRT | 178   | 10   | -  | 0   | 49   | 19   | 21   | 268  |
| TOTAL | 7530  | 1112 | 82 | 112 | 3202 | 1181 | 2502 |      |

 Table 12

 Optimised Scenario (For Margin Optimisation study)

|              | Tonnage Matrix showing Optimised Dispatch in ton |      |      |      |       |      |      |      |
|--------------|--------------------------------------------------|------|------|------|-------|------|------|------|
| Sales<br>Hub | Products                                         |      |      |      |       |      |      |      |
|              | BM66                                             | BM99 | BM43 | BM16 | PG66  | AW34 | AW36 |      |
| 01LED        | 257                                              | -    | -    | -    | -     | -    | -    | 257  |
| 02CUL        | 185                                              | -    | -    | -    | -     | -    | -    | 185  |
| 03AHG        | 20                                               | -    | -    | -    | -     | -    | -    | 20   |
| 04AHC        | 274                                              | -    | -    | -    | -     | -    | -    | 274  |
| 05MOB        | 2,848                                            | -    | -    | 112  | -     | 569  | -    | 3529 |
| 06NUP        | -                                                | -    | -    | -    | 2,921 | 214  | -    | 3135 |
| 07AOG        | -                                                | 942  | -    | -    | -     | -    | -    | 942  |
| 08GAN        | -                                                | -    | -    | -    | -     | -    | 52   | 52   |
| 09LOK        | 504                                              | -    | -    | -    | -     | -    | -    | 504  |
| 10DYH        | -                                                | -    | -    | -    | -     | 398  | 198  | 597  |
| 11ZIV        | -                                                | -    | -    | -    | -     | -    | 138  | 138  |
| 12WUG        | 61                                               | -    | -    | -    | -     | -    | -    | 61   |
| 13JIV        | -                                                | -    | -    | -    | -     | -    | 82   | 82   |
| 14UHB        | 63                                               | -    | -    | -    | -     | -    | -    | 63   |
| 15DNI        | 238                                              | -    | -    | -    | -     | -    | -    | 238  |
| 16IAJ        | 117                                              | -    | -    | -    | -     | -    | -    | 117  |
| 17MHA        | 201                                              | -    | -    | -    | -     | -    | -    | 201  |
| 18NRE        | -                                                | -    | -    | -    | -     | -    | 846  | 846  |
| 19LAC        | 326                                              | -    | -    | -    | -     | -    | -    | 326  |
| 20VRT        | 344                                              | -    | -    | -    | -     | -    | -    | 344  |
| 21DAM        | -                                                | -    | -    | -    | -     | -    | 880  | 880  |

| 22I0C | -     | -    | -  | -   | -    | -    | 307  | 307  |
|-------|-------|------|----|-----|------|------|------|------|
| 23EHC | 1,435 | -    | -  | -   | -    | -    | -    | 1435 |
| 24BUH | -     | 169  | 82 | -   | 13   | -    | -    | 265  |
| 25NAB | 657   | -    | -  | -   | -    | -    |      | 657  |
| 26IRT | -     |      |    | -   | 268  | -    | -    | 268  |
| TOTAL | 7530  | 1112 | 82 | 112 | 3202 | 1181 | 2502 |      |

Since, total demand from a sales hub from a manufacturing location was kept constant, the freight bill did not change much. In fact, in this study, the freight bill came down by almost USD 5000 per month because in ton-miles terms there was a saving.

The result of the Margin Optimisation study is summarised as below:

| Products:                                                                                      | BM66 | BM99 | BM43 | BM16 | PG66 | AW34 | AW36 |
|------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Weighted<br>average<br>contribution, per<br>ton, for as is<br>dispatch pattern<br>(USD)        | 72   | 82   | 65   | 257  | 51   | 43   | 52   |
| Weighted<br>average<br>contribution, per<br>ton, for<br>optimised<br>dispatch pattern<br>(USD) | 101  | 129  | 111  | 312  | 53   | 47   | 67   |

| Total contribution for as is dispatch pattern:     | 1,015,891 |
|----------------------------------------------------|-----------|
| Total contribution for optimised dispatch pattern: | 1,341,957 |
| Increase in contribution per month in USD          | 326,066   |

### **3. CONCLUSIONS**

We are fully conscious of the fact that the result of this analytics shows an ideal final result (IFR). However, in practice, the company might face some constraints while practically implementing the entire recommendation.

Therefore, a series of brainstorming sessions between interfacing departments were held leading to a number of action items which finally resulted in considerable cost saving and margin improvement for the company. The major changes brought about were related to following aspects:

- Change of product mix of various manufacturing locations.
- Change of product mix in various markets.
- Construction of a new manufacturing location in a geographical region which had high demand and had locally available raw material but no manufacturing location.
- A number of recipe optimisation study were also carried out to reduce the inbound transportation cost.
- Overall value turn around achieved in the company in one year on account of various cost optimisation initiatives was more in the range of 10 million USD.

© 2019, IRJET

| ISO 9001:2008 Certified Journal | Page 845



#### REFERENCES

- [1] Pragnya Parimita Mishra, Kunal Sharma, "Inventory and Logistics Cost Optimization in Automobile Industry", *International Journal of Engineering Research and Applications (IJERA)*, ISSN: 2248-9622, Vol. 3, Issue 4, Jul-Aug 2013, pp.1632-1635.
- [2] Craig, Don. "What is Supply Chain Network Optimization?" TransportationInsight (blog), June 10, 2014, // www.transportationinsight.com/blog/networks/2014/

06/supply-chain-network-optimization/.

#### BIOGRAPHIES



Sanjeeva, Bachelor of Technology Indian Institute from of Technology (ISM) Dhanbad, India, MBA from S P Jain Institute of Management and Research, Mumbai, India, Six Sigma Black Belt, presently working as President (Commercial & Special Projects) in a leading building material company in India.



Akash Kumar, Bachelor of Technology from Indian Institute of Technology (ISM) Dhanbad, India, presently working as Assistant Manager (Special Projects) in a leading building material company in India.