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ABSTRACT: This paper proposes an automatic 
classification method based on machine learning in 
Ultrasonography of focal liver lesions using image 
processing techniques. There are different techniques used 
for the segmentation of lesions from the image. Active 
contour is one of the active models in segmentation 
techniques, which makes use of the energy constraints and 
forces in the image for separation of a region of interest. 
Active contour defines a separate boundary or curvature for 
the regions of the target object for segmentation. This 
method can yield spatial and temporal features based on a 
discrete wavelet transform. The lesions are classified as 
benign or malignant liver tumors using support vector 
machines (SVM) with a combination of selected texture 
features. The experimental results are consistent with 
guidelines for diagnosing FLLs.  

I - INTRODUCTION 

The differential diagnosis of focal liver lesions 
includes a broad spectrum of benign, malignant, and 
infectious etiologies. Focal liver lesions in humans include 
neoplasms, metastatic lesions, inflammatory masses, and 
cysts (congenital or acquired); primary neoplasms – both 
benign and malignant – are 1%-2% of all tumors. Many 
studies suggest that benign neoplasms are less frequent 
than malignant tumors. Primary liver neoplasms are in 
third place, in order of frequency, among malignant intra-
abdominal masses in the pediatric population, after Wilms 
tumors and neuroblastomas, with an incidence of 5-6%.  

Although liver tumors are the most frequent 
malignant GI tumors, they are less than 2% of all malignant 
processes. Most humans with benign or malignant liver 
masses come into a physical exam with palpable masses. 
Other symptoms include pain, anorexia, jaundice, 
paraneoplastic syndromes, hemorrhages, and congestive 
heart failure. Several factors help when making a 
differential diagnosis, such as the age of the child, 
characteristics of the images taken, clinical presentation, 

levels of alpha-fetoprotein, and whether it is a single or 
multiple lesions. 

Liver tumors associated with high serum levels of 
alpha-fetoprotein include hepatoblastoma and 
hepatocellular carcinoma. Infantile hemangio 
endothelioma may have high levels in a minority of lesions 
(< 3%). The presence of multiple lesions suggests 
metastatic disease, infantile hemangioendothelioma, 
abscesses, cat-scratch disease. Adenomas or 
lymphoproliferative diseases in predisposing conditions, 
such as Fanconi’s anemia or Gaucher’s disease. Clinical 
presentation may suggest a specific diagnosis.  

Several computer-aided diagnosis (CAD) 
techniques that improve the objectivity of diagnosing FLLs 
with CEUS have been proposed. For classifying FLLs into 
four classes (HCC, hepatic hemangioma, FNH, and liver 
metastasis) using a support vector machine (SVM) with 
parameters obtained from a TIC analysis of the arterial 
phase. A neural network with four parameters obtained 
from a TIC and achieved 93.4% sensitivity and 89.7% 
specificity for 112 cases. Their method used 43 parameters 
obtained from max-hold images in CEUS and classified 
FLLs with six neural networks in a cascade. The method 
for classifying FLLs as benign or malignant using an 
enhancement pattern of a differential TIC between the FLL 
and parenchyma ROIs obtained by ROI tracking based on 
the scale-invariant feature transform (SIFT) key points 
detector. The proposed system correctly classified 13 
lesions out of 14 cases. a method of benign and malignant 
classification using TICs of FLL and parenchyma ROIs 
obtained by ROI tracking based on Compact and Real-time 
Descriptors (CARD) and mean shape estimation of ROI 
based on a Generalized Procrustes Analysis (GPA). This 
method achieved 91.6% accuracy for 107 cases. 
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II - RELATED WORK 

In [1], M. Danila, et al., proposed a single-center 
experience concerning the use of contrast-enhanced 
ultrasound (CEUS) in the characterization of FLL and to 
find when one can avoid using other expensive imaging 
modalities such as contrast-enhanced CT or MRI. A CEUS 
examination was considered conclusive if the FLL had a 
typical enhancement pattern according to the EFSUMB 
guidelines. CEUS was conclusive in approximately 80% of 
the FLLs and the benign or malignant character of a lesion 
was demonstrated in about 90% of cases. 

S. Bakaset al., [3] proposed a methodology for 
tracking a hypo- or hyper-enhanced focal liver lesion (FLL) 
and a healthy liver region in a video sequence of a 
Contrast-Enhanced Ultrasound (CEUS) examination. The 
outcome allows the differentiation between benign and 
malignant cases, by characterizing FLLs of typical 
behavior, according to their Time-Intensity curves. The 
task is challenging mainly due to intensity changes caused 
by contrast agents. Initially, the ultrasound mask is 
automatically localized and then the FLL and parenchyma 
regions are tracked, assuming affine transformations on 
the image plane, employing the point-based registration 
technique of Lowe’s scale-invariant feature transform 
(SIFT) key points detector. 

X. Liang, et al.,[4] this work is to provide an 
automatic computational framework to assist clinicians in 
diagnosing Focal Liver Lesions (FLLs) in Contrast-
Enhancement Ultrasound (CEUS). We represent FLLs in a 
CEUS video clip as an ensemble of Region-of-Interests 
(ROIs), whose locations are modeled as latent variables in 
a discriminative model. Different types of FLLs are 
characterized by both spatial and temporal enhancement 
patterns of the ROIs. The model is learned by iteratively 
inferring the optimal ROI locations and optimizing the 
model parameters. 

M. Schneider et al., [5] this work was to develop a 
new parametric imaging technique, aimed at mapping the 
DVP signatures into a single image called a DVP parametric 
image, conceived as a diagnostic aid tool for characterizing 
lesion types. The methodology consisted of processing a 
time sequence of images (DICOM video data) using four 
consecutive steps: (1) pre-processing combining image 
motion correction and linearization to derive an echo-
power signal, in each pixel, proportional to local contrast 
agent concentration over time; (2) signal modeling, 
utilizing a curve-fitting optimization, to compute a 
difference signal in each pixel, as the subtraction of 
adjacent parenchyma kinetic from the echo power signal; 

(3) classification of difference signals; and (4) parametric 
image rendering to represent classified pixels as support 
for diagnosis. 

III - PROPOSED SYSTEM 

To propose an automatic classification method 
based on machine learning in contrast-enhanced 
ultrasonography (CEUS) of focal liver lesions (FLLs) using 
the contrast agent Sonazoid ⃝R. To segment the lesion 
region based on active contour technique, it defines a 
separate boundary or curvature for the regions of a liver 
lesion for segmentation. To extracts spatial and temporal 
features in three phases (arterial phase, portal phase, and 
post-vascular phase) and max-hold images of focal liver 
lesions from Sonazoid ⃝R CEUS images. Benign and 
malignant tumors are classified by using the SVM classifier. 

 

Fig 1. Proposed block 

The proposed (fig 1) work is having the following 
functions: 

 Contrast adjustment 
 Active contour segmentation 
 Feature extraction  
 Support vector machine (SVM) classifier 

A. Pre-Processing Techniques 

Liver ultrasound images are degraded during the 
process of imaging due to image transmission and image 
digitization by noise and the existence of extracranial 
tissues.  

Pre-processing is a procedure to eliminate these 
noises and extra-cranial tissues from the liver ultrasound 
and alters the heterogeneous image into a homogeneous 
image. Though there are lots of filters that have been used 
for filtering the images, some of them corrupt the 
miniature details of the image and some conventional 
filters will process the image incessantly (smoothing) and 
consequently harden the edges of the image. Hence, the 
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proposed pre-processing steps namely De-noising and 
skull stripping provide better Image clarity. 

B. Contrast Adjustment 

Contrast adjustment remaps image intensity 
values to the full display range of the data type. An image 
with good contrast has sharp differences between black 
and white. 

The first step is to calculate a contrast correction 
factor which is given by the following formula: 

 

For the algorithm to function correctly the value 
for the contrast correction factor (F) needs to be stored as 
a floating-point number and not as an integer. The value C 
in the formula denotes the desired level of contrast. 

C. ACTIVE CONTOUR SEGMENTATION ALGORITHM 

Active Contours or Snakes can be generalized as 
curves described in an image domain that can shrink or 
grow due to the Internal and External Forces. 

Internal forces are defined within the curve itself, 
whereas the External forces arise from the image data. 
These forces ensure that the snake is confined to object 
boundaries or any other feature in the image. 

1. Implementation of the active contour model (ACM). 

For a closed parametric curve (𝑠) = [(𝑠), (𝑠)], 𝑠∈ 
[0,1], ACM defines the energy function: 

  ∫

 

 
( |  (𝑠)|   |   (𝑠)| )

     ( (𝑠)) 𝑠 

 

 
 (1) 

where and  are the weighting parameters of 
contour elasticity and rigidity, respectively,   (𝑠)and 
   (𝑠)denote the first and the second derivatives of  (𝑠) to 

𝑠, and     ( (𝑠))is the external energy derived from image 

and constraint forces so that it has a smaller value near the 
object boundary and bigger value in the other areas. 

The minimization of  must satisfy the Euler equation: 

    (𝑠)        (𝑠)          (2) 

Which can be regarded as a force balance equation: 

            (3) 

where          (𝑠)        (𝑠),            , internal 
force      discourages both stretching and bending, 
external force      pulls the active contour to the desired 
image edges, and finally, the curve stops at the position 
with force balance. 

To solve (2), the active contour is taken as a 
function of time 𝑡and parameter 𝑠; that is, (𝑠, 𝑡) and the 
solution of (2) become the solution of: 

  (𝑠 𝑡)      (𝑠 𝑡)        (𝑠 𝑡)        (4) 

2. Implementation of gradient vector flow (GVF). 

There are two major challenges with the Active 
Contour. First, the initial snake must be close to the edge to 
be detected and snakes have difficulty converging in the 
concave regions. 

To overcome these challenges a new external 
force was introduced, whose fields are called GVF fields, 
and the snake that uses the GVF field is called GVF snake. 
This GVF field pulls the snake towards the object boundary 
when the snake is closer to the boundary and can converge 
the snake into concave regions. 

The GVF based ACM defines a new external force 
field     

 
   (   ), and the new external force field is 

named gradient vector flow force field. From(4), there is 

  (𝑠 𝑡)      (𝑠 𝑡)        (𝑠 𝑡)   (   )(5) 

An edge map ( ,  ) is calculated from the original 
image ( ,  ), and the value of the edge map is larger at 
positions near the image edges. Edge map can be obtained 
from gray-level images or binary images as 

 (   )        
 (   ) (6) 

where𝑖 = 1, 2, 3, or 4. Edge map has three 
characteristics: the gradient vector of edge map, that is,   , 
should point to and be perpendicular with the object 
boundary; the gradient vector of edge map has a larger 
value at object boundaries; in the smooth region of the 
image where little change with the value of 𝐼( ,  ),   is 
close to 0. 

The gradient vector flow force field can be 
expressed as ( ,  ) = (( ,  ), V( ,  )), and its energy 
function is  

  ∬ (𝑢 
  𝑢 

  𝑣 
  𝑣 

 )  |  | |    |       (7) 
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The energy function follows a standard principle 
that, in the absence of a gradient vector field, the 
smoothness of active contour is ensured. When the value 
of   is small, the energy function is determined by the 
sum of the squares of partial derivatives of the gradient 
vector force field. When the value of   is large, the energy 
function is determined by |  |2|  −   |2 and is minimized 
by   =   . Therefore,  nearly equals to the gradient of 
edge map where gradient value is large and changes little 
where gradient value is small. As the weighting parameter, 
 is set according to the proportion of noise in the image, 
that is, more noise with a larger value of  . 

D. Feature Extraction 

The pattern recognition, machine learning and, 
image processing, the extraction of feature starts from an 
initial set of measured data and builds derived values 
(features) intended to be informative and non-redundant, 
facilitating the subsequent learning and generalization 
steps, and in some cases leading to better human 
interpretations. Feature extraction is related to 
dimensionality reduction. 

The algorithms input data is very large to be 
processes and it is anticipated to be redundant then it can 
be transformed into a reduced set of features (also named 
a features vector). This process is called feature selection. 
The features which are selected is expected to contain the 
relevant information from the input data such that the 
desired task can be performed by using this reduced 
representation instead of the complete initial data. 

In order to describe a large set of data, the Feature 
extraction is involved with reducing the number of 
resources required. When performing analysis of complex 
data one of the major problems stems from the number of 
variables involved. Analysis with a large number of 
variables generally requires a large amount of memory 
and computation power, also it may cause a classification 
algorithm to overfit to training samples and generalize 
poorly to new samples. Feature extraction is a general 
term for methods of constructing combinations of the 
variables to get around these problems while still 
describing the data with sufficient accuracy. 

The transformation of an image into its set of 
features is known as feature extraction. Useful features of 
the image are extracted from the image for classification 
purposes. It is a challenging task to extract a good feature 
set for classification. There are many techniques for 
feature extraction e.g. texture Features, Gabor features, 
feature based on wavelet transform, principal component 
analysis, minimum noise fraction transform, discriminant 

analysis, decision boundary feature extraction, non-
parametric weighted feature extraction, and spectral 
mixture analysis. We are using the texture feature for our 
proposed system. 

E. Support Vector Machine Classification 

Support vector machines (SVMs) are a set of 
supervised learning methods used for classification, 
regression, and outlier detection. More formally, a support 
vector machine constructs a hyperplanes or set of hyper 
planes in a high- or infinite-dimensional space, which can 
be used for classification, regression, or other tasks. 
Intuitively, a good separation is achieved by the 
hyperplane that has the largest distance to the nearest 
training-data point of any class (so-called functional 
margin), since in general the larger the margin the lower 
the generalization error of the classifier. 

SVM Algorithm 

Classifying data is a common task in machine 
learning. Suppose some given data points each belong to 
one of two classes, and the goal is to decide which class a 
new data point will be in. In the case of support vector 
machines, a data point is viewed as a p-dimensional vector, 
and we want to know whether we can separate such points 
with a (p-1)-dimensional hyperplane. This is called a linear 
classifier. Many hyperplanes might classify the data. One 
reasonable choice as the best hyperplane is the one that 
represents the largest separation, or margin, between the 
two classes. So we choose the hyperplane so that the 
distance from it to the nearest data point on each side is 
maximized. If such a hyperplane exists, it is known as the 
maximum-margin hyperplane and the linear classifier it 
defines is known as a maximum margin classifier; or 
equivalently, the perceptron of optimal stability. 

IV – SIMULATION RESULTS 

The following figure represents the sample liver 
CT images tested with this proposed work. The images are 
downloaded from the UCI database. 

 

https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Overfitting
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Figure 1. Sample liver CT images 

 

Figure 2. Sample test liver image 

 

Figure 3.Liver seed region 

 

Figure 4. Histogram of liver region 

 

Figure 5.Segmented liver boundary 

 

Figure 6.Segmented liver ROI 

 

Figure 10 Classifier result 

(I) Performance Measure 

The performance is evaluated for images the 
performance measure includes accuracy, 
sensitivity,precision,recall, and 
specificity.Maximumaccuracy is obtained in the SVM 
method. The accuracy obtained for SVM is 75% and KNN 
60%. The specificity obtained for SVM is 93% and KNN 
75%. The sensitivity obtained for SVM is 93% and KNN 
86%. The precision obtained for SVM is 78% and KNN 
50%. Fig 4.35 gives the overall performance graph for 
accuracy, sensitivity, precision, specificity.The accuracy is 
high and it signifies that the system is an efficient system 
for segmenting the tumor. 
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Fig 7:Perfomance evaluation graph 

V - CONCLUSION 

In this paper, we proposed an automatic 
classification method using machine learning techniques 
for focal liver lesions. The results indicated that combining 
the features from the liver ROI was important for 
classification methods based on machine learning US 
images. Our investigation of the operator dependence 
associated with ROI specification in our method showed 
that the intra-operator agreement was moderate and the 
inter-operator agreement was fair to good. The liver 
region is segmented based on the active contour 
segmentation technique. The segmented liver region is 
given into the feature measurement. The texture and 
spatial features are extracted from the liver region and the 
test features are classified with the help of a support 
vector machine classifier.  
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