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Abstract - Rapid growth in computer graphics to enhance user experience in almost every sector like e-commerce, education, 
healthcare, gaming; calls for 3D representation unlike 2D representations a few years back. Applications like e-commerce need 3D 
models of real objects rather than a generalized object. This brings a massive demand for 3D model reconstruction from a 2D 
image. Till now, the 3D models are developed by graphics designers using various graphics software like Blender, MAYA and 
Unity3D, etc. But this procedure is very tedious, time-consuming, and manual. The surveyed techniques extend remarkable state-of-
art work in 2D recognition and try to push it into 3rd dimension. Our paper explores some techniques based on the comprehensive 
survey of different research papers that help to convert 2D images into 3D models using deep learning techniques including Mask-
RCNN, graph convolutions, image encoders and decoders using convolutions, Pytorch3D’s open-source library. Our paper 
acknowledges limitations in 3D modeling with 3D supervision and how it can be solved using 2D supervision handling the tradeoffs 
between resources and the accuracy of the constructed models. 
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1. INTRODUCTION  

In recent years, deep learning has demonstrated outstanding capabilities in solving 2D-image tasks such as image 
classification, object detection, semantic segmentation, instance segmentation, and human pose estimation. There are some 
engineering challenges involved in deep learning with respect to 3D modeling (3D Deep Learning) [5]. As we know, 2D images 
are almost universally represented by regular pixel grids. But in contrast, 3D data are stored in various data structures as voxel 
grids, point clouds, and meshes which can exhibit heterogeneity which is one of the major challenges when dealing with 3D 
deep learning techniques [5].  

Voxels( Volumetric Pixels)  in 3D are same as Pixels in 2D. Voxels generally divide 3D space into uniform 3D cells, typically 
cubes, which is known as voxel grid. 3D meshes or polygon meshes consist of a combination of vertices, edges and faces [7]. A 
point cloud is just a set of 3D data points and each point is represented by three coordinates in a coordinate system like 
Cartesian [7]. Each of these representations has its own benefits and drawbacks concerning accuracy, computational power, 
memory requirements, and representational details. Therefore, the choice of data representation directly affects the approach 
that can be utilized to apply 3D deep learning [4].  

To work with 3D deep learning some techniques are built on 3D supervision. A renderer takes input as scene information 
(textures, lights, materials, camera, etc) and outputs an image [5]. Differentiable renderer allows the gradients with respect to 
loss of predicted objects and ground truths, to be calculated and backpropagated through their respective 2D images [8]. This 
drops the need for 3D supervision of data [8]. We should endeavor to build a system that can operate on unconstrained real-
world images with many objects, occlusion, semantics, and diverse lighting or shading conditions but that should not ignore the 
rich 3D nature of the ground truth [4].  

The process of conversion from a 2D image to a 3D object includes different steps. Initially, the object to be reconstructed 
needs to be segmented from its background. Instance segmentation which is achieved using techniques such as Mask-RCNN is 
used to segment the exact shape of the object from a 2D image. Predicting the 3D shape of the object using 3D deep learning is 
followed by a differential rendering process. Differential rendering tries to refine the predicted 3D shape with respect to the 
ground truth by calculating losses and back-propagating using gradients. The rendering process can be 2D supervised or 3D 
supervised. This step is crucial in deciding the success of the technique with considerable parameters.  

2. RELATED WORK 

The paper includes scrutiny of different surveyed techniques mentioned in different papers which will help to analyse and to 
implement the accurate, efficient method to convert 2D images into 3D models. 
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2.1 Autosweep: Recovering 3d editable objects from a single photograph [1] 

 [1] have introduced a fully automatic novel method named AutoSweep that can recover 3D Editable Objects from a single 
RGB image. This paper proposes a technique that focuses on recovering 3D objects with semantic parts and which can be 
directly edited. The proposed technique is based on ‘3-Sweep’[6]. The proposed method not only recovers the shape of the 
objects but also the surface texture and colors. It assumes the objects present in the image build from two types of primitive-
shaped objects, namely, generalized cuboids and generalized cylinders. 

[1]outputs instance mask of object body(shape of the whole body) and profile(top view and bottom view faces) using Geonet 
which fuses Mask-RCNN (state-of-art method for instance segmentation) and deformable convolutional network(DCN). The 
outputs are labelled as cuboid profile, cuboid body, cylinder profile, and cylinder body. Profiles and bodies are used to predict 
3D-profile concerning camera pose. Parallelly, the trajectory axis (a planar 3D curve) which is the main axis (straight or curve) of 
the body is classified using a neural network with pruning. This axis will be used for profile sweeping along the body to create 
the 3D model. [1] used 11657 images in the dataset which were further split into 8183 training set and 3474 testing set. Basic 
architecture of the system is shown in Fig -2.1. 

 

Fig -2.1: System Architecture [1] 

According to [1], it took 1 second for GeoNet to segment one image and less than 1 second to reconstruct objects from the 
masks including stages of instance labeling, profile fitting, and 3D sweeping under a multi-threaded environment. Compared to 
other existing techniques for 3D reconstructions which construct either point clouds, voxels, or meshes, [1] is able to recover 
high-quality semantic parts and their relations in the object. 

2.2 Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction [2] 

[2] have tried to implement an efficient framework for the reconstruction of the 3D object from single  RGB image input. 
According to [2]  the prior approaches used voxels based 3D reconstruction which can be easily done using convolutional neural 
networks(CNN) but results in wasteful representation concerning the fine details, amount of computational power, and time 
required. On other hand, point clouds are a feasible representation but cannot be directly used with CNNs. Thus, the approach 
aims to generate dense point clouds in 3D space. The system predicts the output 3D object shapes with dense point clouds from 
multiple viewpoints. The architecture consists of three phases- 2D structure generator, point cloud fusion, and pseudo rendering. 
The structure generator consists of convolution layers following linear layers. Two types of convolution operation are used-  
encoder convolution(halving feature maps) and generator convolution(doubling feature maps). The structure generator outputs 
eight depth 2D projected images with respect to fixed different viewpoints within a cube. These images are then fused in the 
point cloud fusion phase to generate a dense point cloud. This is an important and easy step as the viewpoints are static and 
predefined.  

Pseudo renderer renders new depth images at novel viewpoints by using the output point cloud model from the fusion 
phase. The rendering process is differential which helps to calculate the loss and helps to back-propagate using gradients. This 
trains the model to make use of loss and generate better point clouds. The geometric reasoning ability of the pseudo renderer 
lessens the number of trainable/learnable parameters, decreasing the training cost. Average point-wise 3D Euclidean distance 
between the predicted model and CAD model has been used as a quality metric. The system is trained and evaluated with the 
ShapeNet database consisting of 3D CAD models. For each 3D model, they have pre-rendered 100 depth and mask images at 
random viewpoints which will be used to evaluate the loss while the input images are pre-rendered at fixed depth and 
viewpoints at certain angles. The system architecture of the mentioned algorithm is shown in Fig -2.2. 
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Fig -2.2: System Architecture [2] 

2.3 Pixel2Mesh [3] 

[3] approach extracts 3D triangular meshes from a single RGB image. The technique uses a graph convolution network(GCN) 
which represents the 3D Mesh object as a collection of vertices, edges, and faces. G = (V, E, F). [3] provides an end-to-end 
framework consisting of a network that is divided as an image feature network and a cascaded mesh deformation network. 
Initially, the system starts with an ellipsoid 3D mesh. The goal is to deform this ellipsoid according to the image features. These 
image features are extracted by an image feature network( a 2D convolution network) which will deform the initial ellipsoid 
model into the desired 3D shape. The cascaded mesh deformation network( a GCN) inputs the current deformed mesh from the 
image feature network and produces new vertices and other mesh features. This deformation network uses graph unpooling 
layers to increase the density(number) of vertices which will leverage the system to handle fine details with respect to mesh 
topology.  

The system tries to move from coarse level to fine level 3D mesh. [3] have considered three-loss techniques related to meshes 
viz surface normal loss, laplacian regularization loss, and edge length loss along with champer loss. [3] uses Chamfer Distance 
(CD) and Earth Mover’s Distance (EMD) for evaluation of the model.  The basic architectural overview of the system is presented 
in Fig -2.3. The system receives input images of size 224 × 224, and an initial ellipsoid with 156 vertices and 462 edges. The 
system takes 15.58ms to reconstruct the mesh with 2466 vertices from a single RGB image. This method fails to construct 
genus0 objects and holes in the object which could be a major drawback. Also, this method can produce the meshes with the 
same topology as selected for the initial mesh. 

 

Fig -2.3: System Architecture [3] 

2.4 Mesh RCNN [4] 

The authors of the paper, 'Mesh RCNN’, proposed a technique that extends Mask R-CNN with a mesh prediction branch 
which gives output meshes having arbitrary topological structure. It first predicts coarse voxel representations that are 
supposed to be converted to meshes and then refined with vertical alignment and a graph convolution network operating over 
the mesh vertices and edges.  

The method mentioned in [4] is presented in Fig -2.4. It begins with accepting a single input RGB image. The mask branch 
shown in Fig -2.4 performs 2D recognition using Mask RCNN where 2D objects are detected with bounding boxes, and 
segmentation masks are generated. The voxel branch first predicts a 3D coarse voxelization of an object, where it produces a 
3D grid of occupancy probabilities giving the coarse shape of the object, which is then converted to an initial triangle mesh [4]. 
This coarse voxel representation has a varying topological structure as it tries to predict mesh with arbitrary topology. This 
overcomes the problem of fixed or limited object topologies that were present in [3]. Convert the voxelized representation to 
the mesh and refine the mesh using the iterative mesh refinement technique mentioned in [3]. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 12 | Dec 2020                  www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1455 
 

 

Fig -2.4: System Architecture [4] 

[4] further says that the cubify method is applied to the output given by the voxel branch. The cubify inputs voxel occupancy 
probabilities and a threshold for binarizing voxel occupancy. Each occupied voxel is replaced with a cuboid triangular mesh 
having 8 vertices, 18 edges, and 12 faces. This results in the initial watertight cubified mesh which only provides a coarse 3D 
shape of the object. The mesh refinement branch processes this initial cubified mesh whose topology depends on the voxel 
predictions. Mesh refinement branch refines its vertex positions with a sequence of refinement stages. Each refinement stage 
consists of three basic operations as vertex alignment, graph convolution, and vertex refinement. Vertex alignment extracts 
image features for vertices; graph convolution propagates information along mesh edges, and vertex refinement updates the 
vertex positions. Also, this mesh refinement branch is trained to minimize the mean losses across all refinement stages. Hence, 
the final refined output mesh is generated. The problem with this technique is it requires 3D supervision that is quite expensive 
to obtain, and it may not be possible in many cases.  

2.5 Accelerating 3D Deep Learning with PyTorch3D [5] 

Though [4] overcomes the limitation of fixed topology mentioned in [3], it has its limitation which is 3D supervision that 
faces a huge trade-off between quality and resources. [5] manages to overcome this trade-off by implementing a similar system 
under 2D supervision. According to [5] there could be different numerous 3D predictions for the same single 2D image. This is 
because the machine fails to understand the side view of the object from an image from the single view image. [5] approaches 
to use a 2-view training setup to predict the 3D shape. For every predicted 3D object there are two corresponding silhouette 
images where the first image is a silhouette of the actual view from the input RGB image and the second is a silhouette with the 
rotated view. These silhouettes are used as 2D supervision.  

Initially, the 3D shape will be predicted from the single 2D RGB image. The rendered silhouette of this 3D shape will be 
compared to the first ground truth silhouette image. Also, this 3D shape will be rotated by (R,t) and its rendered silhouette will 
be compared with the second ground truth silhouette. While comparing both the silhouettes, losses are computed. Pytorch3D 
have developed their own differential renderer which allows them to back-propagate through the network by calculating the 
gradients concerning losses, predicted shape, camera coordinates, and silhouette. The further differential renderer can be used 
for incorporating texture details. The training system architecture is shown in Fig -2.5.1. 

 

Fig -2.5.1: Training System Architecture [5] 

For the prediction of 3D shape, [5] have used Sphere FC, Sphere GCN, and Voxel GCN individually and compared the 
outputs[3][4]. Sphere FC and Sphere GCN can only make predictions homeomorphic to spheres which is the limitation 
mentioned in [3]. Voxel GCN can render any genus by topology refinement. The texture is well imposed with Voxel GCN because 
of regularity in shape. For shading, flat, Phong and Gouraud are compared where flat gives the worst results. [5] have 
experimented with meshes as well as point clouds. Point Align model method for point clouds is similar to that of mesh which is 
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mentioned above. The Point Align model is similar to Sphere GCN. With the increase in resolution, the output is well polished. 
All the above techniques are evaluated based on Champer loss.  

With the use of the Pytorch3D library, developed by the authors of [5] there is remarkable speedup in training achieving 
parallelism with CUDA. The inference system architecture is as shown in Fig -2.5.2. 

 

Fig -2.5.2: Inference System Architecture[5] 

The comparative study and their respective limitations of all surveyed techniques is mentioned in the Table -1. 

3. COMPARATIVE OVERVIEW 

Table -1: Comparative study of surveyed papers 

Sr. 
No. 

Paper Title Data 
structure 

Technique/ algorithm Dataset Supervision Limitations 

[1] Autosweep: 
Recovering 3d 
editable objects 
from a single 
photograph. 

Not 
mentioned 

Mask -RCNN, DCN, 
LeNet, 
3-Sweep[6]  

ShapeNet, 
synthesized 
data, SUN 
primitive 
dataset, self-
created 

2D 
supervision 

Unable to handle 
objects with spiral 
axis, regions of 
instances under 
occlusion 

[2] Learning 
Efficient  Point 
Cloud  
Generation for 
Dense 3D    
Object 
Reconstruction 
 

Point Cloud Image 
encoder(convolution, 
linear layers), 
Structure 
generator(linear, 
deconvolution layers), 
geometric reasoning, 
Pseudo differential 
renderer. 

Pre-rendered 
2D depth/mask 
image pairs of 
3D CAD model 
from ShapeNet 

2D 
supervision 
using 2D 
projections of 
3D CAD 
models 

Requires multiple 
pre-rendered 2D 
depth/mask images 
of 3D models in 
training which can 
lead to erroneous 
training if not 
rendered correctly.  

[3] Pixel2Mesh: 
Generating 3D 
Mesh Models 
from Single RGB 
Images 

Mesh 2D- CNN, 
Graph based ResNet(G-
Resnet), Graph 
convolution(GCN), 
vertical alignment 

ShapeNet 3D 
models 

3D 
supervision 

Fails to construct 
genus0 
objects(holes), 
requires fixed 
topology. 

[4] Mesh RCNN Mesh, Voxel Graph 
convolution(GCN), 
vertical alignment, ROI 
alignment, 
Mesh rcnn 
(augmented Mask-
RCNN) 

Pix3D, 
ShapeNet. 

3D 
supervision 

Requires 3D 
supervision which is 
expensive,cubify(vo
xelization) may be 
computational 
intensive with 
increase in classes. 

[5] Accelerating 3D 
Deep Learning 
with PyTorch3D 

Mesh, Point 
Cloud 

Sphere GCN, Voxel GCN, 
Sphere FC,  silhouette 
rendering, KNN. 

ShapeNetCoreV
1 rendered 2D 
images 

2D 
supervision  

Requires 2-view 
images while 
training. 
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4. CONCLUSION 

Our paper presented a comparative and comprehensive study of various techniques of ‘Automated 2D Image to 3D Model 
Construction’ that has discovered a wide range of available techniques and popular algorithms differing in their generalization, 
accuracy, complexity, and usability. The comparative study is given in Table -1. Even if the 2D image to 3D Model conversion is 
a new field, it is evolving rapidly, by the continuous development of new tools meant to simplify the techniques. Recently, the 
Pytorch3D library brought in differential renderers for meshes and point clouds, data structures to handle meshes and point 
clouds, and various other functionalities that will speed up the process and make the development of 3D reconstruction 
techniques easier. This will allow researchers to develop more novel techniques and propose new algorithms that can feasibly 
convert 2D images to 3D models. Through the comprehensive survey of all the algorithms and techniques given by the 
mentioned papers, it is possible to build an accurate model that outputs the 3D model with decent accuracy in shape, color, and 
texture details. 
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