
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1452

Automated 2D Image to 3D Model Construction: A Survey

Mahipal Mehta1, Shweta Kothawade2, Sanket Kudale3, Sukhada Dole4

1,2,3,4UG Students, Department of Computer Engineering, Marathwada Mitra Mandal’s College of Engineering,
SPPU, Pune, India.

---***--
Abstract - Rapid growth in computer graphics to enhance user experience in almost every sector like e-commerce, education,
healthcare, gaming; calls for 3D representation unlike 2D representations a few years back. Applications like e-commerce need 3D
models of real objects rather than a generalized object. This brings a massive demand for 3D model reconstruction from a 2D
image. Till now, the 3D models are developed by graphics designers using various graphics software like Blender, MAYA and
Unity3D, etc. But this procedure is very tedious, time-consuming, and manual. The surveyed techniques extend remarkable state-of-
art work in 2D recognition and try to push it into 3rd dimension. Our paper explores some techniques based on the comprehensive
survey of different research papers that help to convert 2D images into 3D models using deep learning techniques including Mask-
RCNN, graph convolutions, image encoders and decoders using convolutions, Pytorch3D’s open-source library. Our paper
acknowledges limitations in 3D modeling with 3D supervision and how it can be solved using 2D supervision handling the tradeoffs
between resources and the accuracy of the constructed models.

Key Words: Mask RCNN, Instance Segmentation, Graph Convolution Network, Differential Rendering, Unpooling

1. INTRODUCTION

In recent years, deep learning has demonstrated outstanding capabilities in solving 2D-image tasks such as image
classification, object detection, semantic segmentation, instance segmentation, and human pose estimation. There are some
engineering challenges involved in deep learning with respect to 3D modeling (3D Deep Learning) [5]. As we know, 2D images
are almost universally represented by regular pixel grids. But in contrast, 3D data are stored in various data structures as voxel
grids, point clouds, and meshes which can exhibit heterogeneity which is one of the major challenges when dealing with 3D
deep learning techniques [5].

Voxels(Volumetric Pixels) in 3D are same as Pixels in 2D. Voxels generally divide 3D space into uniform 3D cells, typically
cubes, which is known as voxel grid. 3D meshes or polygon meshes consist of a combination of vertices, edges and faces [7]. A
point cloud is just a set of 3D data points and each point is represented by three coordinates in a coordinate system like
Cartesian [7]. Each of these representations has its own benefits and drawbacks concerning accuracy, computational power,
memory requirements, and representational details. Therefore, the choice of data representation directly affects the approach
that can be utilized to apply 3D deep learning [4].

To work with 3D deep learning some techniques are built on 3D supervision. A renderer takes input as scene information
(textures, lights, materials, camera, etc) and outputs an image [5]. Differentiable renderer allows the gradients with respect to
loss of predicted objects and ground truths, to be calculated and backpropagated through their respective 2D images [8]. This
drops the need for 3D supervision of data [8]. We should endeavor to build a system that can operate on unconstrained real-
world images with many objects, occlusion, semantics, and diverse lighting or shading conditions but that should not ignore the
rich 3D nature of the ground truth [4].

The process of conversion from a 2D image to a 3D object includes different steps. Initially, the object to be reconstructed
needs to be segmented from its background. Instance segmentation which is achieved using techniques such as Mask-RCNN is
used to segment the exact shape of the object from a 2D image. Predicting the 3D shape of the object using 3D deep learning is
followed by a differential rendering process. Differential rendering tries to refine the predicted 3D shape with respect to the
ground truth by calculating losses and back-propagating using gradients. The rendering process can be 2D supervised or 3D
supervised. This step is crucial in deciding the success of the technique with considerable parameters.

2. RELATED WORK

The paper includes scrutiny of different surveyed techniques mentioned in different papers which will help to analyse and to
implement the accurate, efficient method to convert 2D images into 3D models.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1453

2.1 Autosweep: Recovering 3d editable objects from a single photograph [1]

 [1] have introduced a fully automatic novel method named AutoSweep that can recover 3D Editable Objects from a single
RGB image. This paper proposes a technique that focuses on recovering 3D objects with semantic parts and which can be
directly edited. The proposed technique is based on ‘3-Sweep’[6]. The proposed method not only recovers the shape of the
objects but also the surface texture and colors. It assumes the objects present in the image build from two types of primitive-
shaped objects, namely, generalized cuboids and generalized cylinders.

[1]outputs instance mask of object body(shape of the whole body) and profile(top view and bottom view faces) using Geonet
which fuses Mask-RCNN (state-of-art method for instance segmentation) and deformable convolutional network(DCN). The
outputs are labelled as cuboid profile, cuboid body, cylinder profile, and cylinder body. Profiles and bodies are used to predict
3D-profile concerning camera pose. Parallelly, the trajectory axis (a planar 3D curve) which is the main axis (straight or curve) of
the body is classified using a neural network with pruning. This axis will be used for profile sweeping along the body to create
the 3D model. [1] used 11657 images in the dataset which were further split into 8183 training set and 3474 testing set. Basic
architecture of the system is shown in Fig -2.1.

Fig -2.1: System Architecture [1]

According to [1], it took 1 second for GeoNet to segment one image and less than 1 second to reconstruct objects from the
masks including stages of instance labeling, profile fitting, and 3D sweeping under a multi-threaded environment. Compared to
other existing techniques for 3D reconstructions which construct either point clouds, voxels, or meshes, [1] is able to recover
high-quality semantic parts and their relations in the object.

2.2 Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction [2]

[2] have tried to implement an efficient framework for the reconstruction of the 3D object from single RGB image input.
According to [2] the prior approaches used voxels based 3D reconstruction which can be easily done using convolutional neural
networks(CNN) but results in wasteful representation concerning the fine details, amount of computational power, and time
required. On other hand, point clouds are a feasible representation but cannot be directly used with CNNs. Thus, the approach
aims to generate dense point clouds in 3D space. The system predicts the output 3D object shapes with dense point clouds from
multiple viewpoints. The architecture consists of three phases- 2D structure generator, point cloud fusion, and pseudo rendering.
The structure generator consists of convolution layers following linear layers. Two types of convolution operation are used-
encoder convolution(halving feature maps) and generator convolution(doubling feature maps). The structure generator outputs
eight depth 2D projected images with respect to fixed different viewpoints within a cube. These images are then fused in the
point cloud fusion phase to generate a dense point cloud. This is an important and easy step as the viewpoints are static and
predefined.

Pseudo renderer renders new depth images at novel viewpoints by using the output point cloud model from the fusion
phase. The rendering process is differential which helps to calculate the loss and helps to back-propagate using gradients. This
trains the model to make use of loss and generate better point clouds. The geometric reasoning ability of the pseudo renderer
lessens the number of trainable/learnable parameters, decreasing the training cost. Average point-wise 3D Euclidean distance
between the predicted model and CAD model has been used as a quality metric. The system is trained and evaluated with the
ShapeNet database consisting of 3D CAD models. For each 3D model, they have pre-rendered 100 depth and mask images at
random viewpoints which will be used to evaluate the loss while the input images are pre-rendered at fixed depth and
viewpoints at certain angles. The system architecture of the mentioned algorithm is shown in Fig -2.2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1454

Fig -2.2: System Architecture [2]

2.3 Pixel2Mesh [3]

[3] approach extracts 3D triangular meshes from a single RGB image. The technique uses a graph convolution network(GCN)
which represents the 3D Mesh object as a collection of vertices, edges, and faces. G = (V, E, F). [3] provides an end-to-end
framework consisting of a network that is divided as an image feature network and a cascaded mesh deformation network.
Initially, the system starts with an ellipsoid 3D mesh. The goal is to deform this ellipsoid according to the image features. These
image features are extracted by an image feature network(a 2D convolution network) which will deform the initial ellipsoid
model into the desired 3D shape. The cascaded mesh deformation network(a GCN) inputs the current deformed mesh from the
image feature network and produces new vertices and other mesh features. This deformation network uses graph unpooling
layers to increase the density(number) of vertices which will leverage the system to handle fine details with respect to mesh
topology.

The system tries to move from coarse level to fine level 3D mesh. [3] have considered three-loss techniques related to meshes
viz surface normal loss, laplacian regularization loss, and edge length loss along with champer loss. [3] uses Chamfer Distance
(CD) and Earth Mover’s Distance (EMD) for evaluation of the model. The basic architectural overview of the system is presented
in Fig -2.3. The system receives input images of size 224 × 224, and an initial ellipsoid with 156 vertices and 462 edges. The
system takes 15.58ms to reconstruct the mesh with 2466 vertices from a single RGB image. This method fails to construct
genus0 objects and holes in the object which could be a major drawback. Also, this method can produce the meshes with the
same topology as selected for the initial mesh.

Fig -2.3: System Architecture [3]

2.4 Mesh RCNN [4]

The authors of the paper, 'Mesh RCNN’, proposed a technique that extends Mask R-CNN with a mesh prediction branch
which gives output meshes having arbitrary topological structure. It first predicts coarse voxel representations that are
supposed to be converted to meshes and then refined with vertical alignment and a graph convolution network operating over
the mesh vertices and edges.

The method mentioned in [4] is presented in Fig -2.4. It begins with accepting a single input RGB image. The mask branch
shown in Fig -2.4 performs 2D recognition using Mask RCNN where 2D objects are detected with bounding boxes, and
segmentation masks are generated. The voxel branch first predicts a 3D coarse voxelization of an object, where it produces a
3D grid of occupancy probabilities giving the coarse shape of the object, which is then converted to an initial triangle mesh [4].
This coarse voxel representation has a varying topological structure as it tries to predict mesh with arbitrary topology. This
overcomes the problem of fixed or limited object topologies that were present in [3]. Convert the voxelized representation to
the mesh and refine the mesh using the iterative mesh refinement technique mentioned in [3].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1455

Fig -2.4: System Architecture [4]

[4] further says that the cubify method is applied to the output given by the voxel branch. The cubify inputs voxel occupancy
probabilities and a threshold for binarizing voxel occupancy. Each occupied voxel is replaced with a cuboid triangular mesh
having 8 vertices, 18 edges, and 12 faces. This results in the initial watertight cubified mesh which only provides a coarse 3D
shape of the object. The mesh refinement branch processes this initial cubified mesh whose topology depends on the voxel
predictions. Mesh refinement branch refines its vertex positions with a sequence of refinement stages. Each refinement stage
consists of three basic operations as vertex alignment, graph convolution, and vertex refinement. Vertex alignment extracts
image features for vertices; graph convolution propagates information along mesh edges, and vertex refinement updates the
vertex positions. Also, this mesh refinement branch is trained to minimize the mean losses across all refinement stages. Hence,
the final refined output mesh is generated. The problem with this technique is it requires 3D supervision that is quite expensive
to obtain, and it may not be possible in many cases.

2.5 Accelerating 3D Deep Learning with PyTorch3D [5]

Though [4] overcomes the limitation of fixed topology mentioned in [3], it has its limitation which is 3D supervision that
faces a huge trade-off between quality and resources. [5] manages to overcome this trade-off by implementing a similar system
under 2D supervision. According to [5] there could be different numerous 3D predictions for the same single 2D image. This is
because the machine fails to understand the side view of the object from an image from the single view image. [5] approaches
to use a 2-view training setup to predict the 3D shape. For every predicted 3D object there are two corresponding silhouette
images where the first image is a silhouette of the actual view from the input RGB image and the second is a silhouette with the
rotated view. These silhouettes are used as 2D supervision.

Initially, the 3D shape will be predicted from the single 2D RGB image. The rendered silhouette of this 3D shape will be
compared to the first ground truth silhouette image. Also, this 3D shape will be rotated by (R,t) and its rendered silhouette will
be compared with the second ground truth silhouette. While comparing both the silhouettes, losses are computed. Pytorch3D
have developed their own differential renderer which allows them to back-propagate through the network by calculating the
gradients concerning losses, predicted shape, camera coordinates, and silhouette. The further differential renderer can be used
for incorporating texture details. The training system architecture is shown in Fig -2.5.1.

Fig -2.5.1: Training System Architecture [5]

For the prediction of 3D shape, [5] have used Sphere FC, Sphere GCN, and Voxel GCN individually and compared the
outputs[3][4]. Sphere FC and Sphere GCN can only make predictions homeomorphic to spheres which is the limitation
mentioned in [3]. Voxel GCN can render any genus by topology refinement. The texture is well imposed with Voxel GCN because
of regularity in shape. For shading, flat, Phong and Gouraud are compared where flat gives the worst results. [5] have
experimented with meshes as well as point clouds. Point Align model method for point clouds is similar to that of mesh which is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1456

mentioned above. The Point Align model is similar to Sphere GCN. With the increase in resolution, the output is well polished.
All the above techniques are evaluated based on Champer loss.

With the use of the Pytorch3D library, developed by the authors of [5] there is remarkable speedup in training achieving
parallelism with CUDA. The inference system architecture is as shown in Fig -2.5.2.

Fig -2.5.2: Inference System Architecture[5]

The comparative study and their respective limitations of all surveyed techniques is mentioned in the Table -1.

3. COMPARATIVE OVERVIEW

Table -1: Comparative study of surveyed papers

Sr.
No.

Paper Title Data
structure

Technique/ algorithm Dataset Supervision Limitations

[1] Autosweep:
Recovering 3d
editable objects
from a single
photograph.

Not
mentioned

Mask -RCNN, DCN,
LeNet,
3-Sweep[6]

ShapeNet,
synthesized
data, SUN
primitive
dataset, self-
created

2D
supervision

Unable to handle
objects with spiral
axis, regions of
instances under
occlusion

[2] Learning
Efficient Point
Cloud
Generation for
Dense 3D
Object
Reconstruction

Point Cloud Image
encoder(convolution,
linear layers),
Structure
generator(linear,
deconvolution layers),
geometric reasoning,
Pseudo differential
renderer.

Pre-rendered
2D depth/mask
image pairs of
3D CAD model
from ShapeNet

2D
supervision
using 2D
projections of
3D CAD
models

Requires multiple
pre-rendered 2D
depth/mask images
of 3D models in
training which can
lead to erroneous
training if not
rendered correctly.

[3] Pixel2Mesh:
Generating 3D
Mesh Models
from Single RGB
Images

Mesh 2D- CNN,
Graph based ResNet(G-
Resnet), Graph
convolution(GCN),
vertical alignment

ShapeNet 3D
models

3D
supervision

Fails to construct
genus0
objects(holes),
requires fixed
topology.

[4] Mesh RCNN Mesh, Voxel Graph
convolution(GCN),
vertical alignment, ROI
alignment,
Mesh rcnn
(augmented Mask-
RCNN)

Pix3D,
ShapeNet.

3D
supervision

Requires 3D
supervision which is
expensive,cubify(vo
xelization) may be
computational
intensive with
increase in classes.

[5] Accelerating 3D
Deep Learning
with PyTorch3D

Mesh, Point
Cloud

Sphere GCN, Voxel GCN,
Sphere FC, silhouette
rendering, KNN.

ShapeNetCoreV
1 rendered 2D
images

2D
supervision

Requires 2-view
images while
training.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1457

4. CONCLUSION

Our paper presented a comparative and comprehensive study of various techniques of ‘Automated 2D Image to 3D Model
Construction’ that has discovered a wide range of available techniques and popular algorithms differing in their generalization,
accuracy, complexity, and usability. The comparative study is given in Table -1. Even if the 2D image to 3D Model conversion is
a new field, it is evolving rapidly, by the continuous development of new tools meant to simplify the techniques. Recently, the
Pytorch3D library brought in differential renderers for meshes and point clouds, data structures to handle meshes and point
clouds, and various other functionalities that will speed up the process and make the development of 3D reconstruction
techniques easier. This will allow researchers to develop more novel techniques and propose new algorithms that can feasibly
convert 2D images to 3D models. Through the comprehensive survey of all the algorithms and techniques given by the
mentioned papers, it is possible to build an accurate model that outputs the 3D model with decent accuracy in shape, color, and
texture details.

REFERENCES

[1] Xin, Chen, et al. "Autosweep: Recovering 3d editable objects from a single photograph." IEEE transactions on visualization
and computer graphics (2018).

[2] Lin, Chen-Hsuan, Chen Kong, and Simon Lucey. "Learning efficient point cloud generation for dense 3d object
reconstruction." arXiv preprint arXiv:1706.07036 (2017).

[3] Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the European
Conference on Computer Vision (ECCV). 2018.

[4] Gkioxari, Georgia, Jitendra Malik, and Justin Johnson. "Mesh r-cnn." Proceedings of the IEEE International Conference on
Computer Vision. 2019.

[5] Ravi, Nikhila, et al. "Accelerating 3d deep learning with pytorch3d." arXiv preprint arXiv:2007.08501 (2020).

[6] Chen, Tao, et al. "3-sweep: Extracting editable objects from a single photo." ACM Transactions on Graphics (TOG) 32.6
(2013): 1-10.

[7] Gezawa, Abubakar Sulaiman, et al. "A Review on Deep Learning Approaches for 3D Data Representations in Retrieval and
Classifications." IEEE Access 8 (2020): 57566-57593.

[8] Kato, Hiroharu, et al. "Differentiable rendering: A survey." arXiv preprint arXiv:2006.12057 (2020).

