
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1467

Design and Simulation of 32-Bit Floating Point Arithmetic Logic Unit

using VerilogHDL

Yagnesh Savaliya1, Jenish Rudani2

1Student, Dharmsinh Desai University (DDU), Nadiad, India
2Student, Dharmsinh Desai University (DDU), Nadiad, India

---***--

Abstract - Aim of the project is to design and simulation of
single precision floating point ALU which is a part of math
coprocessor. The main benefit of floating-point representation
is that it can support a much wider range of values rather
than fixed point and integer representation. Addition,
Subtraction, Multiplication and division are the arithmetic
operation in these computations. In this floating point unit,
input should be given in IEEE 754 format, which represents 32
bit single precision floating point values. Main application of
this arithmetic unit is in the math coprocessor which is
generally known as DSP processor. In this DSP processor, for
signal processing, value with high precision is required and as
it is an iterative process, calculation should be as fast as
possible. So a normal processor cannot fulfil the requirement
and floating point representation came into the picture which
can calculate this process very fast and accurately.

Keywords: Floating point, single precision, verilog, IEEE 754,
math coprocessor, ALU

1. INTRODUCTION

The floating point operations have found intensive
applications in the various fields for the requirements or
high precision operation due to its great dynamic range, high
precision and easy operation rules. With the increasing
requirements for the floating point operations for the high-
speed data signal processing and the scientific operation, the
requirements for the high-speed hardware floating point
arithmetic units have become more and more exigent. The
demand for floating point arithmetic operations in most of
the commercial, financial and internet based applications is
increasing day by day.[1] Floating point operations are hard
to implement on reconfigurable hardware i.e. on FPGAs
because of their algorithm’s complexity. While many
scientific problems require floating point arithmetic with
upper level of accuracy in their calculations. Therefore
verilog programming for IEEE single precision floating point
unit have been explored. In this project, we are going to build
a floating point arithmetic unit which is part of a math
coprocessor and generally known as DSP processor. All the
modules including Addition, Subtraction, Multiplication and
Division are written using Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language (Verilog
HDL) and then compilation and simulation is performed

using Altera QuartusII design software. This floating point
arithmetic unit performs general arithmetic tasks such as
addition, subtraction, multiplication and division. Which is
also capable for giving output in special cases such as add by
infinite, divide by zero etc. In this project, these four modules
are built separately, Then In one common module named
‘fpu’ all are combined together and we can perform specific
arithmetic operations with help of selection line.

The rest of the paper is organized as follows. Section 2
presents the general floating-point architecture. Section 3
explains the algorithms used to write Verilog codes for
implementing 32-bit floating-point arithmetic operations:
addition/subtraction, multiplication and division. The
Section 4 of the paper details the Verilog code and behavior
model for all above stated arithmetic operation. Section 5 of
the paper shows the experimental results While section 6
concludes the paper with further scope of work.

2. Floating Point Architecture

Floating point numbers are one possible way of representing
real numbers in binary format; the IEEE 754 standard
presents two different floating-point formats, Binary
interchange format and Decimal interchange format. This
paper focuses only on single precision normalized binary
interchange format. Figure 1 shows the IEEE 754 single
precision binary format representation; it consists of a one-
bit sign (S), an eight-bit exponent (E), and a twenty-three-bit
fraction (M) or Mantissa. [1]

32-bit Single Precision Floating Point Numbers IEEE
standard are stored as:

 S EEEEEEEE

 MMMMMMMMMMMMMMMMMMMMMM

o S: Sign – 1 bit

o E: Exponent – 8 bits

o M: Mantissa – 23 bits Fraction

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1468

Fig -1: IEEE Floating Number Format

If E=255 and Significand is nonzero, then number is known
as "Not a Number"(NaN)

If E=255 and Significand is zero and S is 1, then number is -
Infinity (-∞)

If E=255 and F Significand is zero and S is 1, then number is
Infinity (∞)

N = ;Where Bias=127

An extra bit is added to the mantissa to form what is called
the significand. If the exponent is greater than 0 and smaller
than 255, and there is 1 in the MSB of the significand then
the number is said to be a normalized number.

3. Algorithm for Floating Point Arithmetic Unit

The algorithms using flow charts for floating point
addition/subtraction, multiplication and division have been
described in this section, that become the base for writing
Verilog codes for implementation of 32-bit floating point
arithmetic unit. Algorithm of each unit is shown below:

3.1 ADDER/SUBTRACTOR

The algorithm for floating point addition is explained
through the flow chart in Figure 2. While adding the two
floating point numbers, two cases may arise. [4] Case I: when
both the numbers are of the same sign i.e. when both the
numbers are either +ve or –ve. In this case MSB of both the
numbers are either 1 or 0. Case II: when both the numbers
are of different sign i.e. when one number is +ve and other
number is –ve. In this case MSB of one number is 1 and the
other is 0. [3]

3.1.1 When both numbers are of same sign

Step 1: - Enter two numbers N1 and N2. E1, S1 and E1, S2
represent exponent and significand of N1 and N2
respectively.

Step 2: - Is E1 or E2 =‟0‟. If yes; set hidden bit of N1 or N2 is
zero. If not; then check if E2 > E1, if yes swap N1 and N2 and
if E1 > E2; contents of N1 and N2 need not to be swapped.

Step 3: - Calculate difference in exponents d=E1-E2. If d = „0‟
then there is no need of shifting the significand. If d is more
than „0‟ say „y‟ then shift S2 to the right by an amount „y‟

and fill the left most bits by zero. Shifting is done with a
hidden bit.

Step 4: - Amount of shifting i.e. „y‟ is added to the exponent
of N2 value. New exponent value of E2= (previous E2) + „y‟.
Now the result is in normalize form because E1 = E2.

Step 5: - Check if N1 and N2 have different sign, if “no”;

Step 6: - Add the significands of 24 bits each including
hidden bit S=S1+S2.

Step 7: - Check if there is carry out in significand addition. If
yes; then add „1‟ to the exponent value of either E1 or new
E2. After addition, shift the overall result of significand
addition to the right by one by making MSB of S as „1‟ and
dropping LSB of significand.

Step 8: - If there is no carry out in step 6, then the previous
exponent is the real exponent.

Step 9: - Sign of the result i.e. MSB = MSB of either N1 or N2.

Step 10: - Assemble result into 32-bit format excluding 24th
bit of significand i.e. hidden bit.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1469

Fig -2: Flow chart of Floating-point Addition/Subtraction

3.1.2 When both numbers are of different sign

Step 1, 2, 3 & 4 are the same as done in case I.

Step 5: - Check if N1 and N2 have different sign, if “Yes”;

Step 6: - Take 2‟s complement of S2 and then add it to S1 i.e.
S=S1+ (2‟s complement of S2).

Step 7: - Check if there is carry out in significand addition. If
yes; then discard the carry and also shift the result to the left
until there is „1‟ in MSB and also count the amount of
shifting say “z”.

Step 8: - Subtract “z” from exponent value either from E1 or
E2. Now the original exponent is E1-” z”. Also append the “z”
number of zeros at LSB.

Step 9: - If there is no carry out in step 6 then MSB must be
“1” and in this case simply replace “S” by 2’s complement.

Step 10: - Sign of the result i.e. MSB = Sign of the larger
number either MSB of N1or it can be MSB of N2.

Step 11: - Assemble result into 32-bit format excluding 24th
bit of significand i.e. hidden bit.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1470

3.2 MULTIPLIER

The algorithm for floating point multiplication is explained
through the flow chart in Figure 3. Let N1 and N2 are
normalized operands represented by S1, M1, E1 and S2, M2,
E2 as their respective sign bit, mantissa (significand) and
exponent. Basically, the following four steps are used for
floating point multiplication.

1. Multiply significands, add exponents, and determine sign

M = M1*M2

E = E1+E2-Bias

S = S1 XOR S2

2. Normalize Mantissa M (Shift left or right by 1) and update
exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values for overflow
and underflow.

Sign Bit Calculation: The result of multiplication is a negative
sign if one of the multiplied numbers is of a negative value
and that can be obtained by XORing the sign of two inputs.
Exponent Addition is done through unsigned adder for
adding the exponent of the first input to the exponent of the
second input and after that subtract the Bias (127) from the
addition result (i.e. E1+E2-Bias). The result of this stage can
be called an intermediate exponent.

Significand Multiplication is done for multiplying the
unsigned significand and placing the decimal point in the
multiplication product. The result of significand
multiplication can be called as intermediate product (IP).
The unsigned significand multiplication is done on 24 bits.

Fig - 3: Flow chart of Floating point Multiplication

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1471

The result of the significand multiplication (intermediate
product) must be normalized to have a leading “1” just to the
left of the decimal point (i.e. in the bit 46 in the intermediate
product). Since the inputs are normalized numbers then the
intermediate product has the leading one at bit 46 or 47. If
the leading one is at bit 46 (i.e. to the left of the decimal
point) then the intermediate product is already a normalized
number and no shift is needed. If the leading one is at bit 47
then the intermediate product is shifted to the right and the
exponent is incremented by 1. Overflow/underflow means
that the result’s exponent is too large/small to be
represented in the exponent field. The exponent of the result
must be 8 bits in size, and must be between 1 and 254
otherwise the value is not a normalized one. An overflow
may occur while adding the two exponents or during
normalization. Overflow due to exponent addition can be
compensated during subtraction of the bias; resulting in a
normal output value (normal operation). An underflow may
occur while subtracting the bias to form the intermediate
exponent. If the intermediate exponent < 0 then it is an
underflow that can never be compensated; if the
intermediate exponent = 0 then it is an underflow that may
be compensated during normalization by adding 1 to it.
When an overflow occurs an overflow flag signal goes high
and the result turns to ±Infinity (sign determined according
to the sign of the floating-point multiplier inputs). When an
underflow occurs an underflow flag signal goes high and the
result turns to ±Zero (sign determined according to the sign
of the floating-point multiplier inputs). [5]

3.3 DIVIDER

The algorithm for floating point multiplication is explained
through the flow chart in Figure 4. Let N1 and N2 are
normalized operands represented by S1, M1, E1 and S2, M2,
E2 as their respective sign bit, mantissa (significand) and
exponent. If let us say we consider x=N1 and d=N2 and the
final result q has been taken as “x/d”. Again, the following
four steps are used for floating point division.

1. Divide significands, subtract exponents, and determine
sign

M=M1/M2

E=E1-E2

S=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1) and update
exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values

Fig - 4: Flow Chart for floating point Division (q = x/d; N1=x and N2=d)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1472

4. EXPERIMENTAL RESULTS

4.1 RTL View

Fig - 5: RTL View

4.2 Output waveforms

Fig -6: Simulation result of addition of 2 and 3 in floating point format

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1473

Fig -7: Simulation result of subtraction of 2 and 3 in floating point format

Fig -8: Simulation result of multiplication of 2 and 3 in floating point format

Fig - 9: Simulation result of division of 2 and 3 in floating point format

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1474

Table - 1: Tabular Result

5. Conclusion and Future Scope of Work

This project presents an implementation of an efficient 32-
bit floating-point arithmetic unit using Verilog with aim of
analyzing the problem during implementation and
understanding the way to overcome the problem in order to
enhance the system performance.

To perform any arithmetic operation, users have the
knowledge about floating point representation as per IEEE
754 standard to provide input to the FPU. So, for future
work, we can make one converter which can convert the
decimal number into the IEEE 754 format and give these
values as the input of FPU. After performing the operation,
FPU gives the output in terms of IEEE 754 format. So, one
converter can convert this format into decimal
representation and give the output as a decimal number
system. So, the users who are not aware about IEEE 754
format can also use this arithmetic unit.

6. References

[1] Reshma Cherian#, Nisha Thomas*, Y.Shyju#
“Implementation of Binary to Floating Point Converter using
HDL”pp. 461-64,©2013 IEEE

[2] Sunita.S.Malaj, S.B.Patil, Bhagappa.R.Umarane, "VHDL
Implementation of Interval Arithmetic Algorithms for Single
Precision Floating Point Numbers” International Journal of
Scientific & Engineering Research Volume 4, Issue3, March-
2013.

[3] "Design and Implementation of IEEE-754 Addition and
Subtraction for Floating Point Arithmetic Logic Unit",V.vinay
chamkur

[4] Preeti Sudha Gollamudi, M. Kamaraju, “ Design of High
performance IEEE-754 single precision (32 bit) floating
point adder using VHDL. IJERT, Vol.2 Issue 7, pp. 2264-75,
July-2013.

[5] Guillermo Marcus, Patricia Hinojosa, Alfonso Avila and
Juan Nolazco-Flores “A Fully Synthesizable Single-
Precision,Floating Point Adder/Substractor and Multiplier in
VHDL for General and Educational Use,” Proceedings of the

Fifth IEEE International Caracas Conference on Devices,
Circuits and Systems, Dominican Republic, Nov.3-5, 2004.

