
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 151

Improving Software Quality by Developing Redundant Components

Onuora, Augustine Chidiebere1, Ana, Prince2, Nwanhele, U. N.3, Idemudia, Osahon Joseph4

1, 4Department of Computer Science, Akanu Ibiam Federal Polytechnic Unwana
2Department of Computer Science, Cross River University of Technology Calabar

 3Department of Office Technology and Management, Akanu Ibiam Federal Polytechnic Unwana
---***--
Abstract - Software systems have become pervasive in
everyday life and are the core component of many crucial
activities. A software system is redundant when it performs the
same functionality through the execution of different elements.
An inadequate level of reliability may determine the
commercial failure of a software product. Nevertheless,
despite the commitment and the rigorous verification
processes employed by developers, software is deployed with
faults. To increase the reliability of software systems,
Programmers and software developers need to embrace some
of the redundancy techniques highlighted in this study. This
study x-rayed previous works with the aim of getting best
practices that will help in improving the quality of software. It
further reviewed literatures on the subject and highlighted
various fault tolerance taxonomy that can help a software
developer or programmer in developing redundant
components thereby increasing the reliability of a software
system with improved overall quality.

Key Words: Software quality, Reliability, Fault-
tolerance, Redundancy, Diversity

1. INTRODUCTION

Recently the world was agog with the recent Boeing 737 Max
jets en route to Nairobi, crashed shortly after take-off from
Addis Ababa. It has been confirmed that 157 passengers on
board all lost their lives. This tragedy was as a result of an
error in the Boeing aircraft’s flight-control software (AJC,
2019).

Numerous softwares all over the world today have one type
of error or the other. The consequences of this errors ranges
from financial loss, communication loss to even the loss of
human life as the case of the Boeing 737 Max aircraft. It is the
duty of software developers and programmers to design
softwares that are fail-safe. Software generally should be
developed with the best software engineering practice. Error
should be eliminated from not only critical software but
softwares at all levels, be it the operating system on mobile
phones, Televisions, Pcs or embedded software on electronic
gadgets.

Software errors lead to software failures. A software failure
is not healthy for the computing world. Softwares should be
developed with all correctness and made fail-safe. Mission
critical software doesn’t need to fail because whatever that
can cause error in the software can bring about a disastrous
output. If we consider a rocket launch software that was

developed with a fault, the outcome of the rocket launch
could be disastrous. Similarly, assuming road traffic software
has fault and was implemented on a road, the number of cars
and people that will be accident casualties might be high.

Software errors are always directly caused by either the
programmers or program developer that left those errors in
the code. As humans they have a large probability of doing
something wrong.

There is usually an industry standard or framework to
stipulate how softwares especially mission critical software
can be developed. The challenge is that there are few trained
software developers and programmers that are aware of this
industry standard. One of the industry standards to solving
the issue of failing softwares is the development of
redundancy components.

2. REVIEW OF RELATED LITERATURES

This section reviewed related work done on software
redundancy, redundant component and diversity.

Antonio Carzaniga, Andrea Mattavelli, and Mauro Pezzè.
(2015) stated in their work that Redundancy simply is the
occurrence of different elements with the same functionality.
In software, redundancy is useful (and used) in many ways,
for example for fault tolerance and reliability engineering,
and in self-adaptive and self-checking programs. Airplane
softwares should be fault tolerant. They should also be self-
adaptive and self-checking. This is an area of utmost concern
because this could be a reason the Boeing 737 Max of the
Ethiopian airline crashed. Software developers and
programmers should indeed find a way to determine that
critical softwares are fail-safe through redundancy.

Antonio Carzaniga, Andrea Mattavelli, and Mauro Pezzè.
(2015) further opined that, we still do not know how to
measure software redundancy to support a proper and
effective design. If, for instance, the goal is to improve
reliability (software quality), one might want to measure the
redundancy of a solution to then estimate the reliability
gained with that solution. Or one might compare alternative
solutions to choose the one that expresses more redundancy
and therefore, presumably, more reliability. This can be
actualized through formalizing a notion of redundancy
whereby two code fragments are considered redundant when
they achieve the same functionality with different executions.
On the basis of this notion, Programmers and software
developers working with Boeing are counselled to adapt to
the software engineering principles of redundancy where
various versions of code fragments are written to solve a task.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 152

Mark vandenBrand and Jan Friso Groote (2013) stressed that
Software engineers are humans and so they make lots of
mistakes. Typically 1 out of 10 to 100 tasks go wrong. The
only way to avoid these mistakes is to introduce redundancy
in the software engineering process. However, one cannot say
that mission critical softwares will not be developed because
of the imminent error that is expected instead, programmers
and software developers should consciously follow laydown
industrial software engineering practices. Software
redundant components are part of software engineering best
practices to improve software quality and make a software
fail-safe.

They went ahead to propose that depending on the required
level of correctness, expressed in a residual error probability
(typically 10); each programming task must be carried out
redundantly 4 to 8 times. This number is hardly influenced by
the size of a programming endeavour. Trained software
engineers require a double amount of redundant tasks to
deliver software of a desired quality. More compact
programming, for instance by using domain specific
languages, only reduces the number of redundant tasks by a
small constant. (Mark vandenBrand and Jan Friso Groote,
2013).

According to National Research Council (2015), Redundancy
exists when one or more of the parts of a system can fail and
the system can still function with the parts that remain
operational. Two common types of redundancy are active and
standby.

In active redundancy, all of a system’s parts are energized
during the operation of a system. In active redundancy, the
parts will consume life at the same rate as the individual
components. An active redundant system is a standard
“parallel” system, which only fails when all components have
failed.

In standby redundancy, some parts are not energized during
the operation of the system; they get switched on only when
there are failures in the active parts. In a system with standby
redundancy, ideally the parts will last longer than the parts in
a system with active redundancy. A standby system consists
of an active unit or subsystem and one or more inactive units,
which become active in the event of a failure of the
functioning unit. The failures of active units are signalled by a
sensing subsystem, and the standby unit is brought to action
by a switching subsystem.

There are three conceptual types of standby redundancy:
cold, warm, and hot. In cold standby, the secondary part(s) is
completely shut down until needed. This type of redundancy
lowers the number of hours that the part is active and does
not consume any useful life, but the transient stresses on the
part(s) during switching may be high. This transient stress
can cause faster consumption of life during switching. In
warm standby, the secondary part(s) is usually active but is
idling or unloaded. In hot standby, the secondary part(s)
forms an active parallel system. The life of the hot standby
part(s) is consumed at the same rate as active parts.
Redundancy can often be addressed at various levels of the
system architecture.

For a software to be fault tolerant, there are various
techniques that can be employed. Omar Anwer Abdul,
HameedIsraa Abdulameer Resen and Saif A Abd (2019)
advocated that there are two types of software fault tolerance
techniques namely single version and multi version.

 Single version techniques aim to improve the fault
tolerance of a software component by adding to it
mechanisms for fault detection, containment, and
recovery.

 Multi-version techniques use redundant software
components which are developed following design
diversity rules. As in the hardware case, various choices
have to be examined to determine at which level the
redundancy has to be provided and which modules are to
be made redundant.

One has to be aware that the increase in complexity caused
by redundancy can be quite severe and may diminish the
dependability improvement, unless redundant resources are
allocated in a proper way. This could be a major setback to
producing quality software for mission critical situations like
that of an aircraft or rocket launcher. When redundancy is
adopted, software engineers should be very mindful of the
complexity of the system.

Mark vandenBrand and Jan Friso Groote (2013) remarked
that Redundancy is obtained through the independent
development of components with the same functional
behaviour. In its most extreme form two independent groups
develop components that can be executed in parallel. These
components need not be programmed in the same language.
A variant is the development of a (executable) model, which
can be used for prototyping, testing or code generation. If the
model is machine-processable, it can be used for simulation
and/or model checking.

Thus, for a software developer or programmer to employ
redundancy in the software design process, he should be
programmer with the skill of developing in more than one
programming language. Often times, it is better to allow a
different programmer or software developing firm handle the
redundant component in a different language aimed at
achieving the same result with the goal of removing as many
of the flaws that will be inherent in each description.

They further opined that that several forms of redundancy
are already present in actual programming, such as type
checking and testing. However, these forms of redundancy
came about as good practices, not conscious ways to
introduce redundancy with a view to attaining a certain level
of software quality. Active redundancy can be brought into
the software design process through the introduction of high
level models of the software, for instance, in the form of
domain specific languages, property languages such as modal
logics to independently state properties, independently (and
perhaps multiple) constructed implementations, and a priori
described test cases. The comparison of these different views
can be done by model checking (software or models against
properties), model based testing (model against
implementation), and systematic testing (tests against model
or software). Code inspection and acceptance tests are also
fruitful, but lack the rigour of comparison that the more

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 153

mathematical methods have. (Mark vandenBrand and Jan
Friso Groote, 2013).

3. REDUNDANCY AND DIVERSITY

Redundancy and diversity are fundamental strategies for
enhancing the dependability of any type of system.
Redundancy means that spare capacity is included in a
system that can be used if part of that system fails. Diversity
means that redundant components of the system are of
different types, thus increasing the chances that they will not
fail in exactly the same way. (Sommerville, 2011).

We use redundancy and diversity to enhance dependability in
our everyday lives. As an example of redundancy, most
people keep spare light bulbs in their homes so that they can
quickly recover from the failure of a light bulb that is in use.
Commonly, to secure our homes we use more than one lock
(redundancy) and, usually, the locks used are of different
types (diversity). This means that if an intruder finds a way to
defeat one of the locks, they have to find a different way of
defeating the other lock before they can gain entry. As a
matter of routine, we should all back up our computers and
so maintain redundant copies of our data. To avoid problems
with disk failure, backups should be kept on a separate,
diverse, external device.

Software systems that are designed for dependability may
include redundant components that provide the same
functionality as other system components. These are
switched into the system if the primary component fails. If
these redundant components are diverse (i.e., not the same as
other components), a common fault in replicated components
will not result in a system failure. Redundancy may also be
provided by including additional checking code, which is not
strictly necessary for the system to function. This code can
detect some kinds of faults before they cause failures. It can
invoke recovery mechanisms to ensure that the system
continues to operate.

In systems for which availability is a critical requirement,
redundant servers are normally used. These automatically
come into operation if a designated server fails.

Sometimes, to ensure that attacks on the system cannot
exploit a common vulnerability; these servers may be of
different types and may run different operating systems.
Using different operating systems is one example of software
diversity and redundancy, where comparable functionality is
provided in different ways.

Diversity and redundancy may also be also used to achieve
dependable processes by ensuring that process activities,
such as software validation, do not rely on a single process or
method. This improves software dependability because it
reduces the chances of process failure, where human errors
made during the software development process lead to
software errors. For example, validation activities may
include program testing, manual program inspections and
static analysis as fault-finding techniques. These are
complementary techniques in that any one technique might
find faults that are missed by the other methods.
Furthermore, different team members may be responsible for

the same process activity e.g., a program inspection.
(Sommerville, 2011).

4. METHODOLOGY / FINDINGS

4.1 Methodology

Several works that was done on the subject of software
redundancy was x-rayed with a view to fish out ways to
improve software quality through redundant components.
This previous works was thoroughly examined and the
researchers came up with the findings below.

4.2 Findings

The table below highlights the various techniques for
improving software quality through redundancy.

Reviewed Papers
S/No Year Authors / (Title

of Journal)
Proposed Solutions

1 201
3

Markvan den
Brand and Jan
FrisoGroote
(Software
engineering:
Redundancy is
key)

1. Reduce the number
of tasks when
programming.

2. Train the software
engineers.

3. Introduction of
redundancy when
developing software.

4. Programming
languages that
facilitate statistical
analysis of the
developed programs

5. Reviewing & Testing
6. Formalisation of

requirements Re-use
7. Specification of

interfaces
8. Adherence to

architectural rules
2 201

5
The National
Academies Press
(Reliability
Growth:
Enhancing
Defense System
Reliability)

1. Iintegrity tests
2. virtual qualification
3. Reliability testing

3 201
5

Antonio
Carzaniga,
Alessandra Gorla
and Mauro Pezz`e
(Handling
Software Faults
with
Redundancy)

1. Intention: (deliberate
2. Types: (Code, data

and Environment)
3. Triggers and

adjudicators:
(preventive and
reactive)

4. Faults addressed by
redundancy:
(interaction and
Development)

Table 1: Table showing solutions from reviewed papers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 154

Antonio Carzaniga, Alessandra Gorla, and Mauro Pezze
(2015) further classified the various fault tolerance
techniques used to improve software quality through
redundancy in the table below.

Taxonomy Intention Type Adjudicator Faults

N-version
programming

deliberate Code Reactive
implicit

development

Recovery
blocks

deliberate Code Reactive
explicit

development

Self-checking
programming

deliberate Code Reactive
Explicit /
implicit.

development

Self-optimizing
code

deliberate Code Reactive
explicit

development

Exception
handling, rule

engines

deliberate Code reactive
explicit

development

Wrappers

deliberate Code preventive Bohrbugs
malicious

Robust data
structures,

audits

deliberate Data reactive
implicit

development

Data diversity

deliberate Data Reactive
Explicit /
implicit.

development

Data diversity
for security

deliberate Data reactive
implicit

malicious

Rejuvenation deliberate enviro
nment

preventive Heisenbugs

Environment
perturbation

deliberate enviro
nment

reactive
explicit

development

Process replicas

deliberate enviro
nment

reactive
implicit

malicious

Dynamic
service

substitution

opportunis
tic

Code reactive
explicit

development

Fault fixing,
genetic

programming

opportunis
tic

Code reactive
explicit

Bohrbugs

Automatic
workarounds

opportunis
tic

Code reactive
explicit

development

Checkpoint-
recovery

opportunis
tic

enviro
nment

reactive
explicit

Heisenbugs

Reboot and
micro-reboot

opportunis
tic

enviro
nment

reactive
explicit

Heisenbugs

Table 2: Table showing taxonomy of redundancy

5. CONCLUSIONS

The place of redundant components in developing software
cannot be overemphasized. This is not for only mission

critical softwares like that of the Boeing 737 Max, Rocket
launcher software but for day to day utility software.
Redundancy is the presence of different elements with the
same functionality. In software development, redundancy is
applied in fault tolerance, reliability engineering, self-
adaptive and self-checking software programs.

Software Developers and Programmer should be trained on
the importance of using redundant software component in
improving software quality and making the software product
a fail-safe product. Whenever an error occur on a software
component, (which is probable to occur), the outcome should
not be disastrous as in the case of mission critical system or
stop production as in day to day utility software. Software
should be built to switch to redundant components which
these components are designed with high fault tolerance
techniques as highlighted from reviewed techniques above.
Softwares should be fault tolerant and self-healing to reduce
the runtime effects of faults during software execution, to
guarantee software reliability also in the presence of faults..

ACKNOWLEDGEMENT

I will like to acknowledge Dr. Edim A. E. who took time to
pilot us in the “Software Engineering”. He is an Associate
Professor at the Department of Computer Science, University
of Calabar.

REFERENCES

[1] Antonio C., Andrea M., and Mauro P. (2015). Measuring

software redundancy. In Proceedings of the 37th
International Conference on Software Engineering -
Volume 1 (ICSE '15), Vol. 1. IEEE Press, Piscataway, NJ,
USA, 156-166.

[2] AJC. (2019, March 15). Ethiopian Airlines crash: Captain
reported issues shortly after takeoff. Retrieved from
https://www.ajc.com/news/national/ethiopian-
airlines-flight-nairobi-crashes-with-157-people-
board/PJsqjNZbGr7DBtVDrxlV2N/

[3] Kunz, P. (2014, September 24). Redundancy in the
Software Design Process is Essential for Designing
Correct Software. Retrieved from https://ercim-
news.ercim.eu/en99/special/ redundancy-in-the-
software-design-process-is-essential-for-designing-
correct-softwareK. Elissa, “Title of paper if known,”
unpublished.

[4] National Research Council. (2015). 5 System Design for
Reliability | Reliability Growth: Enhancing Defense
System Reliability. Washington, DC: The National
Academies Press. https://doi.org/10.17226/18987.

[5] Omar, A. A., Israa, A. R., & Saif, A. A. (2019). Software
Fault Tolerance: A Theoretical Overview. International
Journal of Simulation: Systems, Science & Technology,
20(3). doi:10.5013/IJSSST.a.20.03.07

[6] Sommerville, I. (2011). Dependability engineering. In
Software Engineering (9th ed., p. 767). New York, NY:
Pearson Higher Ed.

[7] The National Academies Press. (2015). 5 System Design
for Reliability | Reliability Growth: Enhancing Defense
System Reliability. Retrieved from
https://www.nap.edu/read/ 18987/chapter/7#79

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 155

[8] Van den Brand, M. G., & Groote, J. F. (2014). Redundancy
on the software design process is essential for designing
correct software. Retrieved from
https://pure.tue.nl/ws/files/3952807/3549575973775
0.pdf

[9] Van den Brand, M., & Groote, J. F. (2015). Software
engineering: Redundancy is key. Science of Computer
Programming, 97, 75-81. doi:10.1016/j.scico.
2013.11.020

BIOGRAPHIES

Onuora, Augustine Chidiebere is
currently a lecturer with the
Department of Computer Science,
AIFPU.

Ana Prince is a Lecturer with the
Department of Computer Science,
Cross-River State University of
Technology (CRUTECH).

Noble Nwanhele is currently a
technologist with the Department
of Office Technology and
Management, AIFPU.

Joseph Osahon Idemudia is
currently a lecturer with the
department of Computer science,
AIFPU.

