RESTRAINED LICT DOMINATION IN JUMP GRPHS

N. Patap Babu Rao
Department of Mathematics S.G. College, Koopal(Karnataka) INDIA

 a vertex in D_{r} as well as vertices in $V[n(J(G))]$ - D_{r}.

The restrained domination of lict jump graph $n(J(G))$ denoted by $V_{m}(J(G))$ is the minimum cardinality of a retrained dominating set of $n(J(G))$. In this paper we study its exact values for some standard graphs we obtain. Also it relation with other parameters is investigated.

Subject Classification: AMS-05C69, 05C70.
Keywords: Lict graph/line graph/Restrained domination/Dominating set/Edge domination

1. INTRODUCTION:

In this paper, all the graphs considered here are simple finite, nontrivial and connected. As usual p and q denotes the number of vertices and edges of a jump graph $J(G)$. In this paper for any undefined terms or notations can be found in Harary [4]

As usual, the maximum degree of vertices I J(G)is denoted by $\Delta(J(G))$.
The degree of an edge e=uv of $J(G)$ is defined as ege $=$ degu + degv -2 and $\delta^{\prime}(J(G))$
($\Delta^{\prime} J(G)$) is he Minimum(maximum) degree among the edges of $J(G)$.

For any real number, $x \Gamma_{\Gamma}{ }_{\eta}$ denotes the smallest integer not less than x and $\left.L_{x}\right\lrcorner$ denotes the greatest integer not greater thn x. The complement $J(\bar{G})$ of a jump graph $J(G)$ has V as its vertex set, but two vertices are adjacent in $J(\bar{G})$ is they are non adjacent in J(G)..

A vertex (edge) cover it graph $J(G)$ is a set of vertices that cover all the edges (vertices) of $J(G)$. The vertex(edge) covering number $\left.\alpha_{0}(J G)\right)\left(\alpha_{1}(J(G))\right.$) is a minimum cardinality of a vertex (edge) cover in $\beta_{0}(J(G))\left(\beta_{1}(J(G))\right.$) is the maximum cardinality of independent se of vertices (edges) in J(G).

The greatest distance between any two vertices of a connected graph $J(G)$ is called the diameter of $J(G)$ and is denoted by diam (J(G)).

We begin by recalling some standard definition from domination theory.
A set D of a graph $G=(V, E)$ is dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\sqrt{ }(G)$ of graph G is the minimum cardinality of a minimal dominating set in G. The study of domination in graph was begun by Ore[7] and Berge[1].

A set $D \subseteq V(L(G))$ is dominating set of $L(G)$ I every vertex not in D is adjacent to a vertex in D. The domination number of $L(G)$ is denoted by $\sqrt{ }(L(G))$ is the minimum cardinality of dominating set in $L(G)$.

A set F of edges in a graph G is called an edge dominating set of G. if every edge in $E-F$ where E is the set of G if every edge in G is adjacent to at least one edge in F.
The edge domination number $\sqrt{\prime}(G)$ of a graph G is the minimum cardinality of an edge dominating set of G.

The concept of edge domination number in graph were studied by Gupta[3]and S.Mitchell and S.T. Hedetineim[6]

A Set D of graph $J(G)=(V, E)$ is a dominating set every vertex in $V(J(G))-D$ is adjacent to some vertex in D. The domination number $\sqrt{ }(J(G))$ of $J(G)$ is the minimum cardinality of a minimal dominating set in $J(G)$.

Analogously we define restraind domination in lict graph as follows;
A dominating set D_{r} of lict graph is a restrained dominating set if every vertex not in D_{r} and adjacent in D_{r} and to a vertex in V - D_{r}. The restrained domination number of lict graph $n(G)$ denotd by $V_{m}(G)$. Is the minimum cardinality of a restrained dominating set of $n(G)$. The concept of restrained domination in graph was introduced by Domke et.al[2].

A dominating set D_{r} of lict jump graph is a restrained dominating set. I every vertex not in $D r$ is adjacent in D and to a vertex in $V(J(G))-D_{r}$. The restrained domination number of lict jump graph $n(J(G))$ denoted by $V_{m}(J(G))$) is the minimum cardinality of a restrained dominating set of $n(J(G))$.

In this paper many bounds on $\sqrt{m}^{\mathrm{m}}(\mathrm{J}(\mathrm{G}))$ are obtained and expressed in terms vertices, edges of $\mathrm{J}(\mathrm{G})$, but not the elements of $n(J(G))$ and express the results with other different domination parameter of $J(G)$.

2. Results;

We need the following Theorems to establish our further results.
Theore A[5]:For any connected (p, q)graph G

Theorem B[5] if G is a graph with no isolated vertex then $\sqrt{\prime}^{\prime}(G)\left(\leq q-\Delta^{\prime}(G)\right.$.
Initially we begin with restrained domination number of Lict jump graph of some standard graphs which are straight forward in the following theorem.

Theorem 1.

i) For any cycle C_{n} with $\mathrm{n} \geq 3$ vertices

$$
V_{\mathrm{m}}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}-2^{\left\lfloor\frac{n}{3}\right\rfloor}
$$

ii) For any path p_{n} with $n>2$ vertices $V_{m}\left(J\left(P_{2 n-1}\right)\right)=k$ $\sqrt{m}^{\mathrm{m}}\left(\mathrm{J}\left(\mathrm{P}_{2 \mathrm{n}}\right)=\mathrm{k}\right.$ when $\mathrm{n}=2,3,4.5 \ldots$. then $\mathrm{k}=1,2,3,4, \ldots \ldots$.
iii) For any star $K_{1, p}$ where $p \geq 2$ vertices $\sqrt{m}\left(J\left(K_{1, p}\right)\right)=1$
iv) For any wheel W_{p} with $p \geq 4$ vertices $\left.\sqrt{m}\left(J\left(W_{p}\right)\right)=1+\Gamma \frac{p-3}{3}\right\urcorner$
v) For any complete graph K_{p} with $\mathrm{p} \geq 3$ vertices $\sqrt{m}\left(\left(\mathrm{~K}_{\mathrm{p}}\right)\right)=\left\lfloor\frac{p}{2}\right\rfloor$

In the following theorem we etblish the upper bound for $\sqrt{m}^{m}(J(T))$ in terms of vertices of the $J(G)$
Theorem 2: For any tree T with $p>2$ vertices m end vertices $V_{m}(J(T)) \leq p-m$. Equality holds if $T=K_{1, p}$ with $p \geq 2$ vertices .
Proof: If $\operatorname{diam}(J(G)) \leq 3$, then the result is obvious, Let diam $(J(T))>3$ and $V_{1}=\left\{V_{1}, V_{2}, V_{3} \ldots \ldots V_{p}\right\}$ be set of all end vertices of $J(T)$ where $v_{1}==m$ Further $E=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots{ }_{q}\right\} C=\left\{c_{1}, c_{2+}, C_{3}, \ldots c_{i}\right\}$ be the set of edges and cut vertices in $J(G)$. In $N(J(G)), V(n(J(G))=E(J(G)) U$ $C(J(G))$ and in $J(G) . \forall e_{i}$ incident with $c_{i} 1 \leq j \leq I$ forms a complete induced subgraph as a block in $n(J(G))$ such that the number of blocks in $n(J(G))=|C|$. Let $\left\{e_{1}, e_{2}, e_{3}=\ldots \ldots \ldots . . e_{j}\right\}$ in $n(J(G))$. Let $C_{1}{ }^{\prime} \leq C^{\prime}$ be a restrained dominating set in $n(J(G))$ such that $\left|C^{\prime}\right| \leq \sqrt{m}(J(G))$ for any non trivialtree $p>q$ and $\left|C^{\prime \prime}\right| \leq p-m$ which gives $\sqrt{m}(J(T)) \leq p-m$ which gives $\sqrt{m}(J(T)) \leq p-m$.
Further equality hods if $T=K_{1, p}$ then $n\left(J\left(K_{1, p}\right)\right)=K_{p+1}$ and $V_{m}\left(J\left(K_{1, p}\right)\right)=p-m$.
The following corollaries are immediate from the above theorem.
Corollary 1; for any connected (p, q)jump gaph J(G)
$\sqrt{m}^{\mathrm{m}}(\mathrm{J}(\mathrm{G}))+\sqrt{ }\left(\mathrm{J}(\mathrm{G}) \leq \alpha_{0}(\mathrm{~J}(\mathrm{G}))+\beta_{0}(\mathrm{~J}(\mathrm{G}))\right.$. Equality holds if $\mathrm{J}(\mathrm{G})$ is isomorphic toJ $\left(\mathrm{C}_{3}\right)$ or $\mathrm{J}\left(\mathrm{C}_{5}\right)$.

Corollary 2; For any connected (p, q) jump graph J(G)
$\sqrt{m}(\mathrm{~J}(\mathrm{G}))+\sqrt{ }\left(\mathrm{J}(\mathrm{G}) \leq \alpha_{1}(\mathrm{~J}(\mathrm{G}))+\beta_{1}(\mathrm{~J}(\mathrm{G}))\right.$ equality holds if $\mathrm{J}(\mathrm{G})$ is isomorphic to $\mathrm{J}\left(\mathrm{C}_{3}\right)$ of $\mathrm{J}\left(\mathrm{C}_{5}\right)$
Theorem 3 .; For any connected (P,q) jmp graph $J(G)$ with $p>2$ vertices $\left.\sqrt{m}(J(G)) \leq \Gamma \frac{p}{2}\right\urcorner$, equality holds if $J(G)$ is $J\left(C_{4}\right)$ or $J\left(C_{5}\right)$ or $J\left(C_{8}\right)$ or K_{p} if p is even.

Proof:Let $E=\left\{e_{1}, e_{2} e_{3}, \ldots \ldots \ldots . e_{p}\right\}$ be the edge set of $J(G)$ such that $\left.V[n 9 J(G))\right]=E(J(G)) \cup C(J(G))$ by definition of lict jump graphwhere $C(J(G))$ is the set of cutvertices in $J(G)$. Let $D_{r}=\left\{V_{1}, V_{2}, \ldots \ldots V_{n}\right\} \subseteq V[n(G)]$ be the rstrained dominatingset of $n(G)$. Suppose if $\mid V\left[n(G)-D_{r} \mid \geq 2\right.$, then $\left\{V\left[n(G)-D_{r}\right\}\right.$ contains atleast two vertices which gives $\left.V_{\mathrm{m}}(\mathrm{G})<\frac{p}{2} \leq \Gamma \frac{p}{2}\right\urcorner$
For the quality, i) If $J(G)$ is isomorphicto $J\left(C_{4}\right)$ or $J\left(C_{5}\right)$ or $J\left(C_{8}\right)$ For any cycle C_{p} with $p \geq 3$ vertices $n\left(J\left(C_{p}\right)\right)=C_{p}$ which gives $\left.\left|\mathrm{D}_{\mathrm{r}}\right|=\Gamma \frac{p}{2}\right\rceil$
Therefore $\left.\sqrt{m}^{m}\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p}}\right)\right)=\Gamma \frac{p}{2}\right\urcorner$
ii) if $J(G)$ is isomorphic to $J\left(K_{p}\right)$ where p is even then byTheorem1, $\left.\sqrt{m}\left(J\left(K_{p}\right)\right)=\Gamma \frac{p}{2}\right\urcorner$

In the followed by Theorem, we obain the relation between $\sqrt{m}^{\mathrm{m}} \mathrm{J}(\mathrm{G})$) and diameter of $\mathrm{J}(\mathrm{G})$.
Theorem 4; For any connected (p, q) jump graph J(G)
$\left.\sqrt{\mathbf{m}}_{\mathbf{m}} \mathbf{J}\left(\mathbf{K}_{\mathbf{p}}\right)\right) \geq\left[\frac{\operatorname{diam}(J(G)+1}{3}\right]$
proof: Let D_{r} be restrained dominating set of $n(J(G))$ such that $\left|D_{r}\right|=V_{m}(J(G))$ consider an arbitrary path of length which is a diam $(J(G))$. This diamaterial path induces at most three edges from the induced subgraph < N(V)> for each $v \in D_{\mathrm{r}}$ Further more since D_{r} is \sqrt{m}-set.
The dia meterial path induces at most $\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G}))-1$ dges joining the neighbor hood of the vertices of D_{r}
Hence $\operatorname{diam}(J(G)) \leq 2 \sqrt{m}^{m}(\mathrm{~J}(\mathrm{G}))+\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G}))-1$
Hence diam $(J(G)) \leq 3 \sqrt{m}^{m}(J(G))-1$ Hence the result follows
The following theorem results domination number of $J(G)$ and restrained domination number $n(J(G)))$.
Theorem5: For any (p, q) jump graph J(G) with $p \geq 3$ vertices
$\sqrt{m}(\mathrm{~J}(\mathrm{G})) \leq \mathrm{p}-\sqrt{ }(\mathrm{J}(\mathrm{G}))$
Equality holds if $\mathrm{J}(\mathrm{G}) \cong J(C 4) \operatorname{Or} j(C 5)$.
Proof: Let $D=\left\{u_{1, U 2,}, u_{3} \ldots \ldots \ldots . . u_{n}\right\}$ be a minimal dominating set of $n(J(G))$ such that $|D|=\sqrt{(J(G)) \text {. Further let } F_{1}=\left\{e_{1}, ~\right.}$ $\left.e_{2}, e_{3} e_{4} \ldots \ldots \ldots \ldots e_{n}\right\}$ be the set of all edges which are incident to the vertices of D and $F_{2}=E(J(G))-F_{1}$.
Let $C=\left\{c_{1}, c_{2}, \ldots \ldots c_{n}\right\}$ be the cutvertex set $\mathrm{o} J(G)$. By definition of Lict jump graph $V\left[n(J(G))=E(J(G)) \cup C(J(G))\right.$ and $F_{1}<\subseteq V\left[n(J(G)]\right.$ Let $I_{1}=\left\{e_{1}, e_{2}, e^{3} \ldots \ldots e_{\mathrm{k}}\right\} ; 1 \leq \mathrm{k} \leq I$ where $\mathrm{I}_{1} \subseteq \mathrm{~F}_{1}$ and $\mathrm{I}_{2} \subseteq \mathrm{~F}_{2}$ since each induced subgraph which is complete in $n(J(G))$ may contain at least one vertex of either F_{1} or F_{2}. Then ($I_{1} U I_{2}$) forms a minimalrestrained dominating set in $n(J(G))$ such that $\left|I_{1} U I_{2}\right|=\left|D_{r}\right|=V_{m}(J(G))$. Clearly $|D| U\left|I_{1} U I_{2}\right| \leq p$ Thus it follows that $\sqrt{(J(G))}+\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{p}$.
For equality If $G \cong C_{p}$ for $p=4$ or 5 then by definition of lict jump graph $n\left(J\left(C_{p}\right) \cong C_{p}\right.$. Then in this case
$|\mathrm{D}| \mathrm{U}\left|\mathrm{D}_{\mathrm{r}}\right|=\frac{p}{2}$ clealy it follows that $\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G}))+\sqrt{ }(\mathrm{J}(\mathrm{G})) \leq \mathrm{p}$.
For equality If $J(G)=J\left(C_{p}\right)$ forp $=4$ or 5 then by definitionof Lict jump graph $n\left(J\left(C_{p}\right)\right) \cong J\left(C_{p}\right)$, Then in this case $|D|=$ $\left|D_{\mathrm{r}}\right|=\frac{p}{2}$ clearly it follows that $\left.\sqrt{m}^{\mathrm{m}} \mathrm{J}(\mathrm{G})\right)+\sqrt{ }(\mathrm{J}(\mathrm{G}))=\mathrm{p}$
$\operatorname{In}[5]$ they related $\sqrt{\prime}^{\prime}(J(G)$ with the line domination of G. In the following theorem we establish our result with edge domination of J(G)

Theorem 6: For any non trivial connected (p, q) jump graph J(G).
$V_{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq \sqrt{\prime}^{\prime}(\mathrm{J}(\mathrm{G}))$
Proof: Let $E=\left\{e_{1}, e_{2}, e_{3} \ldots \ldots e_{n}\right.$ be the edge set of $J\left(G\right.$ and $C=\left\{c_{1}, c_{2}, c_{3}, \ldots c_{n}\right\}$ be the set of cut vertices in $J(G)$ $\sqrt{[n(J(G)})]=E(J G)) U C(J(G))$ Let $F=\left\{e_{1}, e_{2} e_{3} \ldots . . . e_{n}\right\} \forall e_{i}$ where $1 \leq i \leq n$ be the minimal edge dominating set of $J(G)$ such that $|F|=\sqrt{ }{ }^{\prime}(J(G))$. Since $E(J(G)) \leq \sqrt{ }[n(J(G))]$, every edge
 $\left.\mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{n}}\right\} \forall 1 \leq \mathrm{k} \leq \mathrm{n}$ whee $\mathrm{I}_{1} \subseteq \mathrm{~F}$ and $\mathrm{I}_{2} \subseteq \mathrm{~F}_{1}$. Since eachinduces sub graph which is completein $\mathrm{n}(\mathrm{J}(\mathrm{G}))$ may contain at least one vertex of either F or F_{1} Then
$\left|I_{1} \mathrm{UI}_{2}\right|$ forms a minimal restrained dominating set in $\mathrm{n}\left(\mathrm{J}(\mathrm{G})\right.$) clearly it follows that $|\mathrm{F}| \subseteq\left|\mathrm{I}_{1} \mathrm{U} \mathrm{I}_{2}\right|$ in $\mathrm{n}(\mathrm{J}(\mathrm{G})$) Hence $\sqrt{\prime}^{\prime}(J(G)) \leq \sqrt{m}(J(G))$.In the next theorem we obtain the relation between domination number of $J(G)$ and restrained domination number of $n(J(G))$ in terms of vertices and diameter of $J(G)$.

Theorem 7: For connectd (p, q) jump gaph $J(G)$ with $p \geq 2$ vertices $\sqrt{m}(J(G)) \leq p+\sqrt{ }(J(G)-\operatorname{diam}(J(G))$
Proof; LetV $=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots\right\}$ be the set of vertices in $J(G)$.
Suppose there exists two vertices $u, v \in V\left(J(G)\right.$ such that $\operatorname{dist}(u, v)=\operatorname{diamJ}(G)$ Let $D=\left\{v_{1}, v_{2}, \ldots \ldots . . v_{p}\right\} 1 \leq p \leq n$ e a minimal dominating set in $n(J(G))$. Now we consider $F=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots . . e_{n}\right\} ; F \subseteq E(J(G))$ and $\forall e_{i} \in V[n(J(G))] 1 \leq i \leq n$ In $n(J(G))$. Then $V[n(J(G))]=E(J(G)) U C(J(G))$ where $C(J(G))$ is the set of cut vertices in $J(G)$ suppose F_{1}, C_{1} are the subsets of F and C. then there exists a set $\left.\{M\} \in V\left[F_{1} J(G)\right)\right]-\left\{F_{1} U C_{1}\right\}$ such that $<M>$ has no isolates. Cclealy $\left|F_{1} U C_{1}\right|$ $=V_{m}(J(G))$ let $u, v \in V(J(G)) d(u, v)=\operatorname{diam}(J(G))$ then $\left\{F_{1} U C_{1}\right\} U \operatorname{diam}(J(G))<p U|D|$ Hence $V_{m}(J(G))+\operatorname{diam}(J(G)) \leq p+$ $\sqrt{ }(\mathrm{J}(\mathrm{G}))$ which implies
$\left.\sqrt{m}^{m}(\mathrm{G})\right) \leq \mathrm{p}+\sqrt{ }(\mathrm{J}(\mathrm{G}))-\operatorname{diam}(\mathrm{J}(\mathrm{G})$.
Theorem 8 For any connected (p, Q) jump graph $J(G)$ with $p>2$ vertices
$V_{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq \alpha_{0}(\mathrm{~J}(\mathrm{G}))$.
Proof; Let $B=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3} \ldots \ldots . . . \mathrm{v}_{\mathrm{m}}\right\} \subset \mathrm{V}(J(\mathrm{G}))$ be the minimum number of vertices which covers all the edges such that $|B|=\alpha_{0}(J(G))$ and $E_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots . . \mathrm{e}_{\mathrm{k}}\right\} \subset \mathrm{E}(\mathrm{J}(\mathrm{G}))$ such that
$\forall \mathrm{v}_{\mathrm{i}} \in \mathrm{B} ; 1 \leq \mathrm{I} \leq \mathrm{n}$ is incident with e_{i}, for $1 \leq \mathrm{I} \leq \mathrm{n}$ we consider the following case;
case(i); suppose for any two vertices $v_{1}, v_{2+} \in B$ and $v_{1} \in N 9 v_{2}$) then an edge e incident with v_{1} and v_{2} overs all edges incident with v_{1} nd v_{2}. Hence e belongs to v_{m}-set of $J(G)$.Further for any vertex $v_{i} \in B$ covering the edge $e \in E_{1}$ incident with a vertex v_{i} of $J(G) e_{i}$ belongs to the set \sqrt{m} set of $J(G)$. Thus $V_{m}(J(G)) \leq|B|=\alpha_{0}(J(G))$
case(ii) Suppose for any two vertices $v_{1}, v_{2} \in B$ and $v \notin N\left(v_{2}\right)$. Then $e_{1}, e_{2} \in E_{1}$ covers all the edges incident with v_{1} and v_{2}. Since B consist of the vertices which covers the edges that are incident all the cut vertices of J(G), the corresponding edgs in E covers the cu vertices of J(G).
Thus $\sqrt{m}(J(G)) \leq|B|=\alpha_{0} J(G)$.
Next we obtain a bound of retrained lict domination number in terms of number of edges and maximum edges degree of J(G).

Theorem 9: For any connected (p, q) jump grph $\mathrm{J}(\mathrm{G})$ with $\mathrm{p} \geq 3 \sqrt{m}^{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{q}-\Delta^{\prime}(\mathrm{J}(\mathrm{G}))$.
Proof; we consider the following cases,
Case i) Suppose J(G) is non separale using theorem 6 and theorem B the resul follows
Case ii) suppose $J(G)$ is separable Let be anedge with degree Δ^{\prime} and M be the set of edges adjacent to e in $J(G)$
Then $E(J(G))$ - M covers all the edges and all the cut vertices of $J\left(G_{-}\right.$. But some of the $e_{i}^{\prime} s \in E(J(G))-M$ for
$1 \leq \mathrm{I} \leq \mathrm{n}$ forms a minimal restrained dominating set in $\mathrm{n}(\mathrm{J}(\mathrm{G}))$.
$\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq|\mathrm{E}(\mathrm{J}(\mathrm{G}))-\mathrm{M}|$ which gives
$\sqrt{m}(J(G)) \leq q-\Delta^{\prime}(J(G))$.
Theorem 10 ; For any connected graph $J(G)$ with $p>2$ vertices
$\sqrt{m}(J(G)) \leq q-\sqrt{[L}(J(G))]$
Proof: Let $E=\left\{\mathrm{e}_{1+}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be the edge set of $J(G)$ and
$C=\left\{c_{1}, C_{2}, C_{3} \ldots . . c_{n}\right\}$ be the cutvertex set of $J(G)$ then $V[n(J(G))]=E(J(G)) U C(J(G))$ and $V[L(J(G))]=E(J(G)$ by definition suppose $M=\left\{u_{1}, u_{2}, \ldots \ldots u_{n}\right\} \subseteq V\left[L(J(G)]\right.$ be the set of vertices of degree, $\operatorname{deg}\left(u_{i}\right) \geq 2,1 \leq I \leq n$, then $D^{\prime} \subseteq H$ forms minimal dominating set of $L(J(G))$ such that $\left|D^{\prime}\right|=\sqrt{[L(J(G))]}$
Further let $H^{\prime}=\left\{u_{1}{ }^{\prime}, u_{2}^{\prime} \ldots \ldots . . u_{i}^{\prime}\right\} ; 1 \leq I \leq n$, where $H^{\prime} \subseteq H$ then $H^{\prime} U D^{\prime}$ forms a minimal restrained dominating set in $n\{J(G)] \cdot \operatorname{Sin} V[L(J(G))]=E(J(G))=q$ and lso $V[L(J(G))] \subseteq V[n(J(G))]$ Clearly it follows that
$\left|D^{\prime} U H^{\prime}\right| U\left|D^{\prime}\right| \leq q$ Thus $\sqrt{m}(J(G))+\sqrt{ }[L(J(G))] \leq q$
We gives the following observations;

Observation 1; For a connected (p, q) graph $J(G) \sqrt{m}(J(G)) \leq q-2$.
Proof ;Suppose D_{r} is a restrained dominating set of $n(J(G))$.Then by definition of restrained domination $[\sqrt{ }(n(J(G))] \geq 2$, Further by definition of $n(J(G)) . q-\sqrt{m}(J(G)) \geq 2$ Clearly it follows that $\sqrt{m}(J(G)) \leq q-2$.
Observation 2: Suppose D_{r} be any restrained dominating set of $n(J(G))$, such that $\left|D_{r}\right|=\sqrt{m}(J(G))$
Then $\mid \sqrt{\left[\mathrm{n}(\mathrm{J}(\mathrm{G}))+\mathrm{D}_{\mathrm{r}}\right] \mid \leq \sum_{v i \in D r} \operatorname{deg} v i}$
Proof: Since every vertex in $\sqrt{[}[\mathrm{n}(\mathrm{J}(\mathrm{G}))]+\mathrm{D}_{\mathrm{r}}$ is adjacent to at least one vertex in $\sqrt{ }[\mathrm{n}(\mathrm{J}(\mathrm{G}))]+\mathrm{D}_{\mathrm{r}}$ contributes at least one of the sum of degrees of vertices of D_{r}. Hence the proof.

Theorem 11: For any connected (p, q) jump graph J(G)

$$
\frac{q}{\Delta^{\prime}(J(G))+1} \leq \sqrt{\mathrm{m}}\left(\mathrm{~J}(\mathrm{G}) \leq \mathrm{q}-\delta^{\prime}(\mathrm{J}(\mathrm{G}))\right.
$$

Proof: let e $\in E(J(G))$, now without loss of generality by definition of lict gaph
$e=u \in \sqrt{[n(J(G))] a n d ~ l e t ~} \mathrm{~d}_{\mathrm{r}}$ be the restrained dominting set of $\mathrm{n}(\mathrm{J}(\mathrm{G}))$ such that $\left|\mathrm{D}_{\mathrm{r}}\right|=\sqrt{\mathrm{m}}^{\mathrm{m}}(\mathrm{J}(\mathrm{G}))$. If $\delta(\mathrm{J}(\mathrm{G})) \leq 2$, then by observation $1 \cdot \sqrt{ }(J(G)) \leq q-2 \leq q-\delta^{\prime}(J(G))$. If $\delta^{\prime}(J(G)) \geq 2$ then for any edge $f \in N 9 e 0$ and by definition of $\mathrm{n}(\mathrm{J}(\mathrm{G})) \mathrm{f}=\mathrm{w} \epsilon \mathrm{N}(\mathrm{J}(\mathrm{G})) . \mathrm{D}_{\mathrm{r}} \subseteq\{[\mathrm{V}(\mathrm{n}(\mathrm{J}(\mathrm{G}))]-\mathrm{N}(\mathrm{J}(\mathrm{G}))\} \mathrm{U}\{\mathrm{w}\}$
Then $V_{\mathrm{m}}(J(G)) \leq\left[q-\left(\delta^{\prime}(J(G))+1\right)+1\right]=q-\delta^{\prime}(J(G))$.
Now for the lowe bound we have by observation 2 and the fact that any edge e $\in E(J(G))$ and degree $\leq \Delta^{\prime}(J(G))$ we have,
$\mathrm{q}-\sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \leq \mid \mathrm{V}\left(\mathrm{n}(\mathrm{J}(\mathrm{G}))+\mathrm{n}(\mathrm{J}(\mathrm{G})) \mid \leq \sum_{v \in D r} \operatorname{deg} v \leq \sqrt{\mathrm{m}}(\mathrm{J}(\mathrm{G})) . \Delta^{\prime}(\mathrm{J}(\mathrm{G}))\right.$
there fore $\frac{q}{\Delta^{\prime}(J(G))+1} \leq \sqrt{\mathrm{m}}(J(G))$.
Theorem 12: For any connected non trivial $(p, q) \operatorname{graph} J(G) \sqrt{m}(J(G)) \geq \frac{q}{\Delta^{\prime}(J(G))+1}$
Proof: Using theorem 6 and Theorem A the result follows.
Finally we obtain the Nordhus -Gaddum type result.
Theorem 13: Let $J(G)$ be a connected (p, q) jump graph such that $J(G)$ and $J(\bar{G})$ are connected then
i) $\quad V_{\mathrm{m}}(\mathrm{J}(\mathrm{G}))+V_{\mathrm{m}}\left(\mathrm{J}(\overline{G)}) \geq \Gamma \frac{p}{2}\right\urcorner$
ii) $\quad V_{\mathrm{m}}(\mathrm{J}(\mathrm{G})) \cdot \sqrt{\mathrm{m}}\left(\mathrm{J}(\overline{G)}) \geq 「 \frac{3 p}{2}\right\urcorner$

REFERENCES:

[1] c .Berge. Theory of graphs and its applications, Methuen London (1962)
[2] G.S. Domke, J.H Hattingh, S.T. Hedetniemi,
R.C. Laskar and L.R.Markus, Restrained domination in Graphs, Discrete Mthematics,203, pp61-69
[3] R.P.Gupta,In proof Tecgniques in Graph Theory, Academic press New York(61-62) 1969
[4] F.Harary, Graph Theory,dison Wesley,Reading Mass (1972)
[5] S.R. Jayram, Line domination in graphs, Graphs and Cominotorics(375-363, 3(1987)
[6] M.H. Muddebihal, Kalashetti Swati M Restrained Lict Domination in Graphs, IRJET 1163-2319 (2014)
[7] S.L.Mitchell and S.T. Hedetieniemi, Edge domination in trees. In Proc.8 ${ }^{\text {th }}$ S.E. Conf .of Combinatorics, Graph Theory and Computing, Utilas Mathematica Winnipeg(489-509) 19(1977).
[8] O.Ore, Theory of gaphs, Amer, Math.Soc.Colloq publ.38Poidence (1962).

