

RESTRAINED LICT DOMINATION IN JUMP GRPHS

N. Patap Babu Rao

Department of Mathematics S.G. College, Koopal(Karnataka) INDIA

ABSTRACT: A SET $D_r \subseteq V[n(J(G))]$ is a restrained dominating set of n[J(G)] where every vertex in $V[n(J(G))] - D_r$ is adjacent to a vertex in D_r as well as vertices in $V[n(J(G))] - D_r$.

***______

The restrained domination of lict jump graph n(J(G)) denoted by $\sqrt{m}(J(G))$ is the minimum cardinality of a retrained dominating set of n(J(G)). In this paper we study its exact values for some standard graphs we obtain. Also it relation with other parameters is investigated.

Subject Classification: AMS-05C69, 05C70.

Keywords: Lict graph/line graph/Restrained domination/Dominating set/Edge domination

1. INTRODUCTION:

In this paper, all the graphs considered here are simple finite, nontrivial and connected. As usual p and q denotes the number of vertices and edges of a jump graph J(G). In this paper for any undefined terms or notations can be found in Harary [4]

As usual, the maximum degree of vertices I J(G) is denoted by Δ (J(G)).

The degree of an edge e=uv of J(G) is defined as ege = degu +degv – 2 and $\delta'(J(G))$

 $(\Delta' J(G))$ is he Minimum(maximum) degree among the edges of J(G).

For any real number, $x \upharpoonright x \urcorner$ denotes the smallest integer not less than x and $\lfloor x \rfloor$ denotes the greatest integer not greater thn x. The complement $J(\bar{G})$ of a jump graph J(G) has V as its vertex set , but two vertices are adjacent in $J(\bar{G})$ is they are non adjacent in J(G).

A vertex (edge) cover it graph J(G) is a set of vertices that cover all the edges (vertices) of J(G). The vertex(edge) covering number $\alpha_0(JG)$) ($\alpha_1(J(G))$) is a minimum cardinality of a vertex(edge) cover in $\beta_0(J(G))$ ($\beta_1(J(G))$) is the maximum cardinality of independent se of vertices (edges) in J(G).

The greatest distance between any two vertices of a connected graph J(G) is called the diameter of J(G) and is denoted by diam (J(G)).

We begin by recalling some standard definition from domination theory.

A set D of a graph G= (V, E) is dominating set if every vertex in V – D is adjacent to some vertex in D. The domination number $\sqrt{(G)}$ of graph G is the minimum cardinality of a minimal dominating set in G. The study of domination in graph was begun by Ore[7] and Berge[1].

A set $D \subseteq V(L(G))$ is dominating set of L(G) I every vertex not in D is adjacent to a vertex in D. The domination number of L(G) is denoted by $\sqrt{(L(G))}$ is the minimum cardinality of dominating set in L(G).

A set F of edges in a graph G is called an edge dominating set of G. if every edge in E - F where E is the set of G if every edge in G is adjacent to at least one edge in F.

The edge domination number \sqrt{G} of a graph G is the minimum cardinality of an edge dominating set of G.

The concept of edge domination number in graph were studied by Gupta[3] and S.Mitchell and S.T. Hedetineim[6]

A Set D of graph J(G)=(V, E) is a dominating set every vertex in V(J(G)) - D is adjacent to some vertex in D. The domination number $\sqrt{(J(G))}$ of J(G) is the minimum cardinality of a minimal dominating set in J(G).

Analogously we define restraind domination in lict graph as follows;

A dominating set D_r of lict graph is a restrained dominating set if every vertex not in D_r and adjacent in D_r and to a vertex in V – D_r . The restrained domination number of lict graph n(G) denoted by $\sqrt{m}(G)$. Is the minimum cardinality of a restrained dominating set of n(G). The concept of restrained domination in graph was introduced by Domke et.al[2].

A dominating set D_r of lict jump graph is a restrained dominating set. I every vertex not in Dr is adjacent in D and to a vertex in V (J(G)) – D_r . The restrained domination number of lict jump graph n(J(G)) denoted by $\sqrt{m}(J(G))$ is the minimum cardinality of a restrained dominating set of n(J(G)).

In this paper many bounds on $\sqrt{m}(J(G))$ are obtained and expressed in terms vertices, edges of J(G), but not the elements of n(J(G)) and express the results with other different domination parameter of J(G).

2. Results;

We need the following Theorems to establish our further results.

Theore A[5]:For any connected (p, q)graph G

 $\sqrt{G} \ge \underline{q}$ $\Delta'(G) + 1$

Theorem B[5] if G is a graph with no isolated vertex then $\sqrt{G} (G) (\leq q - \Delta(G))$.

Initially we begin with restrained domination number of Lict jump graph of some standard graphs which are straight forward in the following theorem.

Theorem 1.

- i) For any cycle C_n with $n \ge 3$ vertices $\sqrt{m}(J(C_n)) = n - 2 \lfloor \frac{n}{3} \rfloor$
- ii) For any path p_n with n>2 vertices $\sqrt{m}(J(P_{2n-1})) = k$ $\sqrt{m}(J(P_{2n})) = k$ when n = 2,3,4,5,... then k = 1, 2, 3, 4,...
- iii) For any star $K_{1,p}$ where $p \ge 2$ vertices $\sqrt{m}(J(K_{1,p})) = 1$
- iv) For any wheel W_p with $p \ge 4$ vertices $\sqrt{m}(J(W_p)) = 1 + \lceil \frac{p-3}{2} \rceil$
- v) For any complete graph K_p with $p \ge 3$ vertices $\sqrt{m}(K_p) = \frac{3}{2} \frac{p}{2}$ In the following theorem we etblish the upper bound for $\sqrt{m}(J(T))$ in terms of vertices of the J(G)

Theorem 2: For any tree T with p>2 vertices m end vertices $\sqrt{m}(J(T)) \le p - m$. Equality holds if $T = K_{1,p}$ with $p \ge 2$ vertices.

Proof: If diam(J(G)) ≤ 3 , then the result is obvious, Let diam(J(T))>3 and $V_1 = \{v_1, v_2, v_3, \dots, v_p\}$ be set of all end vertices of J(T) where $v_1 = m$ Further $E = \{e_1, e_2, e_3, \dots, e_q\}$ C = $\{c_1, c_2, c_3, \dots, c_i\}$ be the set of edges and cut vertices in J(G). In N(J(G)), V(n(J(G)) = E(J(G)) \cup C(J(G)) and in J(G). $\forall e_i \text{ incident with } c_i 1 \leq j \leq I \text{ forms a complete induced subgraph as a block in n(J(G)) such that the number of blocks in n(J(G)) = | C |. Let <math>\{e_1, e_2, e_3, \dots, e_i\}$ in n(J(G)). Let $C_1' \leq C'$ be a restrained dominating set in n(J(G)) such that $| C' | \leq \sqrt{m}(J(G))$ for any non trivialtree p>q and $|C''| \leq p - m$ which gives $\sqrt{m}(J(T)) \leq p - m$. Further equality hods if T = K_{1,p} then n(J(K_{1,p})) = K_{p+1} and $\sqrt{m}(J(K_{1,p})) = p - m$. The following corollaries are immediate from the above theorem. **Corollary 1**; for any connected (p,q)jump gaph J(G) $\sqrt{m}(J(G)) + \sqrt{(J(G) \leq \alpha_0(J(G)) + \beta_0(J(G)))}$. Equality holds if J(G) is isomorphic toJ(C₃) or J(C₅). **Corollary 2**; For any connected (p,q) jump graph I(G) $\sqrt{m}(J(G)) + \sqrt{J(G)} \le \alpha_1(J(G)) + \beta_1(J(G))$ equality holds if J(G) is isomorphic to J(C₃) of J(C₅)

Theorem 3.; For any connected (P,q) jmp graph J(G) with p>2 vertices $\sqrt{m}(J(G)) \leq \lceil \frac{p}{2} \rceil$, equality holds if J(G) is J(C₄) or J(C₅) or $I(C_8)$ or K_p if p is even.

Proof:Let $E = \{e_1, e_2, e_3, \dots, e_p\}$ be the edge set of J(G) such that $V[n9J(G))] = E(J(G)) \cup C(J(G))$ by definition of lict jump graphwhere C(J(G)) is the set of cutvertices in J(G). Let $D_r = \{v_1, v_2, \dots, v_n\} \subseteq V[n(G)]$ be the rstrained dominatingset of n(G). Suppose if $|V[n(G) - D_r| \ge 2$, then $\{V[n(G) - D_r\}$ contains at least two vertices which gives

 $\sqrt{m}(G) < \frac{p}{2} \leq \lceil \frac{p}{2} \rceil$ For the quality, i) If J(G) is isomorphic of J(C₄) or J(C₅) or J(C₈) For any cycle C_p with p≥3 vertices n(J(C_p)) = C_p which gives $|D_r| = \lceil \frac{p}{2} \rceil$

Therefore $\sqrt{m}(J(C_p)) = \lceil \frac{p}{2} \rceil$

ii) if J(G) is isomorphic to J(K_p) where p is even then byTheorem1, $\sqrt{m}(J(K_p)) = \lceil \frac{p}{2} \rceil$ In the followed by Theorem, we obtin the relation between $\sqrt{m}(J(G))$ and diameter of J(G).

Theorem 4; For any connected (p,q) jump graph J(G)

 $\sqrt{m(J(K_p))} \geq \left[\frac{diam(J(G)+1)}{3}\right]$

proof: Let D_r be restrained dominating set of n(J(G)) such that $|D_r| = \sqrt{m(J(G))}$ consider an arbitrary path of length which is a diam (I(G)). This diamaterial path induces at most three edges from the induced subgraph < N(V) > for each $v \in D_r$ Further more since D_r is \sqrt{m} -set.

The dia meterial path induces at most $\sqrt{m}(J(G)) - 1$ dges joining the neighbor hood of the vertices of D_r Hence diam(J(G)) $\leq 2\sqrt{m}(J(G)) + \sqrt{m}(J(G)) - 1$

Hence diam(J(G)) $\leq 3\sqrt{m}(J(G)) - 1$ Hence the result follows

The following theorem results domination number of J(G) and restrained domination number n(J(G)).

Theorem5: For any (p,q) jump graph J(G) with $p \ge 3$ vertices

 $\sqrt{m}(J(G)) \le p - \sqrt{J(G)}$

Equality holds if $J(G) \cong J(C4)Or \ j(C5)$.

Proof: Let $D = \{u_{1, U2}, u_{3, \dots, u_n}\}$ be a minimal dominating set of n(J(G)) such that $|D| = \sqrt{J(G)}$. Further let $F_1 = \{e_1, e_1\}$ $e_2, e_3, e_4, \dots, e_n$ be the set of all edges which are incident to the vertices of D and $F_2 = E(J(G)) - F_1$.

Let C = { c_1, c_2, \dots, c_n } be the cutvertex set o J(G). By definition of Lict jump graph $V[n(J(G)) = E(J(G)) \cup C(J(G))$ and $F_1 \leq V[n(J(G)]$ Let $I_1 = \{e_{1,e}2_{e_1}3....e_k\}$; $1 \leq k \leq I$ where $I_1 \subseteq F_1$ and $I_2 \subseteq F_2$ since each induced subgraph which is complete in n(J(G)) may contain at least one vertex of either F_1 or F_2 . Then $(I_1 \cup I_2)$ forms a minimal restrained dominating set in n(J(G)) such that $|I_1 \cup I_2| = |D_r| = \sqrt{m(J(G))}$. Clearly $|D| \cup |I_1 \cup I_2| \le p$

Thus it follows that $\sqrt{(J(G))} + \sqrt{m(J(G))} \le p$.

For equality If $G \cong C_p$ for p=4 or 5 then by definition of lict jump graph $n(J(C_p) \cong C_p$. Then in this case

D|U|D_r|=
$$\frac{p}{2}$$
 clealy it follows that $\sqrt{m}(J(G)) + \sqrt{J(G)} \le p$.

For equality If $J(G) = J(C_p)$ for p=4 or 5 then by definition of Lict jump graph $n(J(C_p)) \cong J(C_p)$, Then in this case |D| = $|D_r|=\frac{p}{2}$ clearly it follows that $\sqrt{m}(J(G)) + \sqrt{J(G)} = p$ In[5] they related $\sqrt{J}(J(G))$ with the line domination of G. In the following theorem we establish our result with

edge domination of I(G)

Theorem 6: For any non trivial connected (p,q) jump graph J(G).

 $\sqrt{m}(I(G)) \leq \sqrt{(I(G))}$ **Proof:** Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge set of $J(G \text{ and } C = \{c_1, c_2, c_3, \dots, c_n\}$ be the set of cut vertices in J(G) $\sqrt{[n(J(G))]=E(JG))}$ U C(J(G)) Let F={e₁,e₂ e₃....e_n} \forall e_i where 1 ≤ i ≤ n be the minimal edge dominating set of J(G) such that $|F| = \sqrt{(J(G))}$. Since $E(J(G)) \le \sqrt{[n(J(G))]}$, every edge

 $e_i \in F$: $\forall e_i \ 1 \le i \le n$ forms a dominating set in n(J(G)). Suppose $F_1 = E(J(G)) - F \subseteq \sqrt{[n(J(G))]}$, we consider $I_1 = \{e_1, e_2, e_3, \dots, e_n\} \forall 1 \le k \le n$ where $I_1 \subseteq F$ and $I_2 \subseteq F_1$. Since each induces sub graph which is complete in n(J(G)) may contain at least one vertex of either F or F_1 Then

 $|I_1 UI_2|$ forms a minimal restrained dominating set in n(J(G)) clearly it follows that $|F| \subseteq |I_1 U I_2|$ in n(J(G)) Hence $\sqrt{(J(G))} \leq \sqrt{m(J(G))}$. In the next theorem we obtain the relation between domination number of J(G) and restrained domination number of n(J(G)) in terms of vertices and diameter of J(G).

Theorem 7: For connectd (p,q) jump gaph J(G) with $p \ge 2$ vertices $\sqrt{m}(J(G)) \le p + \sqrt{J(G)} - diam(J(G))$

Proof; Let $V = \{v_1, v_2, v_3, \dots\}$ be the set of vertices in J(G).

Suppose there exists two vertices $u, v \in V(J(G)$ such that dist(u,v)=diamJ(G) Let $D = \{v_1, v_2, \dots, v_p\}$ $1 \le p \le n$ e a minimal dominating set in n(J(G)). Now we consider $F=\{e_1, e_2, e_3, \dots, e_n\}$; $F\subseteq E(J(G))$ and $\forall e_i \in V[n(J(G))]$ $1 \le i \le n$ In n(J(G)). Then V[n(J(G))] = E(J(G)) UC(J(G)) where C(J(G)) is the set of cut vertices in J(G) suppose F_1 , C_1 are the subsets of F and C. then there exists a set $\{M\} \in V[F_1(J(G))] - \{F_1 \cup C_1\}$ such that <M> has no isolates. Cclealy $|F_1 \cup C_1| = \sqrt{m}(J(G))$ let $u, v \in V(J(G))$ d(u, v)=diam(J(G)) then $\{F_1 \cup C_1\} \cup$ diam $(J(G)) Hence <math>\sqrt{m}(J(G)) +$ diam $(J(G)) \le p + \sqrt{(J(G))} -$ diam $(J(G)) = p + \sqrt{(J($

Theorem 8 For any connected (p,Q) jump graph J(G)with p>2 vertices

 $\sqrt{m}(J(G)) \leq \alpha_0(J(G)).$

Proof; Let $B=\{v_1, v_2, v_3, \dots, v_m\} \subset V(J(G))$ be the minimum number of vertices which covers all the edges such that $|B|=\alpha_0(J(G))$ and $E_1=\{e_1, e_2, e_3, \dots, e_k\} \subset E(J(G))$ such that

 \forall v_i ϵ B; 1 \leq I \leq n is incident with e_i, for 1 \leq I \leq n we consider the following case;

case(i); suppose for any two vertices v_1 , $v_{2+} \in B$ and $v_1 \in N9v_2$) then an edge e incident with v_1 and v_2 overs all edges incident with v_1 nd v_2 . Hence e belongs to v_m -set of J(G). Further for any vertex $v_i \in B$ covering the edge $e \in E_1$ incident with a vertex v_i of J(G) e_i belongs to the set \sqrt{m} set of J(G). Thus $\sqrt{m}(J(G)) \leq |B| = \alpha_0(J(G))$

case(ii) Suppose for any two vertices $v_1, v_2 \in B$ and $v \notin N(v_2)$. Then $e_1, e_2 \in E_1$ covers all the edges incident with v_1 and v_2 . Since B consist of the vertices which covers the edges that are incident all the cut vertices of J(G), the corresponding edgs in E covers the cu vertices of J(G).

Thus $\sqrt{m}(J(G)) \le |B| = \alpha_0 J(G)$.

Next we obtain a bound of retrained lict domination number in terms of number of edges and maximum edges degree of J(G).

Theorem 9: For any connected (p,q) jump grph J(G) with $p \ge 3\sqrt{m}(J(G)) \le q - \Delta'(J(G))$.

Proof; we consider the following cases,

Case i) Suppose J(G) is non separale using theorem 6 and theorem B the resul follows Case ii) suppose J(G) is separable Let be anedge with degree Δ' and M be the set of edges adjacent to e in J(G) Then E(J(G)) – M covers all the edges and all the cut vertices of J(G_. But some of the $e_i' s \in E(J(G)) - M$ for $1 \le I \le n$ forms a minimal restrained dominating set in n(J(G)). $\sqrt{m}(J(G)) \le |E(J(G)) - M|$ which gives $\sqrt{m}(J(G)) \le q - \Delta'(J(G))$.

Theorem 10; For any connected graph J(G) with p>2 vertices

$$\begin{split} &\sqrt{m}(J(G)) \leq q - \sqrt{[L(J(G))]} \\ &\textbf{Proof: Let E} = \{e_{1+}, e_{2}, \dots, e_{n}\} \text{ be the edge set of } J(G) \text{ and } \\ &C = \{c_{1}, c_{2}, c_{3}, \dots, c_{n}\} \text{ be the cutvertex set of } J(G) \text{ then } V[n(J(G))] = E(J(G)) \cup C(J(G)) \text{ and } V[L(J(G))] = E(J(G) \text{ by definition suppose } M = \{u_{1}, u_{2}, \dots, u_{n}\} \subseteq V[L(J(G)] \text{ be the set of vertices of degree,} deg(u_{i}) \geq 2, \ 1 \leq I \leq n, \ \text{then } D' \subseteq H \\ &\text{forms minimal dominating set of } L(J(G)) \text{ such that } |D'| = \sqrt{[L(J(G))]} \\ &\text{Further let } H' = \{u_{1}', u_{2}', \dots, u_{i}'\}; \ 1 \leq I \leq n, \ \text{where } H' \subseteq H \ \text{then } H' \cup D' \ \text{forms a minimal restrained dominating set in } \\ &n_{J}(G)].Sin \ V[L(J(G))] = E(J(G)) = q \ \text{and } \text{ lso } V[L(J(G))] \subseteq V[n(J(G))] \ Clearly \ \text{it follows that} \\ &| D' \cup H'| \cup |D'| \leq q \ \text{Thus } \sqrt{m}(J(G)) + \sqrt{[L(J(G))]} \leq q \\ &\text{We gives the following observations;} \end{split}$$

Observation 1; For a connected (p,q) graph J(G) $\sqrt{m}(J(G)) \le q - 2$. Proof ;Suppose D_r is a restrained dominating set of n(J(G)).Then by definition of restrained domination $[\sqrt{n}(J(G))] \ge 2$, Further by definition of n(J(G)). $q - \sqrt{m}(J(G)) \ge 2$ Clearly it follows that $\sqrt{m}(J(G)) \le q - 2$. **Observation 2:** Suppose D_r be any restrained dominating set of n(J(G)), such that $|D_r| = \sqrt{m}(J(G))$ Then $|\sqrt{[n(J(G)] + D_r]}| \le \sum_{vi \in Dr} \deg vi$ Proof: Since every vertex in $\sqrt{[n(J(G)]] + D_r}$ is adjacent to at least one vertex in $\sqrt{[n(J(G))] + D_r}$ contributes at least one of the sum of degrees of vertices of D_r . Hence the proof.

Theorem 11: For any connected (p,q) jump graph J(G)

 $\frac{q}{\Delta'(J(G))+1} \leq \sqrt{m}(J(G) \leq q - \delta'(J(G)).$

Proof: let $e \in E(J(G))$, now without loss of generality by definition of lict gaph

 $e = u \in \sqrt{[n(J(G))]}$ and let d_r be the restrained dominting set of n(J(G)) such that $|D_r| = \sqrt{m(J(G))}$. If $\delta(J(G)) \le 2$, then by observation 1. $\sqrt{m(J(G))} \le q - 2 \le q - \delta'(J(G))$. If $\delta'(J(G)) \ge 2$ then for any edge f ϵ N 9e0and by definition of $n(J(G)) f = w \epsilon N(J(G))$. $D_r \subseteq \{[V(n(J(G))] - N(J(G))\} \cup \{w\}$

Then
$$\sqrt{m}(J(G)) \le [q - (\delta'(J(G)) + 1) + 1] = q - \delta'(J(G)).$$

Now for the lowe bound we have by observation 2 and the fact that any edge $e \in E(J(G))$ and degree $\leq \Delta'(J(G))$ we have,

 $\begin{aligned} &q \cdot \sqrt{m}(J(G)) \leq |V(n(J(G)) + n(J(G))| \leq \sum_{v \in Dr} \deg v \leq \sqrt{m}(J(G)) \cdot \Delta'(J(G)) \\ &\text{there fore } \frac{q}{\Delta'(J(G)) + 1} \leq \sqrt{m}(J(G)). \end{aligned}$

Theorem 12: For any connected non trivial (p,q) graph J(G) $\sqrt{m}(J(G)) \ge \frac{q}{\Delta'(J(G))+1}$

Proof: Using theorem 6 and Theorem A the result follows. Finally we obtain the Nordhus -Gaddum type result.

Theorem 13: Let J(G) be a connected (p,q) jump graph such that J(G) and J(\overline{G}) are connected then

i)
$$\sqrt{m}(J(G)) + \sqrt{m}(J(\overline{G})) \ge \lceil \frac{p}{2} \rceil$$

ii)
$$\sqrt{m}(J(G)) \cdot \sqrt{m}(J(\overline{G})) \ge \lceil \frac{3p}{2} \rceil$$

REFERENCES:

[1] c .Berge. Theory of graphs and its applications, Methuen London (1962)

[2] G.S. Domke, J.H Hattingh, S.T. Hedetniemi,

R.C. Laskar and L.R.Markus, Restrained domination in Graphs, Discrete Mthematics, 203, pp61-69

[3] R.P.Gupta, In proof Tecgniques in Graph Theory, Academic press New York(61-62) 1969

[4] F.Harary, Graph Theory, dison Wesley, Reading Mass (1972)

[5] S.R. Jayram, Line domination in graphs, Graphs and Cominotorics(375-363, 3(1987)

[6] M.H. Muddebihal, Kalashetti Swati M Restrained Lict Domination in Graphs, IRJET 1163-2319 (2014)

[7] S.L.Mitchell and S.T. Hedetieniemi, Edge domination in trees. In Proc.8th S.E. Conf. of Combinatorics,

Graph Theory and Computing, Utilas Mathematica Winnipeg(489-509) 19(1977).

[8] O.Ore, Theory of gaphs, Amer, Math.Soc.Colloq publ.38Poidence (1962).