
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 338

An Online Multi-target Optimal Heuristic Search Algorithm

Swetha.N.G1, Janani.H2

1,2UG Student, Department of Information Technology, Meenakshi Sundararajan Engineering College,
Chennai, India

---***--
Abstract - Optimal Search algorithms are crucial in
various types of applications. Not all applications deal with
search problems where only a single source vertex and a
single target vertex is present. In this paper, we explore the
problem of finding the optimal path in a single-source
multi-target setting. The problem is defined with the help of
a real-world application analogy. After formally defining
the problem, a heuristic search algorithm, similar to the
single-source single-target counterpart, is explored. The
performance of two different heuristic functions are
compared with each other and with the lack of a heuristic.
Finally, we explore how this algorithm can be modified to
accommodate dynamic addition of target vertices while the
optimal path is being traversed.

1. INTRODUCTION

Consider the problem of delivering newspapers to
multiple subscribers. In India, newspapers are delivered
to the homes of subscribers by a delivery agent who starts
at around the time of sunrise. Assuming the agent starts
at time 0 from the publishing outlet s, their goal is to
minimize the maximum waiting time of the n subscribers
at locations ti where i ∈ {1, 2, ..., n}. This can be modeled
as a single-source multitarget problem as follows.

A. Problem Formulation

Let G(V, E) be an undirected weighted graph where V is
the set of vertices and E is the set of edges. e(vi , vj) ∈ E if
and only if vertices vi , vj ∈ V are connected by an edge. Let
w(vi , vj) be the weight of the edge e(vi , vj). For this use-
case, we consider the weight of the edge to be the amount
of time it takes to travel from vi to vj . This time is taken to
be directly proportional to the Euclidean distance
between the vertices. For simplicity, if two vertices vi and
vj are connected by an edge, let the time taken to travel
between them be equal to the Euclidean distance between
them. A single source vertex s and multiple target vertices
ti where i ∈ {1, 2, ..., n} (n ≥ 1) are given.

 The goal is to find the optimal (shortest) path starting
from s and ending in a target vertex such that the path
traverses every target vertex ti at least once. Since the
edge weights correspond to the time taken by the agent to
traverse edges, it can be seen that the length of the
shortest path gives the maximum waiting time of the
subscribers.

B. Organization

The first part of the paper deals with exploring an Optimal
Heuristic Search Algorithm to solve the above single-
source multi-target problem. Two different Heuristic
functions are compared and experimental results are
discussed. The second part of the paper deals with
handling the addition of new target vertices while the
shortest path is being traversed. As described in the
original problem, the goal is still to minimize the
maximum waiting time of the subscribers at the target
vertices. Note that while the waiting time of the original
target vertices ti is computed as the distance in the optimal
path from s, the waiting time of the added target vertices tj
is computed as the distance from the vertex sk at which the
agent was present when the new target vertices were
added. Therefore, the maximum waiting time of the
subscribers is no longer the length of the optimal path.

1.1 Related Works

While optimal search problems have been extensively
studied, their solutions cannot be directly translated to
solve specific variations of the problem. The single-source
multi-target problem described above (where a vertex may
be visited more than once) is commonly solved by
computing the all-pairs shortest paths between every pair
of vertex using popular algorithms like [1]. While the all-
pairs shortest path algorithms are polynomial, another
algorithm that uses their output to permute different visit
orders of the target vertices is required. This algorithm is
exponential in the size of the input and makes the solution
non-polynomial. A similar variant of the problem is to
disallow paths that visit the same vertex twice. This is
addressed in [2] and [3]. Note that it is easy to reduce the
traveling salesman problem to this variant in polynomial
time. Therefore, this variant is an NP-hard problem. In fact,
[2] models the input as a TSP and passes it to a TSP solver.
To be able to compute an efficient path in polynomial time,
[3] settles for a sub-optimal greedy solution. [4] explores
various approximation algorithms to identify sub-optimal
yet efficient paths in a single-source multitarget setting. The
algorithms discussed in [4] are ”fully polynomial”. That is,
they are polynomial not only in time and space but also in
the accuracy of the approximate solution.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 339

2. ALGORITHM

The algorithm is similar to the best-first optimal heuristic
search for a single-source single-target problem. In order
to accommodate for multiple targets, the following
modifications are made. • Each vertex may have multiple
copies of it present in the successor priority queue. Each
copy corresponds to a different set of target vertices yet to
be visited from that vertex. • To initialize the algorithm, a
copy of the source vertext s is enqueued into the priority
queue corresponding to set of all target vertices (since
none have been visited so far). • The heuristic function
h(vi, {tj}) is a function of the vertex vi and the set of target
vertices, {tj}, yet to be visited from vi. • The algorithm
terminates when a copy of a target vertex, corresponding
to an empty set of target vertices yet to be visited, is
dequeued from the priority queue. The pseudocode for the
algorithm is as follows.

function SEARCH(s, {ti})

 expanded ← ∅

 gScore ← inf map

 fScore ← inf map

 gScore[s[{ti}]] ← 0

 fScore[s[{ti}]] ← h(s, {ti})

 queue ← {s[{ti}]} .

queue is a priority queue ordered by fScore.

while queue 6= ∅ do

 v[{tj}] ← queue.poll()

 if (v ∈ {ti}) ∧ ({tj} = ∅) then

 return reconstructPath(v)

 else

 expanded ← expanded ∪ {v[{tj}]}

 for neighbor n of v do

 T ← {tj} − n

 if n[T] ∈/ expanded then

 gScoreF romV ← gScore[v[{tj}]] + w(v, n) queue.add(n[T])

 if gScoreF romV < gScore[n[T]]

then

 gScore[n[T]] ← gScoreFromV

 fScore[n[T]] ← gScore[n[T]] + h(n, T)

 end if

 end if

 end for

 end if

 end while

 return not found

end function

A. Complexity Analysis

 Let |T| < |V | be the number of target vertices. Each
node may have the following number of copies.

1C|T| +2 C|T| +3 C|T| + ... +|T| C|T| ∈ O(2|T|)

Assuming the time complexity of the heuristic function
is in O(|T|), the total time complexity is in O(|V |2 |T|
|E|). Therefore, the time complexity is exponential in
the input. If |T| ∈ O(log2 |V |), then the time complexity
would be O(|V | 2 |E|).

B. Heuristic functions

The following two heuristic functions are used.

• hmin(v, {tj}) = minj (dist(v, tj))

 • hmax(v, {tj}) = maxj(dist(v, tj))

The first heuristic function directs the search towards
the nearest target vertex. The second heuristic function
directs the search towards the farthest target vertex.
Note that in the presence of only one target vertex, both
the functions converge to the heuristic function used in
the A* algorithm. In fact, in the presence of only one
target vertex, the entire solution converges to the A*
algorithm.

C. Proof of Optimality

The algorithm terminates when a target vertex is
expanded and no other target vertex is yet to be visited
from it. Therefore, the path to the target vertex from
the source vertex visited every target vertex at least
once. Such a path is also the shortest path since it has
the least fScore in the priority queue. Also, it is easy to
see that both the heuristic functions hmin and hmax
produce under-estimates of the actual path distances.
The Euclidean distance between the vertex v and any
given target vertex tj is lesser than or equal to the
length of the shortest path that covers v and every
vertex in {tj}. Therefore, the algorithm produces the
optimal path when either of the heuristic functions are
used.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 340

D. Online addition of target vertices

Upon computation of the optimal path for a given
source vertex s and a set of target vertices T, the agent
starts traversing that path. However, when the agent is
midway in a vertex s 0 , a new set of target vertices T 0
may be added. Let Tu ⊆ T be the set of target vertices
from the initial set that are still unvisited.

Therefore, T 0 ∪ Tu is the new set of target vertices and
s 0 is the new source vertex. However, the vertices in
Tu have already waited for a time equal to the length
of the path from s to s 0. Let this be g. In order to
model this into the algorithm, another map maxWait
similar to gScore and fScore is maintained. The default
value is 0. For every copy tk[{tj}] of every vertex tk ∈ Tu,
maxW ait[tk[{tj}]] is set to g. When a copy of a node
n[T] is expanded, its maxWait[n[T]] is updated as
max(gScore[n[T]] + maxWait[n[T]], maxW ait[v[{tj}]]).
This is used to compute fScore[n[T]] as
max(gScore[n[T]] + hScore(n, T), maxWait(n[T])).

In essence, the fScore is computed as the maximum of
the length of the path or the maximum waiting time of
a target vertex along the path. Also, since the fScore
can. Only become higher due to the updated
computation model (since the max function is used),
the heuristic functions are still under-estimates.
Therefore, the algorithm would still produce the
optimal path that carries the least maximum waiting
time of its target vertices. The updated algorithm is as
follows.

function ONLINESEARCH (s, {ti}, maxWait) .

The initial maxWait map contains g for unvisited target
vertices from the initial set and 0 for everything else.

 expanded ← ∅

 gScore ← inf map

 fScore ← inf map

 gScore[s[{ti}]] ← 0

 fScore[s[{ti}]] ← h(s, {ti})

 queue ← {s[{ti}]}

queue is a priority queue ordered by fScore.

 while queue 6= ∅ do

 v[{tj}] ← queue.poll()

 if (v ∈ {ti}) ∧ ({tj} = ∅) then

 return reconstructP ath(v)

 else

 expanded ← expanded ∪ {v[{tj}]}

for neighbor n of v do

 T ← {tj} − n

 if n[T] ∈/ expanded then

 gScoreFromV ← gScore[v[{tj}]] + w(v, n)
queue.add(n[T])

 if gScoreFromV < gScore[n[T]]

 then

 gScore[n[T]] ← gScoreFromV

 maxWait[n[T]] ←

max(gScore[n[T]]+maxWait[n[T]], maxW ait[v[{tj}]])

 fScore[n[T]] ←

max(gScore[n[T]] + h(n, T), maxWait[n[T]])

 end if

 end if

 end for

 end if

 end while

 return

 not found

 end function

3. IMPLEMENTATION

A Java swing application was implemented to simulate the
execution of the path finding algorithm.

A. Graph Generation

A heuristic randomized algorithm is used to generate a
graph whose vertices are placed randomly in the
Euclidean space. The number of vertices and the
minimum distance between a pair of vertices is input
by the user. The application randomly picks a location
and makes sure that the closest vertex is farther than
the input minimum distance. If it is not farther, a new
location is randomly picked. This process is repeated
until the desired number ofnodes is reached or if too
many retries are attempted. Once the position of the
vertices are generated, every pair of vertex within a
distance is connected by an edge. This distance is
different for different vertices and is a function of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 341

the distance between the vertex and the vertex closest
to it. Figure 1 is a graph generated using the
application with 500 vertices and the minimum
distance between a pair of vertices set to 25.

Fig. 1. 500 vertex graph generated using the application.

B. Optimal path generation and visualization

The application allows the user to select a source
vertex and one or more target vertices. Upon
selecting the source and target vertices, the
application runs the algorithm to find the optimal
path. This path can be visualized in the UI. Figure 2
is a sample screenshot of the application
rendering a shortest path.

C. Online addition of target vertices

Once an optimal path is rendered, the user may
select a vertex in the path to mark it as the new
source. The unvisited target vertices get a marker
on them to show their initial waiting time. The
user may add new target vertices. Figure 3 is a
sample screenshot of the application rendering a
shortest path after new target vertices were added
online.

4. EXPERIMENTS AND OBSERVATIONS

The observations are made in graphs generated with 500
vertices and with the minimum distance between a vertex
pair set to 25. It was observed that this setting produced

Fig. 2. Optimal path rendered for visualization.

Fig. 3. Optimal path after addition of new target vertices
online.

Table I shows the observed number of expansions for paths
that contain only a single target vertex. As expected, both
the min and max heuristic functions produce the same
number of expansions. Also, the number of expansions
resulting from using the heuristic function is much lesser
than the number of expansions resulting from not using any
heuristic function.

TABLE I

NUMBER OF EXPANSIONS FOR PATHS WITH A SINGLE
TARGET VERTEX. THE COLUMNS INDICATE THE

HEURISTIC FUNCTION USED.

Tables II and III show the observed number of expansions
for paths that contain three and five target vertices
respectively. As expected, the max heuristic function is
more efficient since it produces values closer to the actual
path length than the min heuristic function. Both the min
and the max heuristic functions result in far lesser number
of expansions than that from not using any heuristic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 342

function.

Another observation is that the number of expansions
(irrespective of which heuristic function is used) is lesser
than or equal to |V |2 |T|. This is in accordance with the
theory.

TABLE II

NUMBER OF EXPANSIONS FOR PATHS WITH THREE
TARGET VERTICES. THE COLUMNS INDICATE THE

HEURISTIC FUNCTION USED.

TABLE III

NUMBER OF EXPANSIONS FOR PATHS WITH FIVE
TARGET VERTICES. THE COLUMNS INDICATE THE

HEURISTIC FUNCTION USED.

5. CONCLUSION

The single-source multi-target problem was formulated
and an algorithm was proposed to solve it. The time
complexity of the algorithm was shown to be polynomial if
the number of target vertices is in O(log2 |V |). It was also

shown how the algorithm could be modified to
accommodate online addition of new target vertices.
Experiments were run to observe the number of
expansions. It was observed that the numbers were in
accordance with the theory.

6. FUTURE WORK

If the number of target vertices is not in O(log2 |V |), then
the algorithm runs in exponential time. It would be useful to
explore polynomial time algorithms that produce
approximate sub-optimal solutions when several target
vertices are present. Another interesting problem to
consider is the multisource multi-target problem. That is,
how could we coordinate between multiple agents starting
from different locations who want to deliver to multiple
subscribers at different locations. Each subscriber needs to
be visited by at least one agent.

REFERENCES

[1] Demetrescu, C. and Italiano, G.F., 2004. A new approach
to dynamic all pairs shortest paths. Journal of the ACM
(JACM), 51(6), pp.968- 992.

[2] Spitz, S.N. and Requicha, A.A., 2000. Multiple-goals path
planning for coordinate measuring machines. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on (Vol. 3, pp. 2322-2327). IEEE.

[3] Lobaton, E., Zhang, J., Patil, S. and Alterovitz, R., 2011,
May. Planning curvature-constrained paths to multiple
goals using circle sampling. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on (pp. 1463-
1469). IEEE. [4] Warburton, A., 1987. Approximation of
Pareto optima in multipleobjective, shortest-path problems.
Operations Research, 35(1), pp.70- 79.

