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Abstract - Optimal Search algorithms are crucial in 
various types of applications. Not all applications deal with 
search problems where only a single source vertex and a 
single target vertex is present. In this paper, we explore the 
problem of finding the optimal path in a single-source 
multi-target setting. The problem is defined with the help of 
a real-world application analogy. After formally defining 
the problem, a heuristic search algorithm, similar to the 
single-source single-target counterpart, is explored. The 
performance of two different heuristic functions are 
compared with each other and with the lack of a heuristic. 
Finally, we explore how this algorithm can be modified to 
accommodate dynamic addition of target vertices while the 
optimal path is being traversed. 

1. INTRODUCTION 

Consider the problem of delivering newspapers to 
multiple subscribers. In India, newspapers are delivered 
to the homes of subscribers by a delivery agent who starts 
at around the time of sunrise. Assuming the agent starts 
at time 0 from the publishing outlet s, their goal is to 
minimize the maximum waiting time of the n subscribers 
at locations ti where i ∈ {1, 2, ..., n}. This can be modeled 
as a single-source multitarget problem as follows.  

A. Problem Formulation  

Let G(V, E) be an undirected weighted graph where V is 
the set of vertices and E is the set of edges. e(vi , vj ) ∈ E if 
and only if vertices vi , vj ∈ V are connected by an edge. Let 
w(vi , vj ) be the weight of the edge e(vi , vj ). For this use-
case, we consider the weight of the edge to be the amount 
of time it takes to travel from vi to vj . This time is taken to 
be directly proportional to the Euclidean distance 
between the vertices. For simplicity, if two vertices vi and 
vj are connected by an edge, let the time taken to travel 
between them be equal to the Euclidean distance between 
them. A single source vertex s and multiple target vertices 
ti where i ∈ {1, 2, ..., n} (n ≥ 1) are given. 

 The goal is to find the optimal (shortest) path starting 
from s and ending in a target vertex such that the path 
traverses every target vertex ti at least once. Since the 
edge weights correspond to the time taken by the agent to 
traverse edges, it can be seen that the length of the 
shortest path gives the maximum waiting time of the 
subscribers.  

 

B. Organization  

The first part of the paper deals with exploring an Optimal 
Heuristic Search Algorithm to solve the above single-
source multi-target problem. Two different Heuristic 
functions are compared and experimental results are 
discussed. The second part of the paper deals with 
handling the addition of new target vertices while the 
shortest path is being traversed. As described in the 
original problem, the goal is still to minimize the 
maximum waiting time of the subscribers at the target 
vertices. Note that while the waiting time of the original 
target vertices ti is computed as the distance in the optimal 
path from s, the waiting time of the added target vertices tj 
is computed as the distance from the vertex sk at which the 
agent was present when the new target vertices were 
added. Therefore, the maximum waiting time of the 
subscribers is no longer the length of the optimal path. 

1.1 Related Works 

While optimal search problems have been extensively 
studied, their solutions cannot be directly translated to 
solve specific variations of the problem. The single-source 
multi-target problem described above (where a vertex may 
be visited more than once) is commonly solved by 
computing the all-pairs shortest paths between every pair 
of vertex using popular algorithms like [1]. While the all-
pairs shortest path algorithms are polynomial, another 
algorithm that uses their output to permute different visit 
orders of the target vertices is required. This algorithm is 
exponential in the size of the input and makes the solution 
non-polynomial. A similar variant of the problem is to 
disallow paths that visit the same vertex twice. This is 
addressed in [2] and [3]. Note that it is easy to reduce the 
traveling salesman problem to this variant in polynomial 
time. Therefore, this variant is an NP-hard problem. In fact, 
[2] models the input as a TSP and passes it to a TSP solver. 
To be able to compute an efficient path in polynomial time, 
[3] settles for a sub-optimal greedy solution. [4] explores 
various approximation algorithms to identify sub-optimal 
yet efficient paths in a single-source multitarget setting. The 
algorithms discussed in [4] are ”fully polynomial”. That is, 
they are polynomial not only in time and space but also in 
the accuracy of the approximate solution. 
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2. ALGORITHM  

The algorithm is similar to the best-first optimal heuristic 
search for a single-source single-target problem. In order 
to accommodate for multiple targets, the following 
modifications are made. • Each vertex may have multiple 
copies of it present in the successor priority queue. Each 
copy corresponds to a different set of target vertices yet to 
be visited from that vertex. • To initialize the algorithm, a 
copy of the source vertext s is enqueued into the priority 
queue corresponding to set of all target vertices (since 
none have been visited so far). • The heuristic function 
h(vi, {tj}) is a function of the vertex vi and the set of target 
vertices, {tj}, yet to be visited from vi. • The algorithm 
terminates when a copy of a target vertex, corresponding 
to an empty set of target vertices yet to be visited, is 
dequeued from the priority queue. The pseudocode for the 
algorithm is as follows. 

function SEARCH(s, {ti}) 

 expanded ← ∅  

 gScore ← inf map  

 fScore ← inf map 

 gScore[s[{ti}]] ← 0 

 fScore[s[{ti}]] ← h(s, {ti}) 

 queue ← {s[{ti}]} .  

queue is a priority queue ordered by fScore.  

while queue 6= ∅ do  

 v[{tj}] ← queue.poll() 

 if (v ∈ {ti}) ∧ ({tj} = ∅) then 

 return reconstructPath(v) 

 else 

 expanded ← expanded ∪ {v[{tj}]}  

 for neighbor n of v do 

 T ← {tj} − n  

 if n[T] ∈/ expanded then  

 gScoreF romV ← gScore[v[{tj}]] + w(v, n) queue.add(n[T])  

 if gScoreF romV < gScore[n[T]]  

then 

 gScore[n[T]] ← gScoreFromV  

 fScore[n[T]] ← gScore[n[T]] + h(n, T)  

 end if  

 end if  

 end for  

 end if  

 end while  

 return not found  

end function  

A. Complexity Analysis 

 Let |T| < |V | be the number of target vertices. Each 
node may have the following number of copies.  

1C|T| +2 C|T| +3 C|T| + ... +|T| C|T| ∈ O(2|T| ) 

Assuming the time complexity of the heuristic function 
is in O(|T|), the total time complexity is in O(|V |2 |T| 
|E|). Therefore, the time complexity is exponential in 
the input. If |T| ∈ O(log2 |V |), then the time complexity 
would be O(|V | 2 |E|). 

B. Heuristic functions  

The following two heuristic functions are used.  

• hmin(v, {tj}) = minj (dist(v, tj )) 

 • hmax(v, {tj}) = maxj(dist(v, tj ))  

The first heuristic function directs the search towards 
the nearest target vertex. The second heuristic function 
directs the search towards the farthest target vertex. 
Note that in the presence of only one target vertex, both 
the functions converge to the heuristic function used in 
the A* algorithm. In fact, in the presence of only one 
target vertex, the entire solution converges to the A* 
algorithm. 

C. Proof of Optimality  

The algorithm terminates when a target vertex is 
expanded and no other target vertex is yet to be visited 
from it. Therefore, the path to the target vertex from 
the source vertex visited every target vertex at least 
once. Such a path is also the shortest path since it has 
the least fScore in the priority queue. Also, it is easy to 
see that both the heuristic functions hmin and hmax 
produce under-estimates of the actual path distances. 
The Euclidean distance between the vertex v and any 
given target vertex tj is lesser than or equal to the 
length of the shortest path that covers v and every 
vertex in {tj}. Therefore, the algorithm produces the 
optimal path when either of the heuristic functions are 
used. 
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D. Online addition of target vertices  

Upon computation of the optimal path for a given 
source vertex s and a set of target vertices T, the agent 
starts traversing that path. However, when the agent is 
midway in a vertex s 0 , a new set of target vertices T 0 
may be added. Let Tu ⊆ T be the set of target vertices 
from the initial set that are still unvisited.  

Therefore, T 0 ∪ Tu is the new set of target vertices and 
s 0 is the new source vertex. However, the vertices in 
Tu have already waited for a time equal to the length 
of the path from s to s 0. Let this be g. In order to 
model this into the algorithm, another map maxWait 
similar to gScore and fScore is maintained. The default 
value is 0. For every copy tk[{tj}] of every vertex tk ∈ Tu, 
maxW ait[tk[{tj}]] is set to g. When a copy of a node 
n[T] is expanded, its maxWait[n[T]] is updated as 
max(gScore[n[T]] + maxWait[n[T]], maxW ait[v[{tj}]]). 
This is used to compute fScore[n[T]] as 
max(gScore[n[T]] + hScore(n, T), maxWait(n[T])).  

In essence, the fScore is computed as the maximum of 
the length of the path or the maximum waiting time of 
a target vertex along the path. Also, since the fScore 
can. Only become higher due to the updated 
computation model (since the max function is used), 
the heuristic functions are still under-estimates. 
Therefore, the algorithm would still produce the 
optimal path that carries the least maximum waiting 
time of its target vertices. The updated algorithm is as 
follows. 

function ONLINESEARCH (s, {ti}, maxWait) .  

The initial maxWait map contains g for unvisited target 
vertices from the initial set and 0 for everything else.  

 expanded ← ∅ 

 gScore ← inf map 

 fScore ← inf map 

 gScore[s[{ti}]] ← 0 

 fScore[s[{ti}]] ← h(s, {ti}) 

 queue ← {s[{ti}]} 

queue is a priority queue ordered by fScore. 

 while queue 6= ∅ do 

 v[{tj}] ← queue.poll() 

 if (v ∈ {ti}) ∧ ({tj} = ∅) then 

 return reconstructP ath(v) 

 else 

 expanded ← expanded ∪ {v[{tj}]} 

for neighbor n of v do 

 T ← {tj} − n  

 if n[T] ∈/ expanded then  

 gScoreFromV ← gScore[v[{tj}]] + w(v, n) 
queue.add(n[T]) 

 if gScoreFromV < gScore[n[T]]  

 then 

 gScore[n[T]] ← gScoreFromV  

 maxWait[n[T]] ←  

max(gScore[n[T]]+maxWait[n[T]], maxW ait[v[{tj}]]) 

 fScore[n[T]] ←  

max(gScore[n[T]] + h(n, T), maxWait[n[T]]) 

 end if 

 end if 

 end for 

 end if 

 end while 

 return 

 not found 

 end function 

3. IMPLEMENTATION  

A Java swing application was implemented to simulate the 
execution of the path finding algorithm. 

A. Graph Generation  

A heuristic randomized algorithm is used to generate a 
graph whose vertices are placed randomly in the 
Euclidean space. The number of vertices and the 
minimum distance between a pair of vertices is input 
by the user. The application randomly picks a location 
and makes sure that the closest vertex is farther than 
the input minimum distance. If it is not farther, a new 
location is randomly picked. This process is repeated 
until the desired number ofnodes is reached or if too 
many retries are attempted. Once the position of the 
vertices are generated, every pair of vertex within a 
distance is connected by an edge. This distance is 
different for different vertices and is a function of  
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the distance between the vertex and the vertex closest 
to it. Figure 1 is a graph generated using the 
application with 500 vertices and the minimum 
distance between a pair of vertices set to 25. 

 

Fig. 1. 500 vertex graph generated using the application. 

B. Optimal path generation and visualization 

The application allows the user to select a source 
vertex and one or more target vertices. Upon 
selecting the source and target vertices, the 
application runs the algorithm to find the optimal 
path. This path can be visualized in the UI. Figure 2 
is a sample screenshot of the application 
rendering a shortest path. 

C. Online addition of target vertices  

Once an optimal path is rendered, the user may 
select a vertex in the path to mark it as the new 
source. The unvisited target vertices get a marker 
on them to show their initial waiting time. The 
user may add new target vertices. Figure 3 is a 
sample screenshot of the application rendering a 
shortest path after new target vertices were added 
online. 

4. EXPERIMENTS AND OBSERVATIONS  

The observations are made in graphs generated with 500 
vertices and with the minimum distance between a vertex 
pair set to 25. It was observed that this setting produced 

 

 

 

Fig. 2. Optimal path rendered for visualization. 

 

Fig. 3. Optimal path after addition of new target vertices 
online. 

Table I shows the observed number of expansions for paths 
that contain only a single target vertex. As expected, both 
the min and max heuristic functions produce the same 
number of expansions. Also, the number of expansions 
resulting from using the heuristic function is much lesser 
than the number of expansions resulting from not using any 
heuristic function. 

TABLE I 

NUMBER OF EXPANSIONS FOR PATHS WITH A SINGLE 
TARGET VERTEX. THE COLUMNS INDICATE THE 

HEURISTIC FUNCTION USED. 

 

Tables II and III show the observed number of expansions 
for paths that contain three and five target vertices 
respectively. As expected, the max heuristic function is 
more efficient since it produces values closer to the actual 
path length than the min heuristic function. Both the min 
and the max heuristic functions result in far lesser number 
of expansions than that from not using any heuristic 
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function. 

Another observation is that the number of expansions 
(irrespective of which heuristic function is used) is lesser 
than or equal to |V |2 |T|. This is in accordance with the 
theory. 

TABLE II 

NUMBER OF EXPANSIONS FOR PATHS WITH THREE 
TARGET VERTICES. THE COLUMNS INDICATE THE 

HEURISTIC FUNCTION USED. 

 

TABLE III 

NUMBER OF EXPANSIONS FOR PATHS WITH FIVE 
TARGET VERTICES. THE COLUMNS INDICATE THE 

HEURISTIC FUNCTION USED. 

 

5. CONCLUSION 

The single-source multi-target problem was formulated 
and an algorithm was proposed to solve it. The time 
complexity of the algorithm was shown to be polynomial if 
the number of target vertices is in O(log2 |V |). It was also 

shown how the algorithm could be modified to 
accommodate online addition of new target vertices. 
Experiments were run to observe the number of 
expansions. It was observed that the numbers were in 
accordance with the theory. 

6. FUTURE WORK 

If the number of target vertices is not in O(log2 |V |), then 
the algorithm runs in exponential time. It would be useful to 
explore polynomial time algorithms that produce 
approximate sub-optimal solutions when several target 
vertices are present. Another interesting problem to 
consider is the multisource multi-target problem. That is, 
how could we coordinate between multiple agents starting 
from different locations who want to deliver to multiple 
subscribers at different locations. Each subscriber needs to 
be visited by at least one agent. 
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