
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5019

EFFICIENT PUBLIC KEY CRYPTOSYSTEM FOR SCALABLE DATA SHARING

IN CLOUD STORAGE

S. Bhagyalaxmi1, Pradeep S2

1Department of Computer Science and Engineering, Government Engineering College, Kushalnagar, 571234,
Kodagu District

2Assistant Professor BE, M. TECH., Computer Science and Engineering, Government Engineering College,
Kushalnagar, 571234, Karnataka, India

---***---

Abstract - The Cloud storage means the storing the data
online in the form of cloud. Data sharing is one of the
important functionalities in cloud. This approach describes
one of the public key cryptosystems as Key Aggregate
Cryptosystem. This cryptosystem produces constant-size cipher
texts, here decryption is more powerful since any set of cipher
text can be decrypted at only one time by using aggregate key.
which will show how one can communicate or share the data
from cloud securely, efficiently and flexibly.

The concept of this cryptosystem is that one can aggregate or
gather any set of secret keys and from that gathering keys
make single key which is compact. That means, the user who
hold the secret key can send a constant-size aggregate key for
set of cipher text in cloud, but the other encrypted files which is
present outside the set will remain confidential. In this
approach MES-2 that is Modern Encryption Standard-2
algorithm will be used for encryption and PKI (Public Key
Infrastructure) is used for key generation.

Key Words: Cryptosystems, Key Aggregate, Encryption,
MES-2etc, PKI (Public Key Infrastructure), Proxy Re-
Encryption, Lazy Encryption, Third Party Auditor (TPA),
Privacy Preserving Public Auditing, Index Hash Table,
Random sampling, Fragment structure

1. INTRODUCTION

Cloud Storage is a public Data Storage. Every company or
every organization create a cloud or uses a cloud for his
safety purpose. They store huge information in their cloud
related to his institution or organization so that if any
student wants the information then they can directly access
it from cloud. That means the student related to that
organization or institution share the data from cloud.
Sometimes institution’s useful information is also stored in
the cloud, but it is necessary that this information should not
be leakage. Otherwise institution or organization may face
problem, for avoiding this problem user should share data
securely so that useful or secret files related to that
institution or organization should not be leakage.

 There are many methods for avoiding this problem like
oruta, privacy, preserving public key, Security mediator etc.
They all use third Party auditor (TPA) to handle the cloud
data. Here TPA allowed to send the data or share the data to
user. But in key aggregate cryptosystem user will get

aggregate key and by using this key he can get set of
ciphertext that he wants. That means there is no need of TPA
every time to get the data from the cloud here user can
access the data from the cloud directly. Here user send the
request to the server for getting some data, then user will
form only one aggregate key for decrypting these set of the
ciphertext and normally user will get set of the data that he
wants. There is only one key required to share the set of data
hence there is not require number of channel or
communication requirement for sending the large number of
keys for large number of data.

 The key aggregate cryptosystem is public key cryptosystem
because it uses number of keys for encrypting the data and
send another user only one key i.e. aggregate key for
decrypting the set of ciphertext. In the key aggregate
cryptosystem, the master key, public key and ciphertext is of
constant size.

2 LITERATURE SURVEY

2.1 KP-ABE, Proxy Re-Encryption, & Lazy
Encryption

This method is used in 2010 in the paper as "achieving
secure, scalable and fine grain data access control in cloud
computing " by Cong wang, Kui Reno. The aim of this paper
was getting secure, scalable and fine-grained data access at
cloud. Here assume that cloud server is more interested in
file context and user access information than other secret
information. Communication channel between user and
proxy are assumes to be secure under existing security
protocol such as SSL.

The main goal of this paper is helping the data owner to get
fine grain access control on file stored by cloud server.
Generally, data owner wants to prevent cloud sever from
being able to learn both content of the data file and privilege
information which will be access by user. This paper
achieves goal by combining three techniques i.e. attribute
Based Encryption, Proxy Re-encryption and lazy encryption.
Attribute based encryption means cipherext are indexed
with group of attributes and keys which is private are
related with access structures, that control to decrypt
ciphertext which is able to user. In proxy re-encryption a
proxy is provided some information which is special, to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5020

translate a ciphertext under one key into a ciphrtext of
similar message under different key. This scheme should be
able to achieve security goal like user accountability. If all
these goals achieved efficiently that means the system is
scalable.

The drawback of this paper is it uses KP-ABE and Proxy RE
encryption technique. The drawback of KP-ABE is the size of
the key increases as number of attributes. PRE moves the
secure key storage requirement from the delegate to the
proxy. It is, thus, undesirable to let the proxy reside in the
storage server that will also be inconvenient since every
decryption requires separate interaction with the proxy.

2.2 Dynamic Audit Service

This method is used in 2011 in the paper Dynamic Audit
Services for Integrity Verification of Outsourced Storage in
Clouds by Yan Zhu, Gail Joon Ahn. This Paper propose a
dynamic audit service for checking the data integrity of an
untrusted and outsourced storage. The above service is
made based on the following technique:

•Fragment structure: This technique is used here to
maximize the storage efficiency and audit performance. This
audit system introduces a general fragment structure for
outsourced storages.

•Random sampling: Instead of whole checking this method
gives priority to the random checking since it greatly reduce
the workload of audit services.

•Index Hash Table: This technique is introduced here to
support dynamic data operations and to record the changes
of the file block.

•Lightweight: It gives permission to TPA (Third Party
Auditor) for performing audit tasks with the small number of
storages, minimizing communication cost.

The disadvantages of this model are it require special type of
storage for storing data like amazon simple storage, which is
costly and require large bandwidth. This technique also
requires Fragment Structure and Index hash table which
increases complexity.

2.3 Oruta

This is one of the technique for preserving privacy on public
auditing for shared data in the cloud used in 2012 by B.
Wang, B. Li, Hui Li. Oruta is the first privacy preserving
mechanism which allows public auditing on shared data
which is stored in the cloud. This method explains ring
signatures for computing the verification information which
is needed to audit the integrity or collection of shared data.
Here The identity of the signature on each block in shared

data is kept separate from a third-party auditor (TPA), but
he is still able for verifying the integrity or collection of

shared data without retrieving the whole file. It
contains mainly three parties.

•User: Group members can access and modify shared

data created by the original user.

•Cloud server: It is used for storing shared data and
verification information(signature).

•Third party auditor (TPA): It is used to verify the
integrity of data which is shared in the cloud server on behalf
of group member.

The main objective of this method is Public auditability,
Correctness, unforgeability, Identity Privacy. This method
includes mainly 3 algorithms as Keygen, Ring Sign, and Ring
Verify. The limitation of this method is One cannot
distinguish who is provide sign on each block which can
achieve identity privacy.

Figure 2.1 Model includes server, TPA and user.

2.4 Privacy Preserving Public Auditing

This method is introduced in FEB 2013 by C. Wang, S.S.M.
Chow, Q. Wang, K. Ren. The privacy preserving public
auditing support to make secure cloud storage with the help
of third-party auditor. The objective of this paper is Public
auditability, Storage correctness, privacy preserving, Batch
auditing and Lightweight. Here mainly 4 Parties are present
as shown in fig 2.2 as cloud server, Cloud user, Third Party
auditor, Cloud service Provider.

Figure 2.2 The architecture of cloud data storage service.

The public auditing scheme consist of 4 algorithm Keygen,
SigGen, Verify Proof, Gen Proof. Here use MAC technique to
authenticate the data. This method supports dynamic data
where user can modify data like insert, update, delete.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5021

similarly, batch auditing is possible where multiple user can
access stored information at same time. The drawback of this
paper is there may be possibility that data may leak to third
party auditor.

2.5 Security Mediator

This method is introduced in July 2013 by B. Wang, S. S. M.
Chow, M. Li. and H. Li. This method can generate verification
metadata on outsourced data for data owners. The objectives
of this paper are Public Verifiability, Verification Efficiency,
Unforgeability, Anonymity, Data Privacy, Signing Efficiency.
This paper consists of mainly 4 entities as shown in figure 2.3
as Cloud server, Data Owner, Security mediator, Data user.

Figure 2.3 The system module includes Data Owner, Data
user, cloud server and a security Mediator.

It mainly contain & types of algorithm that are Setup, Blind,
Sign, Unblind, Challenge, Response, and Verify. The Security
mediator provides privacy and complexity while sharing the
data from the cloud. Here data can be uploaded to server,
which is encrypted by secret group key. The Drawback of this
approach is it uses only one security mediator which may fail
or less reliable. If it uses multiple SEM then there will require
again seven algorithms for each SEM which increases
complexity.

3. EXISTING SYSTEM

There exist several expressive Attribute Based Encryption
ABE schemes where the decryption algorithm only requires a
constant number of pairing computations. Recently, Green et
al. Proposed a remedy to this problem by introducing the
notion of ABE with outsourced decryption, which largely
eliminates the decryption overhead for uses. Based on the
existing ABE schemes Green et al. Also presented concrete
ABE scheme with outsourced decryption.

In this existing system, a user provides an untrusted server,
say a proxy operated by a cloud service provider with a
transformation key TK that allows the latter to transfer any
ABE cipher text CT satisfied by that users attributes or access
policies into a simple cipher text CT and it only incurs a small

overhead for the user to recover the plain text from
transformed cipher text CT. The security property of the ABE
scheme with outsourced decryption guarantees that an
malicious server be not able to learn anything about the
encrypted message; however, the scheme provides no
guarantee on the correctness of the transformation done by
the cloud server. In the cloud computing setting, cloud service
providers may have strong financial incentives to return
incorrect answers, if such answers require less work and are
unlikely detected by users.

4. PROPOSED SYSTEM

The challenging problem is how to effectively share
encrypted data. Of course, users can download the encrypted
data from the storage, decrypt them, then send them to
others for sharing, but loses the value of cloud storage. Users
should be able to delegate the access rights of the sharing
data to others so that they can access these data from the
server directly.

Above all method allow to TPA (Third Party Auditor) for
checking the presence of file to data owner without exposing
data. But sometimes user is not comfortable with TPA. For
removing this drawback Key aggregate cryptosystem is
introduced. In this method user encrypt their data by using
their own key before uploading to the server. Key aggregate
cryptosystem is one of the public key encryption schemes in
which user encrypt a message under a public key as well as
identifier of cipher text called class. The key owner holds a
one of the delegated key i.e. master-secret key, which is used
to extract secret keys for set of different classes that he want
.By gathering or collecting the extracted key make aggregate
keys which is as compact as possible and by using that one
aggregate key user can decrypt number of cipher text classes
that he require.

Figure 4.1 File sharing by single aggregate key.

Clara shares files with identifiers 2,3,6 and 8 with Jack by
sending him a single aggregate key. In KAC the size of the
cipher text, Public key, Master key and aggregate key are of
constant size. It consists mainly five algorithm Setup, KeyGen,
Encrypt, Extract, Decrypt.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5022

However, finding and efficient and secure way to share
partial data in cloud storage is not trivial. Above we will take
Dropbox as an example for illustration. Assume that Clara
puts all her private photos on Dropbox, and she does not
want to expose her photos to everyone. Due various data
leakage possibilities Clara cannot feel relieved by just relying
on the privacy protection mechanisms provided by Dropbox,
So she encrypts all the photos using her own keys before
uploading. One day, Clara’s friend, Jack, asks her to share the
photos taken over all these years which Jack appeared in.
Clara can then use the share function of Dropbox, but the
problem now is how to delegate the decryption rights for the
photos to Jack. A possible option Clara can choose is to
securely send Jack the secret keys involved. Naturally, there
are two extreme ways for her under the traditional
encryption paradigm: Clara encrypt all files with a single
encryption key and gives Jack the corresponding secret key
directly. Clara encrypts files with distinct keys and sends Jack
the corresponding secret keys. Obviously, the first method is
inadequate since all unchosen data may be also leaked to
Jack.

The encryption key and decryption key are different in public
key encryption. The use of public-key encryption gives more
flexibility for our applications. For example, in enterprise
settings, every employee can up- load encrypted data on the
cloud storage server without the knowledge of the company’s
master-secret key. Therefore, the best solution for the above
problem is that Clara encrypts files with distinct public-keys,
but only sends Jack a single (constant size) decryption key.
Since the decryption key should be sent via a secure channel
and kept secret, small key size is always desirable.

In this approach MES-2 that is Modem Encryption standard
algorithm will be used for encryption. In the Modem
Encryption Standard algorithm there is a use of Modified
generalized vernam cipher method with feedback with
different block size from left to right. Here whole data is
divided into different blocks and then applied vernam cipher
to all blocks with different keys. This method is free from
bruit force attack, differential attack and known plain text

attack. MES-2 used as a independent encryption algorithm
for encrypting short messages like SMS, Password etc.

4.1 Problem Statement

“To design an efficient public-key encryption scheme which
supports flexible delegation in the sense that any subset of
the ciphertexts (produced by the encryption scheme) is
decryptable by a constant-size decryption key (generated by
the owner of the master-secret key).”

 We solve this problem by introducing a special type of
public-key encryption which we call key aggregate
cryptosystem (KAC). In KAC, users encrypt a message not
only under a public-key, but also under an identifier of
ciphertext called class. That means the ciphertexts are
further categorized into different classes. The key owner

holds a master-secret called master-secret key, which can be
used to extract secret keys for different classes. More
importantly, the extracted key can be an aggregate key
which is as compact as a secret key for a single class, but
aggregates the power of many such keys, i.e., the decryption
power for any subset of ciphertext classes. With our solution,
Alice can simply send Bob a single aggregate key via a secure
e-mail. Bob can download the encrypted photos from Alice’s
Dropbox space and then use this aggregate key to decrypt
these encrypted photos. The sizes of ciphertext, public-key,
master-secret key and aggregate key in our KAC schemes are
all of constant size. The public system parameter has size
linear in the number of ciphertext classes, but only a small
part of it is needed each time and it can be fetched on
demand from large (but non-confidential) cloud storage.
Previous results may achieve a similar property featuring a
constant-size decryption key, but the classes need to confirm
to some pre-defined hierarchical relationship. Our work is
flexible in the sense that this constraint is eliminated, that is,
no special relation is required between the classes.

5. REQUIREMENT SPECIFICATION

5.1 Hardware Requirements

1 Processor Pentium-IV

2 Speed 1.1GHz

3 RAM 512 MB (min)

4 Hard Disk 40 GB

5 Keyboard
Standard Windows
Keyboard

6 Mouse Two or Three Button Mouse

7 Monitor LCD/LED

5.2 Software Requirements

1 Front end C# .Net

2
Back end XML

3 Operating System Windows

4 IDE Visual Studio 2010

5.3 Technology Specification

5.3.1 Introduction

Microsoft Visual Studio is an integrated development
environment (IDE) from Microsoft. It is used to develop
console and graphical user interface applications along with
Windows Forms applications, web sites, web applications,
and web services in both native codes together with
managed code for all platforms supported by Microsoft
Windows, Windows Mobile, .NET Framework, .NET Compact
Framework and Microsoft Silverlight. It accepts plug-ins that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5023

enhance the functionality at almost every level including
adding support for source-control systems (like Subversion
and Visual SourceSafe) and adding new toolsets like editors
and visual designers for domain-specific languages or
toolsets for other aspects of the software development life
cycle (like the Team Foundation Server client: Team
Explorer)

5.3.2 NET Framework

The .NET Framework is a software framework that runs
primarily on Microsoft Windows. It includes a large library
and supports several programming languages which allow
language interoperability (each language can use code
written in other languages).

Programs written for the .NET Framework execute in a
software environment (as contrasted to hardware
environment), known as the Common Language Runtime
(CLR), an application virtual machine that provides
important services such as security, memory management,
and exception handling. The class library and the CLR
together constitute the .NET Framework. The .NET
Framework introduces a Common Type System, or CTS. The
CTS specification defines all possible data types and
programming constructs supported by the CLR and how they
may or may not interact with each other conforming to the
Common Language Infrastructure (CLI) specification.

5.3.3 C# Programming Language

C# is a multi-paradigm programming language
encompassing strong typing, imperative, declarative,
functional, generic, object oriented and component-oriented
programming disciplines.

5.3.4 Visual Studio IDE

Visual Studio does not support any programming language,
solution or tool intrinsically, instead allows the plugging of
functionality coded as a VS package. When installed, the
functionality is available as a Service. The IDE provides three
services: SVs Solution, which provides the ability to
enumerate projects and solutions; SVsUIShell, which
provides windowing and UI functionality (including tabs,
toolbars and tool window); and SVsShell, which deals with
registration of VS Packages. In addition, the IDE is also
responsible for coordinating and enabling communication
between services. All editors, designers, project types and
other tools are implemented as VS Packages. The Visual
Studio SDK also includes the Managed Package Framework
(MPF), which is a set of managed wrappers around the COM-
interfaces that allow the Packages to be written in any
language. However, MPF does not provide all the
functionality exposed by the Visual Studio COM interfaces.
The services can then be consumed for creation of other
packages, which add functionality to the Visual Studio IDE.

Visual Studio supports different programming languages by
means of language services, which allow the code editor and
debugger to support (to varying degrees) nearly any
programming language, provided a language-specific service
exists. Built-in languages include C/C++ (via Visual C++),
VB.NET (via Visual Basic .NET), C# (via Visual C#), and F#
(as of Visual Studio 2010). Support for other languages such
as M, Python, and Ruby among others is available via
language services installed separately. It is also supporting
XML/XSLT, HTML/XHTML, JavaScript and CSS. Individual
language-specific versions of Visual Studio also exist which
provide more limited language services to the user:
Microsoft Visual Basic, Visual J#, Visual C#, and Visual C++.

5.3.5 Features

Visual Studio, like any other IDE, includes a code editor that
supports syntax highlighting code and using IntelliSense for
not only variables, functions and method but also language
constructs like loops and queries. IntelliSense is supported
for the included languages, as well as for XML and for
Cascading Style Sheets and JavaScript when developing web
sites and web applications. Auto complete suggestions are
popped up in a modeless list box, overlaid on top of the code
editor. The code editor is used for all supported languages.
The code editor also includes a multi-item clipboard and a
task list. The code editor supports code snippets, which are
saved templates for repetitive code and can be inserted into
code and customized for the project being worked on. Visual
Studio features background compilation. As code is being
written, Visual Studio compiles it in the background in order
to provide feedback about syntax and compilation errors,
which are flagged with a red wavy underline.

5.4 XML Database

An XML database is a data persistent software system that
allows data to be stored in XML format. These data can then
be queried, exported and serialized into the desired format.
They are usually associated with document-oriented
databases. This XML document does not do anything. XML is
just information wrapped in tags. Someone must write a
piece of software to send, receive, store or display it.

6. SYSTEM DESIGN

Systems design is a process of defining the architecture,
computer, modules, interface, and data for a system to
satisfy specified requirements. Systems design could be seen
as the application of system theory to product development.

Designing a system requires that someone think about the
right way to decompose the functionality, and how create a
small set of abstractions that can be re-used and re-
combined to provide the needed functionality. The notion
that anything that shows some kind of design is therefore the
result of some conscious activity of design is a confusion that
is based on an ambiguity in the term design. On one sense of
the word, design is a property of some object such as a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5024

program, a system, or the like that merely indicates that
there are parts that interact. On another sense of the word,
design indicates the activity of determining what the parts of
some larger whole should be, and how those parts will fit
together. While anything that is the result of the activity of
design will itself have a design, it does not follow that
anything that has the property of a design is therefore the
result of the activity of design.

Good system design requires not only talent but the training
that supplies the needed technique to go along with that
talent. System design is not something that can be covered in
a class but is learned through a much longer process that is
more like an apprenticeship than anything else. Such
apprenticeships are not the sort of thing that our educational
system is set up to provide, at least at the undergraduate
level, and is not going to be provided by some change in the

set of courses that make up the curriculum.

6.1 Modules

 Manage Course/Materials/Student Module
 File Upload Module
 Key Sharing Module
 File Access Module

6.1.1 Manage Course/Materials/Student Module

Algorithm used: Shamir Secret Sharing.

This module is used by the data owner to generate a
encryption keys. On input a security level parameter, this
module will generate keys for data encryption. In this
module it Manages Courses, Files, Students and File Sharing.

6.1.1.1 Data Encryption

Algorithm used: Symmetric Key Algorithm. This module is
used by data owner who wants to encrypt data. Firstly, the
data owner inputs the key generated along with a message
that needs encryption and this module outputs a ciphertext.

 Manage Course
The respective name of the courses with the master key
saved in the structured format.

 Manage Files
Here to manage files the respective courses is selected

and browsed with a file location. Therefore, the browsed
files and the course with respective tittle is provided
with the file key. Then, it is uploaded and if any
alteration is needed it can be reset using the reset
button. Again here the files are managed in structural
order with file index, file tittle and file key.

 Manage students
The student’s id with the password, full name, DOR, and
course name is saved and updated by using the reset
button.

 Manage File Sharing
The file sharing has an important role in encrypting the
sharing files. We have particular name of the courses is
indexed with title and the file key has been generated to
those files. The respective student name is selected to
whom the user has to provide the access to the files.
Once the file key has been allotted to respective course,
the aggregated key is generated. By using hash code
result the aggregated key is generated by pairing it with
file keys. Sharing is done by creating xml documents and
file path. Then it generates shared id and file indexes.
The sharing is done in structured format such has
course name, student id and can be reset for further any
changes. The public key is encrypted, and which can be
decrypted using private key. The private key sent by the
user is also encrypted which can decrypted later using
master key. Once private key is encrypted then by using
aggregate key, we can encrypt public key to access the
files from the cloud storage.

6.1.2 File Upload Module

Algorithm used: TCP-Remoting. This module is used by the
data owner to upload encrypted data on a untrusted server.

 Here by using runtime remoting channels and
runtime remoting TCP channels the data owner
can transmit or can authenticate with the client.

 The port id with which it is connecting is registered
by using channel services for registering channel.

 It invokes the client client and servers by getting the
name of port id.

6.1.2.1 Key Extract

Algorithm used: Shamir Secret Sharing. This module is used
by the data owner for delegating the decrypting power for a
certain set of cipher data to the delegate (data user). On
input the encryption keys and a set of indices corresponding
to different cipher data’s, it outputs the aggregate key.

 Here data owner uses the rijndael algorithm for
extracting encryption key.

 The cipher text which is in the form of plain text is
converted to plain byte.

 By using RFC derive byte we encrypt the main key
by adding salt data to the secret key.

 By using 32 byte main key and 16 byte IV the RMO
is found.

 The RMO (Rijndael Managed Object) is encrypted by
using which data gets encrypted.

 Hence once the file key is encrypted the aggregated
key is formed by using main key, random values and
hash code results.

 Then again, the keys are splits according to the
distribution of respective course and data sharing to
users.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5025

6.1.2.2 Generation of Aggregate Key

 The number of keys that have to be generated that
is given by the file owner.

 Random no of values are generated with the click.
 For generating the aggregate key Shamir uses the

main key, random values and hash code.
 For example,

Consider the random values:

1234
Key values
1 1111
2 2222
3 3333
4 4444
5 5555
6 6666

 Therefore,

1234 + H(2) + H(3) + H(4) = Aggregate key

 1234 +2 + 3 + 4 = 1243

 Aggregate key = 1243

 Hash code result,
 2, 3, 4 H(2) + H(3) + H(4) = 9

 Aggregate key - Hash code result = Main key
 1243 - 9 = 1234

 For reconstructing the result of 1234 that is main key

is again added with the hash code result that is 9, so
we will get the aggregate key that is 1243.

 If the hash code result is -1 then key is reconstructed.

Here we make use of button called “split key” at the end of
reconstruction of the keys. The keys are splits into respective
keys and value.

6.1.3 Key Sharing Module

Algorithm used: Asymmetric Key Algorithm. This Module is
used by the data owner to share aggregate key among few
data users. Public keys of data users are used by data owner
to encrypt aggregate key and data users will use their private
keys to decrypt the shared aggregate key.

 In this algorithm the generated keys generated new
public and private keys for encryption and
decryption respectively

 The encrypted data is entered, and asymmetric and
symmetric encryption is done.

 Hence the data is decrypted by using asymmetric
and symmetric algorithm.

 In this module the data owner to share aggregate
key among the user whom they want.

 Here the public keys are encrypted by the data
owner and to encrypt the aggregate key the data
user will use their private keys to decrypt the
aggregated keys.

6.1.4 File Access Module

Algorithm used: Symmetric Key Algorithm.

This module is used by a delegate who received an aggregate
key generated by Key Extract Module. On input aggregate
key, the set of indices corresponding to different cipher data,
it outputs the decrypted result. Working of Symmetric
Encryption:

 The cipher text which is in the form of plain text is
converted to plain byte.

 By using RFC derive byte we encrypt the main key
by adding salt data to the secret key.

 By using 32-byte main key and 16 byte IV the RMO
is found.

 The RMO (Rijndael Managed Object) is the
encrypter by using which data gets encrypted.

 Hence once the file keys is encrypted the aggregated
key is formed by using main key, random values and
hash code results.

 Then again, the keys are splitted according to the
distribution of respective course and data sharing to
users.

 PlainText - > PlainByte
 RFCDeriveBytes(SecretKey + SaltData) => MainKey

+ IV
 Using 32ByteMainKey + 16ByteIV =>

RijndaelManagedObject (RMO)
 RMO => Encrypter
 PlainByte => BinaryWriter => CryptoStream

(Encrypter) => MemoryStream => CipherByte
CipherByte -> CipherText

 Therefore, the decrypted aggregated key is used to
resolve the file decryption.

 Thus, after the decryption of the files, the file is
downloaded by user.

 Once the download is finished, the user can end the
process by logging out.

6.2 DETAILED DESIGN

Detailed design of a system is a last design activity before
implementation begins. The hardest design problems must
be addressed by the detailed design or the design is not
complete. The detailed design is still an abstraction as
compared to source code but should be detailed enough to
ensure that translation to source is a precise mapping
instead of rough interpretation.

 Main key

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5026

In detail design we have,
1. Architectural design
2. Flow chart
3. Use case diagram

4. Sequence diagram

6.2.1 Architectural Design

Software application architecture is the process of defining a
structured solution that meets all of the technical and
operational requirements, while optimizing common quality
attributes such as performance security and manageability.

Figure 6.1 System Architecture of Key aggregate

Cryptosystem.

Key aggregate cryptosystem is one of the public key
encryption schemes in which user encrypt a message under
a public key as well as identifier of cipher text called class.
The key owner holds a one of the delegated key i.e. master-
secret key, which is used to extract secret keys for set of
different classes that he want .By gathering or collecting the
extracted key make aggregate keys which is as compact as
possible and by using that one aggregate key user can
decrypt number of cipher text classes that he require. The
system architecture of this KAC is shown in fig 6.1

6.2.2 Flow Chart

It’s a diagram of sequence of movements or actions of people
or things involved in a complex system or activity. Flow
chart is a formalized graphic representation of a logic
sequence, work or manufacturing process, organization
chart, or similar formalized structure. The purpose of flow
chart is to provide people with a common language or
reference point when dealing with a project or process.

The Key Aggregate Cryptosystem method is explained in
above flow Chart that is in fig. As shown in fig. Data
repository will create a key. Then cipher text will be
classified and create indices. After that apply Key Generation
method, in this method create master & public key. Then by
combining master key and public key create aggregate key,
which is generated at some access level either public or
private. Then data will be stored at this access level.
Depending on aggregate key data will outsource to cloud,
which will be stored with IAAS property. After storing data,
data request will be post by user, that request will be send to
cloud server. Then check IASS access level which are public
and private. The public access means, data will be available
without accessing any key whereas the private access means
data should be decrypted with aggregate key. In this way the
flow diagram shows how Key aggregate cryptosystem
shared data securely from the cloud.

Fig 6.2 Flow Chart of Key Aggregate Cryptosystem

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5027

6.2.3 Use Case Diagram

In software and systems engineering, a use case is a list of
steps, typically defining interactions between a role (known
in UML as an "actor") and a system, to achieve a goal. The
actor can be a human or an external system.
The main concepts in use cases are:

 Actor
 Use Case

An Actor is a role of an object or objects outside of a system
that interacts directly with it as part of a coherent work unit.
One physical object (or class) may play several different
roles and be modeled by several actors. An actor is a direct
user of a system-an object or set of objects that
communicates directly with the system but that is not a part
of the system. Actors here are:

 Lecturer

The Lecturer maintains the entire aspects related to the
application, where he can communicate or share the data
from Cloud securely, efficiently and flexibly. The activities
performed by the lecturer are as follows:

1. Lecture generates the Encryption Key.
2. Lecture Encrypt the data.
3. Lecture uploads the Encrypted data to the cloud.
4. Lecture generates the Aggregate key and share the

aggregate key to the student.
5. Lecture maintains the student information.

 Student

The student has to register in to this application. Then only
he can get the Decryption key from the Lecturer and he can
decrypt the encrypted data and download that file from the
cloud.

A Use Case captures some actor-visible function. Achieves
some discrete (business-level) goal for that actor. May be
read, write, or read-modify-write in nature. Each use case
represents a slice of the functionality the system provides. A
name within an ellipse denotes a use case. A “stick man” icon
denotes an actor, with the name being placed below or
adjacent to the icon.

6.2.3.1 Advantages of Use Case Diagrams

 A Use case diagram can help provide a higher-level
view of the system.

 Use case diagrams are the blueprints for the system.

 They provide the simplified and graphical
representation of what the system must actually do.

 Use case diagrams can be a good communication
tool for the stakeholders.

 Another major advantage of the use case modeling
is that it requires the identification of exceptional
scenarios for the use cases. This helps in
discovering suitable alternate requirements in the
system.

Figure 6.3 Use case diagram for Managing
Course/Material/Student Module.

Figure 6.4 Use case diagrams for File Upload Module

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5028

Figure 6.5 Use case diagram for Key Sharing Module.

Figure 6.6 Use case diagram for File Access module.

Figure 6.7 Use case diagram of our Project. Key
Aggregate Cryptosystem KAC.

6.2.4 Sequence Diagram

A sequence diagram in a Unified Modeling Language (UML)
is a kind of interaction diagram that shows how processes
operate with one another and in what order. It is a construct
of a Message Sequence Chart. A sequence diagram shows
object interactions arranged in time sequence. It depicts the
objects and classes involved in the scenario and the
sequence of messages exchanged between the objects
needed to carry out the functionality of the scenario.
Sequence diagrams typically are associated with use case
realizations in the Logical View of the system under
development.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5029

Figure 6.8 Sequence diagram of Key Aggregate
Cryptosystem

In the above sequence diagram, Key aggregate cryptosystem
is one of the public key encryption schemes in which user
encrypt a message under a public key as well as identifier of
cipher text called class. The key owner holds a one of the
delegated key i.e. master-secret key, which is used to extract
secret keys for set of different classes that he want .By
gathering or collecting the extracted key make aggregate
keys which is as compact as possible and by using that one
aggregate key user can decrypt number of cipher text classes
that he require. The sequence diagram of this KAC is shown
in the figure 6.8.

7. IMPLEMENTATION

7.1. Framework

A key-aggregate encryption scheme consists of five
polynomial-time algorithms as follows. The data owner
establishes the public system parameter via Setup and
generates a public/master-secret key pair via KeyGen.
Messages can be encrypted via Encrypt by anyone who also
decides what cipher text class is associated with the
plaintext message to be encrypted. The data owner can use

the master-secret to generate an aggregate decryption key
for a set of cipher text classes via extract. The generated keys
can be passed to delegates securely. Finally, any user with an
aggregate key can decrypt any cipher text provided that the
cipher text’s class is contained in the aggregate key via
Decrypt.

Encryption Key Generation Module: (Shamir Secret
Sharing)

This module is used by the data owner to generate a
encryption keys. On input a security level parameter, this
module will generate a keys for data encryption.

Code Snippet:

private static int _randomValue = 166;
public static double GetSubKeyByIndex(double _mainKey,
int _indexValue)

{
 return _mainKey + _randomValue *
Math.Pow(_indexValue, 1);

}
public static int ReconstructMyKey(Dictionary<double,
double> _keyValuePairs)

{
double result = 0.0;
for (int i = 0; i < _keyValuePairs.Count; i++)
result = result +
(_keyValuePairs[_keyValuePairs.ElementAt(i).Key] *
Lagarange(_keyValuePairs, i));
if (result < 0)
result = result * -1.0;
result = Math.Round(result,
MidpointRounding.AwayFromZero);
return Convert.ToInt32(result);

}
private static double Lagarange(Dictionary<double,
double> _keyValuePairs, int _skipIndex)

{
return Numerator(_keyValuePairs, _skipIndex) /
Denominator(_keyValuePairs, _skipIndex);

}
private static double Numerator(Dictionary<double,
double> _keyValuePairs, int _skipIndex)

{
double _result = 1.0;
for (int i = 0; i < _keyValuePairs.Count; i++)
 {
if (i != _skipIndex)
_result = _result * _keyValuePairs.ElementAt(i).Key;
 }
return _result;

}
private static double Denominator(Dictionary<double,
double> _keyValuePairs, int _skipIndex)

{
double _result = 1.0;
for (int i = 0; i < _keyValuePairs.Count; i++)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5030

 {
if (i != _skipIndex)
_result = _result *
(_keyValuePairs.ElementAt(_skipIndex).Key -
_keyValuePairs.ElementAt(i).Key);
 }
return _result;
 }
}

Data Encryption Module: (Symmetric Key
Algorithm)

This module is used by data owner who wants to encrypt
data. Firstly, the data owner input the key generated along
with a message that needs encryption and this module
outputs a ciphertext.

 Create a Symmetric Algorithm derived a
Rijndael Managed object and specified and IV.

 Create Stream objects that will interface with
the Symmetric Algorithm object

 Create an ICryptoTransform object by calling
the SymmetricAlgorithm.CreateEncryptor
method (when encrypting)
orSymmetricAlgorithm.CreateDecryptor
method (when decrypting).

 Create a CryptoStream object using the
Stream object and the ICryptoTransform
object as defined.

 Read from or write to the Crypto Stream
object depending on the context of the
operation.

Code Snippet:

private static RijndaelManaged
GetRijndaelManaged(string _secretKey)
 {
byte[] _salt =
Encoding.ASCII.GetBytes(_secretKey.GetHashCode().ToStri
ng());
Rfc2898DeriveBytes _key = new
Rfc2898DeriveBytes(_secretKey, _salt);
RijndaelManaged _aesAlg = new RijndaelManaged();
_aesAlg.Key = _key.GetBytes(_aesAlg.KeySize / 8);
_aesAlg.IV = _key.GetBytes(_aesAlg.BlockSize / 8);/
return _aesAlg;
 }
public static byte[] GetCipherByte(byte[] _plainByte, string
_secretKey)
 {
byte[] _cipherByte = null;
RijndaelManaged _aesAlg =
GetRijndaelManaged(_secretKey);
try
 {
ICryptoTransform _encryptor =
_aesAlg.CreateEncryptor(_aesAlg.Key, _aesAlg.IV);

using (MemoryStream _msEncrypt = new
MemoryStream())
 {
using (CryptoStream _csEncrypt = new
CryptoStream(_msEncrypt, _encryptor,
CryptoStreamMode.Write))
 {
using (BinaryWriter _bwEncrypt = new
BinaryWriter(_csEncrypt))
 {
_bwEncrypt.Write(_plainByte);
 }
 }
_cipherByte = _msEncrypt.ToArray();
 }
 }
finally
 {
if (_aesAlg != null)
_aesAlg.Clear();
 }
return _cipherByte;
 }
public static byte[] GetPlainByte(byte[] _cipherByte, string
_secretKey)
 {
byte[] _plainByte = null
RijndaelManaged _aesAlg =
GetRijndaelManaged(_secretKey);
try
 {
ICryptoTransform _decryptor =
_aesAlg.CreateDecryptor(_aesAlg.Key, _aesAlg.IV)
using (MemoryStream _msDecrypt = new
MemoryStream(_cipherByte))
 {
using (CryptoStream _csDecrypt = new
CryptoStream(_msDecrypt, _decryptor,
CryptoStreamMode.Read))
 {
using (BinaryReader _brDecrypt = new
BinaryReader(_csDecrypt))
 {
_plainByte = _brDecrypt.ReadBytes(_cipherByte.Length);
 }
 }
 }

 }
catch
 {
return null;
 }
finally
 {
if (_aesAlg != null)
_aesAlg.Clear();
 }
return _plainByte;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5031

 }
public static string GetCipherText(string _plainText, string
_secretKey)
 {
byte[] _plainByte =
ASCIIEncoding.ASCII.GetBytes(_plainText);
byte[] _cipherByte = GetCipherByte(_plainByte,
_secretKey);
string _cipherText =
Convert.ToBase64String(_cipherByte);
return _cipherText;
 }
public static string GetPlainText(string _cipherText, string
_secretKey)
 {
byte[] _cipherByte =
Convert.FromBase64String(_cipherText);
byte[] _plainByte = GetPlainByte(_cipherByte, _secretKey);
string _plainText = _plainByte != null ?
ASCIIEncoding.ASCII.GetString(_plainByte) : string.Empty;
return _plainText;
 }
}

Data Upload Module: (TCP-Remoting)

This module is used by the data owner to upload encrypted
data on an untrusted server.

Code Snippet:

public class AmazonService
{

const string _awsAccessKey =
"AKIAJQ7OKGUKKPDF25PA";
const string _awsSecretKey =
"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";
AmazonS3Config _s3ConfigObj;
AmazonS3Client _s3ClientObj;
public AmazonService()
 {
_s3ConfigObj = new AmazonS3Config();
_s3ConfigObj.ServiceURL = "s3.amazonaws.com";
_s3ConfigObj.RegionEndpoint =
Amazon.RegionEndpoint.USWest2;
_s3ClientObj = new AmazonS3Client(_awsAccessKey,
_awsSecretKey, _s3ConfigObj);
 }
public bool CreateNewBucket(string _bucketName)
 {
PutBucketRequest _requestObj = new
PutBucketRequest();
PutBucketResponse _responseObj = null;
_requestObj.BucketName = _bucketName;
try
 {
_responseObj = _s3ClientObj.PutBucket(_requestObj);
 }
catch (Amazon.S3.AmazonS3Exception _excep)

 {
if (_excep.StatusCode ==
System.Net.HttpStatusCode.Conflict)
return false;

}
return _responseObj.HttpStatusCode ==
System.Net.HttpStatusCode.OK ? true : false;
 }
public bool DeleteBucket(string _bucketName)
 {
DeleteBucketRequest _requestObj = new
DeleteBucketRequest();
_requestObj.BucketName = _bucketName;
DeleteBucketResponse _responseObj =
_s3ClientObj.DeleteBucket(_requestObj);
return _responseObj.HttpStatusCode ==
System.Net.HttpStatusCode.OK ? true : false;

}
public void UploadFileWithStream(string _bucketName,
string _fileKey, Stream _inputStream)

{
PutObjectRequest _requestObj = new PutObjectRequest();
_requestObj.BucketName = _bucketName;
_requestObj.Key = _fileKey;
_requestObj.InputStream = _inputStream;
_s3ClientObj.PutObject(_requestObj);

}
public void DownloadFileToPath(string _bucketName,
string _fileKey, string _localFilePathWithName)

{
GetObjectRequest _requestObj = new GetObjectRequest();
_requestObj.BucketName = _bucketName;
_requestObj.Key = _fileKey;
GetObjectResponse _responseObj =
_s3ClientObj.GetObject(_requestObj);
_responseObj.WriteResponseStreamToFile(_localFilePath
WithName);

}
public void DeleteFile(string _bucketName, string _fileKey)

{
DeleteObjectRequest _requestObj = new
DeleteObjectRequest();
_requestObj.BucketName = _bucketName;
_requestObj.Key = _fileKey;
_s3ClientObj.DeleteObject(_requestObj);

}
}

Key Extract Module: (Shamir Secret Sharing)

This module is used by the data owner for delegating the
decrypting power for a certain set of cipher data to the
delegate (data user). On input the encryption keys and a set
of indices corresponding to different cipher data’s, it outputs
the aggregate key.

Key Sharing Module: (Asymmetric Key Algorithm)

This Module is used by the data owner to share aggregate
key among few data users. Public keys of data users are used

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5032

by data owner to encrypt aggregate key and data users will
use their private keys to decrypt the shared aggregate key.
Asymmetric crypto Class performs asymmetric encryption
and decryption using the implementation of the RSA
algorithm provided by the cryptographic service provider
(CSP). False - to get Public Key (Won't Include Private
parameters). True - to get Private Key (Include Private
parameters). The following code initializes an
RSACryptoServiceProvider object to the value of a public key
and encrpyt the given data. code initializes an
RSACryptoServiceProvider object to the value of a private
key and decrypt the given data.

Code Snippet:

public class AsymetricCryptoClass

{

public static Tuple<string, string>
GenerateAsymetricKeys()

{

RSACryptoServiceProvider _rsaCryptoObj = new
RSACryptoServiceProvider();

Tuple<string, string> _keyTupleObj = new Tuple<string,
string>(_rsaCryptoObj.ToXmlString(false),
_rsaCryptoObj.ToXmlString(true));

return _keyTupleObj;

 }
public static byte[] GetCipherByte(byte[] _plainByte, string
_publicKeyXmlString)

{
RSACryptoServiceProvider _rsaCryptoObj = new
RSACryptoServiceProvider();
_rsaCryptoObj.FromXmlString(_publicKeyXmlString);
byte[] _cipherByte = _rsaCryptoObj.Encrypt(_plainByte,
true);
return _cipherByte;
 }
public static byte[] GetPlainByte(byte[] _cipherByte, string
_privateKeyXmlString)
 {
try
 {
RSACryptoServiceProvider _rsaCryptoObj = new
RSACryptoServiceProvider()_rsaCryptoObj.FromXmlStrin
g(_privateKeyXmlString);
byte[] _plainByte = _rsaCryptoObj.Decrypt(_cipherByte,
true);
return _plainByte;

}
catch

{
return null;

}
}
public static string GetCipherText(string _plainText, string
_publicKeyXmlString)
 {
byte[] _plainByte =
ASCIIEncoding.ASCII.GetBytes(_plainText);
byte[] _cipherByte = GetCipherByte(_plainByte,
_publicKeyXmlString);
string _cipherText =
Convert.ToBase64String(_cipherByte);
return _cipherText;
 }
public static string GetPlainText(string _cipherText, string
_privateKeyXmlString)
 {
byte[] _cipherByte =
Convert.FromBase64String(_cipherText);
byte[] _plainByte = GetPlainByte(_cipherByte,
_privateKeyXmlString);
string _plainText = _plainByte != null ?
ASCIIEncoding.ASCII.GetString(_plainByte) : string.Empty;
return _plainText;
 }
 }
}

Data Decryption Module:(Symmetric Key
Algorithm)

This module is used by a delegate who received an aggregate
key generated by Key Extract Module. On input aggregate
key, the set of indices corresponding to different cipher
data’s, it outputs the decrypted result.

7.2 Remoting

.NET Remoting is a mechanism for communicating between
objects which are not in the same process. It is a generic
system for different applications to communicate with one
another. .NET objects are exposed to remote processes, thus
allowing inter process communication. The applications can
be located on the same computer, different computers on the
same network or on computers across separate networks.

Microsoft .NET Remoting provides a framework that allows
objects to interact with each other across application
domains. Remoting was designed in such a way that it hides
the most difficult aspects like managing connections,
marshaling data, and reading and writing XML. The
framework provides a number of services, including object
activation and object lifetime support, as well as
communication channels which are responsible for
transporting messages to and from remote applications.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5033

7.2.1 Types of .NET Remotable Objects

There are three types of objects that can be configured to
serve as .NET remote objects. You can choose the type of

object depending on the requirement of your application.

 Single Call

Single Call objects service one and only one request
coming in. Single Call objects are useful in scenarios
where the objects are required to do a finite amount of
work. Single Call objects are usually not required to
store state information, and they cannot hold state

information between method calls.

 Singleton Objects

Singleton objects are those objects that service multiple
clients, and hence share data by storing state
information between client invocations. They are useful
in cases in which data needs to be shared explicitly
between clients, and also in which the overhead of
creating and maintaining objects is substantial.

7.2.2 Marshalling

Object Marshalling specifies how a remote object is exposed
to the client application. It is the process of packaging an
object access request in one application domain and passing
that request to another domain. The .NET Remoting
infrastructure manages the entire marshaling process.

The Remote Object is implemented in a class that derives
from System.MarshalByRefObject . Below You can see the
basic workflow of .Net Remoting from the below figure.
When a client calls the Remote method, actually the client
does not call the methods directly . It receives a proxy to the
remote object and is used to invoke the method on the
Remote object. Once the proxy receives the method call from
the Client , it encodes the message using appropriate
formatter according to the Configuration file. After that it
sends the call to the Server by using selected Channel. The
Server-side channel receives the request from the proxy and
forwards it to the Server on Remoting system, which locates
and invokes the methods on the Remote Object. When the
execution of remote method is complete, any results from
the call are returned back to the client in the same way.
There are two methods by which a remote object can be
made available to a local client object: Marshal by value, and
Marshal by reference.

 Marshalling objects by value

Marshaling by value is analogous to having a copy of the
server object at the client. Objects that are marshaled by

value are created on the remote server, serialized into a
stream, and transmitted to the client where an exact
copy is reconstructed. Once copied to the caller's
application domain (by the marshaling process), all
method calls and property accesses are executed
entirely within that domain.Marshall by value has
several implications; first, the entire remote object is
transmitted on the network. Third, parts of the remote
object may not be serialiazable. In addition, when the
client invokes a method on an MBV object, the local
machine does the execution, which means that the
compiled code (remote class) has to be available to the
client

 Marshalling objects by reference

Marshalling by reference is analogous to having a
pointer to the object Marshal by reference passes a
reference to the remote object back to the client .This
reference is an Objref class that contain all the
information required to generate the proxy object that
does the communication with the actual remote object .
On the network, only parameters and return values are
passed .A remote method invocation requires the
remote object to call its method on the remote host
server. Marshal by reference class must inherit from
System. MarshalByRefObject.

ALGORITHMS USED

8.1 Origin of MES Algorithm

The principle drawback of 3DES (which was recommended
in 1999, Federal Information Processing Standard FIPS PUB
46-3 as new standard with 168-bit key) is that the algorithm
is relatively sluggish in software. A secondary drawback is
the use of 64-bit block size. For reasons of both efficiency
and security, a larger block size is desirable. In 1997,National
Institute of Standards and Technology NIST issued a call for
proposals for a new Modern Encryption Standard (MES),
which should have security strength equal to or better than
3DES,and significantly improved efficiency.In addition, NIST
also specified that MES must be a symmetric block Cipher
with a block length of 128 bits and support for key length of
128, 192 and 256 bits.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 25, NO. 2,FEBRUARY 2014.AES comprises
three block ciphers, AES-128, AES-192 and AES-256. Each
cipher encrypts and decrypts data in blocks of 128 bits using
cryptographic keys of 128, 192 and 256-bits, respectively.
(Rijndael was designed to handle additional block sizes and
key lengths, but the functionality was not adopted in AES.)
Symmetric or secret-key ciphers use the same key for
encrypting and decrypting, so both the sender and the
receiver must know and use the same secret key. All key
lengths are deemed sufficient to protect classified
information up to the "Secret" level with "Top Secret"

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5034

information requiring either 192- or 256-bit key lengths.
There are 10 rounds for 128-bit keys, 12 rounds for 192-bit
keys, and 14 rounds for 256-bit keys.

8.2 Shamir’s Secret-Sharing Algorithm

Shamir's Secret Sharing is an algorithm in cryptography
created by Adi Shamir. It is a form of secret-sharing, where a
secret is divided into parts, giving each participant its own
unique part, where some of the parts or all of them are
needed in order to reconstruct the secret. Counting on all
participants to combine the secret might be impractical, and
therefore sometimes the threshold scheme is used where

any of the parts are sufficient to reconstruct the original
secret

One can write an infinite number of polynomials of
degree 2 through 2 points. 3 points are required to define a
unique polynomial of degree 2. This image is for illustration
purposes only — Shamir's scheme uses polynomials over a
finite field, not representable on a 2-dimensional plane.

The essential idea of Adi Shamir's threshold scheme
is that 2 points are sufficient to define a line, 3 points are
sufficient to define a parabola, 4 points to define a cubic

curve and so forth. That is, it takes points to define a

polynomial of degree .Suppose we want to use a

threshold scheme to share our secret , without loss

of generality assumed to be an element in a finite field of

size where and is a

prime number. Choose at random positive integers

with , and let .

Build the polynomial

.
Let us construct any points out of it, for instance set

 to retrieve . Every participant is
given a point (an integer input to the polynomial, and the

corresponding integer output). Given any subset of of these
pairs, we can find the coefficients of the polynomial using
interpolation. The secret is the constant term .

The following example illustrates the basic idea. Note,
however, that calculations in the example are done using
integer arithmetic rather than using finite field arithmetic. So
we'll explain this problem and show the right way to
implement it (using finite field arithmetic).

 Example: Suppose that our secret is 1234

.

We wish to divide the secret into 6 parts ,

where any subset of 3 parts is sufficient to

reconstruct the secret. At random we obtain two ()
numbers: 166 and 94.

Our polynomial to produce secret shares (points) is
therefore:

We construct 6 points from the
polynomial :

We give each participant a different single point

(both and). Because we use instead of

the points start from and not . This

is necessary because if one would have he

would also know the secret .

 Reconstruction

In order to reconstruct the secret any 3 points will be
enough.

Let us consider ,

.

We will compute Lagrange basic polynomials:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5035

Recall that the secret is the free coefficient, which means

that , and we are done.

9. SOFTWARE TESTING

9.1 Introduction

In software development errors can be injected at any stage
during development. So it is usual thing that every phase will
probably contain some errors. As code is frequently the only
product that can be executed and whose actual behavior can
be observed, testing is the phase where errors remaining
from all the previous phases must be detected. Hence testing
performs a very critical role for quality assurance and for
ensuring the reliability of software. During testing the
program to be tested is executed with a set of test cases and
output of the program for the test cases is evaluated to
determine if the program is performing as expected. Error
refers to the discrepancy between the actual output and
correct output. A test data is a mechanism different from the
program itself that can be used to check the correctness of
the output of the program for the test cases.

9.2 Importance of Testing

 Testing is the measurement of software quality hence, one
of the most important stages in software development. It
involves executing an implementation of the software and its
operational behavior to check that it is performing as
required. One of the main goals of testing is to have a
minimum number of test cases that will find a majority of the
implementation errors.
Some important types of testing are as follows:

 Unit Testing
 Integrated Testing
 System Testing
 Black Box Testing
 White Box Testing

9.2.1 Unit Testing

In unit testing application developer tests the system. The
whole application is made up of different modules. Unit
testing focuses on each sub module independent of one
another, to locate errors. This enables the programmer to
detect errors. While testing the module the concept of trace
and breakpoints are applied at different stages of testing.
The unit testing of this project was done in which each and

every module was tested with certain test data to ensure
that the program works accurately. The unit testing was
carried out successfully.

9.2.2 Integrated Testing

Integrated testing is to test the system as a whole. That is to
test the system when all the modules and its sub modules
are integrated. This testing is done to ensure that all the
modules, which works correctly when independent, works
without any discrepancies when integrated. System testing
ensures that the related modules work together to achieve
the main objective of the application.

The project was tested with all its modules integrated and
ensured that there were no errors. Samples of data were
keyed into the application. It has been seen the application is
working perfectly, to the satisfactory of the user.

9.2.3 System Testing

System testing can be defined in many ways but a simple
definition is that the validation succeeds when the system
function in a manner that reasonably expected by the user.
Validation testing provides the final assurance that the
system meets all the functional, behavioral and performance
requirements.

The project was tested with all its modules and ensured that
there were no errors. It has been seen that the system is
working perfectly, to the satisfaction of the user meeting all

the requirement of user.

9.2.4 Black Box Testing

Black box testing is an approach to testing where the tests
are derived from the program or component specification.
The system is a “black box “whose behavior can only be
determined by studying its inputs and the related outputs.
Black box is only concerned with the functionality and not
the implementation of the software.

Black box testing attempts to derive sets of inputs that will
fully exercise all the functional requirements of a system.
Here the system is a “black-box” whose behavior can only be
determined by studying its inputs and related outputs.

This type of testing attempts to find errors in the following
category:

 Incorrect or missing functions.
 Errors in data structures or external database

access.
 Interface and performance errors.

Therefore,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5036

Figure 9.1 Black-box testing

9.2.5 White Box Testing

White box testing (a.k.a. clear box testing, glass box testing,
transparent box testing, or structural testing) uses an
internal perspective of the system to design test cases based
on internal structure. It requires programming skills to
identify all paths through the software. The tester chooses
test case inputs to exercise paths through the code and
determines the appropriate outputs. In electrical hardware
testing, every node in a circuit may be probed and measured.
Since the tests are based on the actual implementation, if the
implementation changes, the tests probably will need to
change, too.

 White box testing is an approach to testing where the tests are
derived from knowledge of the software structure and
implementation. This testing technique is basically applied
to relatively small program units such as subroutines or
operations associated with an object. The tester can analyze
the code and use the knowledge of a component to derive
test data. The analysis of the code can be used to find out
how many test cases are needed to guarantee a larger test
coverage that is all of the statements in the program or
component must be executed at least once during the testing
process.

Figure 9.2 White-box testing

9.3 Test case

Test case is a set of test inputs, executions, and expected
results developed for a particular objective. An excellent test
case satisfies the following criteria:

 Reasonable probability of catching an error.
 Does interesting things.
 Doesn’t do unnecessary things.
 Neither too simple nor too complex.
 Not redundant with other tests.
 Allows isolation and identification of errors.

9.3.1 Testing Phases

The software testing process has two important phases,
namely, Component Testing and Integration Testing

Component Testing
 It refers to testing of individual components. Each
component is independently tested to ensure that they
function correctly.

Integration Testing
The tested components are integrated in to a sub systems or
a complete system. The testing focuses on functionality
interface between the components and performance of the
system as a whole. The component testing is normally
performed by the programmers whereas integration testing

is carried out by a team of software testers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5037

Table 9.1 Test case name: File Upload and Login

TES
T
CAS
E

DESCRIPT
ION

EXPECTE
D
RESULT

ACTUAL
RESULT

STATUS
OF
EXECUT
ION
PASS/F
AIL

1

Execute
the
application

Applicatio
n should
be
executed
without
any
errors.

Application
executed
successfully
. Pass

2

Verificatio
n of Login
Page

Enter
Username
and
Password.
It should
verify
with XML
database.

Entered
Username
and
Password
are
successfully
verifying
with XML
database. Pass

3

Verificatio
n of the
File
uploading
to the
cloud

File
should be
uploaded
to the
cloud
without
any
interrupts
.

File
uploaded
successfully
. Pass

Table 9.2 Test case name: Student and Files
Management

Test
case 1

DESCRIPTION

Verification for
displaying the student

registration

EXPECTED
RESULT

On selecting the
registration button in

the main menu, the
registration pop up box

must be displayed.

ACTUAL
RESULT

Student registration pop
up box displayed

successfully.
STATUS OF
EXECUTION
PASS/FAIL Pass

Test
case 2

DESCRIPTION
Verification for

registering the student
EXPECTED

RESULT
Student information
should be registered.

ACTUAL
RESULT

The student is
registered successfully.

STATUS OF
EXECUTION
PASS/FAIL Pass

Test
case 3

DESCRIPTION
Verification for finding
the registered student

EXPECTED
RESULT

On selecting the find
button the list of

registered student
information must be

displayed.
ACTUAL
RESULT

Registered student
displayed successfully.

STATUS OF
EXECUTION
PASS/FAIL Pass

Test
case 4

DESCRIPTION

Verification for find
particular file and

student
EXPECTED

RESULT
Information stored
must be displayed.

ACTUAL
RESULT

The information of the
particular file and

student is displayed.
STATUS OF
EXECUTION
PASS/FAIL Pass

Test
case 5

DESCRIPTION

Verification for the
functionality of update

button

EXPECTED
RESULT

Information updation
of the particular file

must be updated
successfully.

ACTUAL
RESULT

Information is updated
successfully.

STATUS OF
EXECUTION
PASS/FAIL Pass

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5038

Test
case 6

DESCRIPTION
Verification for the

delete button

EXPECTED
RESULT

After displaying
particular file and

student, on clicking
delete button a

confirmation pop up
box should appear .

ACTUAL
RESULT

The pop up box with
yes or no appear.

STATUS OF
EXECUTION
PASS/FAIL Pass

Test case
7

DESCRIPTION
Deletion of the student

registration or Files.

EXPECTED
RESULT

On clicking the yes
option of the

confirmation pop up box,
the particular student or
Files should be deleted.

ACTUAL
RESULT

The selected student or
file gets deleted.

STATUS OF
EXECUTION
PASS/FAIL Pass

10. RESULT

 10.1. Managing Course

Screen Description: Lecturer add the course. When new
course is added, a Master Key will be generated. And this
Master Key will be unique for all the courses. We can also
delete or edit the course name.

10.2. Manage Files

Screen Description: Files are added to the Course. Unique
File Key will be generated using the File Index and the
Master Key. File Key along with the File Index are uploaded
to the cloud.

10.3. Manage Students

Screen Description: Students are Registered here using
their Student ID and Password to the appropriate course.
Information of the Student along with their Registered

course will be displayed here.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5039

10.4. Manage File Sharing

Screen Description: The selected Files are shared to the
Students. Information of Files shared among the particular

Student will be displayed.

10.5. Aggregate key

Screen Description: Aggregate key will be generated
using the selected File Index and the Main Key to the
particular Student.

10.6. Student Login

Screen Description: Students can Login using their ID
and Password. And can download the Files from Cloud
Storage. Information of Files being downloaded and shared
are displayed here.

10.7. Files Download

Screen Description: Student can select the Files to
download among the shared Files.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5040

11. CONCLUSION AND FUTURE ENHANCEMENT

How to protect user's data privacy is a main important
question of cloud storage. With the help of mathematical
tools, different cryptographic schemes are more versatile
than proposed scheme and always involve multiple keys for
a single application. Here we study and compare different
tools, different cryptographic schemes are more versatile
than proposed scheme and always involve multiple keys for
a single application. Here we study and compare different
techniques for sharing data securely with other in cloud
storage and found that Key aggregate cryptosystem is more
efficient and secure than other. In this survey we found that
how key aggregate cryptosystem is more secure and provide
more flexibility during sharing of data with other in cloud
storage. Here Modern Encryption Standard-2 algorithm will
be used for encryption which provide more security. The
Modern Encryption Standard algorithm-2 used Vernam
cipher concept. Here the MES-2 algorithm is free from
various type of attack. Here PKI (Public Key Identifier) used
for exchanging a key. A PKI is an arrangement that binds
public keys with respective user identities by means of a
certificate authority (CA).

ACKNOWLEDGEMENT

The satisfaction euphoria that accomplishes the successful
completion of any task would be incomplete without the
mention of people who made it possible, whose constant
guidance & encouragement crowed our efforts with success.

I take this pleasure in extending my deepest gratitude to
beloved Technical project Guide Mr. Pradeep S Department
of Computer Science and Engineering for being a constant
source of motivation; I thank him for his special interest &
seemingly unlimited belief in us which has made this project
work a grand success.

We wish to acknowledge our un-payable debts of gratitude
which we owe to Mrs.Vani. V G Head of the Department,
Computer Science and Engineering, for her meticulous
guidance, perceiving interest, mesmerizing thoughts &
stimulated encouragement right from the start of Technical
Seminar to its successful completion.

To note appreciation of those people who stand out most
notable in our mind. We wish to express our deep sense of
gratitude to Dr.VENKATESH D BEMMATHI Principal of
Government Engineering College, Kushalnagar without
whose erudite comments & streamlined guidance, this
dissertation work would not have attend greater heights.

Finally, I thank the almighty, my parents & all the staff
members of Computer Science for their Support in preparing
this dissertation work.

REFERENCES

[1] Cheng-Kang Chu, Sherman S. M. Chow, Wen-Guey Tzeng,
Jianying Zhou, and Robert H. Deng,Senior Member, IEEE,
"Key-Aggregate Cryptosystem for Scalable Data Sharing in
Cloud Storage" IEEE Transaction computer,2014.

[2] S. J. Manowar, A.M. shahu, "Introduction to Modern

Encryption Standard (MES)-II: An independent and efficient
Cryptographic approach for Data Security" IJCSIT2014.

[3] J. suba, Seenivasan , "Multi Owner Data Sharing with
Privacy Preserving in Cloud Security Mediator" IJSR 2014

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, "Storing Shared
Data on the Cloud via Security-Mediator," Proc. IEEE 33rd
Int'l Conf. Distributed Computing Systems (ICDCS), 2013.

[5] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou,
"Privacy-Preserving Public Auditing for Secure Cloud
Storage," IEEE Trans.Computers, vol. 62, no. 2, pp. 362-375,
Feb. 2013.

