
                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1139 

Buffer Overflows Attacks & Defense 

Suhas Harbola 

Student, University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha 
University, Delhi, India. 

-----------------------------------------------------------------------***------------------------------------------------------------------------
Abstract—Buffer overflows is one of the most common 
form of security vulnerability. It may lead to an anonymous 
Internet user to gain control (partial or total) of a server. 
Mitigating buffer overflow vulnerabilities we can reduce most 
of the serious security threats. In this paper, we survey the 
various types of buffer overflow vulnerabilities and attacks, 
and survey the various defensive measures that mitigate buffer 
overflow vulnerabilities. 
 
Key Words:  — Buffer overflow, Stack smashing attack, 
bound checking, coding practices.   

1. Introduction 
 

A Buffer is a areas of memory set aside to hold data, often 
while moving it from one section of a program to another, or 
between programs [18]. Programmer use data stored in 
temporary area called buffer before manipulating the data in 
desired format or extracting relevant information from the 
buffer. At times the size of data exceeds the size of the buffer 
this if not controlled causes a memory leakage and distort 
other memory locations. In a buffer-overflow attack, the 
extra or overflow data sometimes contains some specific 
instructions or malicious code added by an attacker which 
may lead to jump to other instructions in the original code 
and skip certain code blocks or it may also loop in the 
malicious code. It overruns the buffer's boundary and 
overwrites adjacent memory locations. 

Buffer overflows occur when n bytes are written into a 
memory area (buffer) of size less than n bytes. If an attacker 
gains direct or indirect control of what is written into this 
memory area, she can carry out buffer overflow attack(s). 
Buffer overflows have been one of the most widely exploited 
vulnerabilities, and have led to several high-profile 
successful attacks. 

Attacker would use a buffer-overflow exploit to take 
advantage of a program that is waiting on a user’s input. 
There are mainly two types of buffer overflows: stack-based 
and heap-based[18]. Some attacks are difficult to perform 
and the attacker must have good knowledge of the system, 
Heap-based is a good example, it floods the memory space 
reserved for a program. Most common type of attack is 
Stack-based buffer overflows, it exploit applications and 
programs by using what is known as a stack: memory space 
used to store user input. 

 

These kinds of attacks enable anyone to take total control of 
a host, they represent one of the most serious classes 
security threats. Buffer overflow vulnerability presents the 
attacker with exactly what they need: the ability to inject and 
execute attack code[1]. The injected attack code runs with 
the privileges of the vulnerable program, and allows the 
attacker to bootstrap whatever other functionality is needed 
to control (“own” in the underground vernacular) the host 
computer. 

Buffer overflow vulnerabilities and attacks come in a variety 
of forms, which we describe and classify in Section 2. 
Defenses against buffer overflow attacks similarly come in a 
variety of forms, which we describe in Section 3, including 
which kinds of attacks and vulnerabilities these defenses are 
effective against. Section 4 discusses which combinations of 
defenses complement each other. Section 5 presents our 
conclusions. 

2. Vulnerabilities and Attacks 
 

The main objective of of attacker behind the buffer overflow 
attacks is to either deny (either through DoS or DDoS 
attacks) computational resources (processing time and 
memory) to the legitimate user or to steal valuable 
information by exploiting software vulnerabilities or to run 
their malicious code with high privilege. In the first case an 
attacker confuses the software system by overloading 
memory buffer with meaningless data which may lead 
crashing the system. While in the second case the attacker 
loads memory buffer on the target machine with well 
formatted data so as to overcome security validation and 
gain master/root access privileges of the target machine. 
Once the privilege is gained the attacker jumps the control to 
the location where malicious code is kept and it executed 
with the privilege of the running program. This malicious 
code can either be injected or it is already present in the 
memory. It is important to understand that in either case 
buffer overflow is the predominant technique adopted by 
attackers[2].  

The malicious code can be injected in either static, stack and 
heap and buffer overflows can occur in any one or more of 
these space. The malicious code can also be kept in a remote 
location. Although the effects are limited by the area in which 
the overflow occurs. In static spaces global and static 
variables are stored which are defined before the program 



                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1140 

execution and are not deleted. They have mainly fixed and 
contiguous memory address.  

The stack stores data and variables that are allocated and de-
allocated as the process executes. As a function is called its 
variables and other data will be added to the stack thus 
increasing the size of the stack. When a function returns all 
the associated variables and other data leaves the stack and 
the stack size shrinks. In most systems, return addresses, 
processor status information, and call frame pointers are 
also placed on the stack. Return addresses holds the address 
of the next instruction.  

The heap is the space where dynamic allocation is done by 
the program. Dynamically loadable modules are often loaded 
into the heap and then executed. Once the memory is 
allocated in the heap it remains with the variable until the 
process de-allocates it. 

The attacker’s goal is to somehow update the variables, 
return addresses, or function pointers. Variables and 
function pointers may be modified by overflows in any area 
while the return addresses can be modified only on the stack. 
To change the flow of the program and run some malicious 
code with the privilege of the program, return addresses and 
function pointers are altered, that may also lead to system 
crash DoS or DDos. Changing variables means wrong data 
and it may lead to change in the flow if the variable is used in 
a conditional expression. This suggests two broad classes of 
buffer overflow attacks. 

 
Figure 1: (a)Normal stack processing  

(b)Buffer Overflow Attack 

2.1 Data Buffer Overflow 
 

A data buffer overflow occurs when a large input overwrites 
existing data, causing the program to act in a manner that 
violates security or changes the flow. Let’s say that an array 
and a variable is allocated such that variable is just above the 
array. If there is an overflow in the array it will change the 
contents of the variable. The program uses that value and 
gives access to the unauthorized user. This is direct data 
buffer overflow. In case program behavior depends on the 
variable or the variable in turn changes the control variable 
of the program leading to change in the flow of the program. 
It is called indirect data overflow. Attacks that change 
pointers to refer to uploaded data fall into this class. 

2.2 Executable Buffer Overflow/ Stack 
smashing attack 

The attacker injects the malicious code into buffer and alters 
the function pointer or the return address with the address 
of the injected code so that the control jumps to the 
malicious code and it gets executed. The injected code is 
mainly machine understandable code hence the attacker 
must have prior knowledge of the architecture and op-codes 
of the machine. 

Stack smashing attack [19][2] The attacker modifies the 
return address or function pointer so that they point to the 
attacker’s code. This results in change in execution flow to 
the attacker’s code when the corrupted information is 
restored and used by the program counter. In some other 
cases the attacker uses these critical variables to modify the 
contents of GOT entries so that the attacker’s code is loaded 
when dynamically loaded library functions are used. These 
attacks are possible due to the presence of buffer overflow 
vulnerability in the program.  

2.3 Placement new for C++ 
 

“Placement new” facilitates placement of an object/array at a 
specific memory location. When appropriate bound checking 
is not in place, object overflows may occur. Such overflows 
can lead to stack as well as heap/data/bss overflows, which 
can be exploited by attackers in order to carry out the entire 
range of attacks associated with buffer overflow [3]. 
void *operator new (size_t,void *p) throw() {return p;} 
void *operator new[] (size_t,void *p) throw() {return p;} 
 

The first construct is used for allocating a single 
object/data structure, and the second one for arrays. 
“Placement new” expression makes it possible for the 
programmer to “place” an object or a dynamically allocated 
buffer/data structure at a specific memory area. The starting 
address of this specific memory area is passed as a void * to 
the new operator. An example of the use of this expression is 
as follows. Newtext is dynamically allocated 10 bytes 
(sizeof(char) is one byte) starting at an address that is the 
value of text. The address must be a non-null one[3]. 

char *text = new char(10); 
//Place newtext at the starting address of ‘‘text’’ 
char *newtext = new (text) char(10);//uses placement-new 

It allows any address allocated to the process to be used to 
place an object. It does not enforce any bounds checking. 
Neither compile-time or runtime enforcement of bounds 
checking is applied[3]. 

char c; int *b = new (&c) int; 

3. Defences 
The basic approach to protect from buffer overflow attack is 
Secure coding. Writing correct and secure code which checks 
the length of the buffer and the input before trying to fill the 
buffer, this has to be done by the developer himself. The 



                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1141 

other approach can be to make the area that stores stack and 
other data elements as no executable this can be achieved by 
making changes to Operating system, even if the attacker 
injects malicious code the system will not execute that code 
as it is in no executable region. But the attacker does not 
necessarily need to inject code to a buffer overflow attack as 
code can be executed remotely also. Third approach can be 
to array bounds each time an array is accessed, a compiler 
can be designed in a way to do this task. This will never let a 
buffer overflow. But the approach may be a bit expensive. 
The fourth approach can to detect an overflow and alert the 
system about it before exiting. Further various methods of 
detecting an overflow can be classified into algorithmic 
centric or key centric. 

3.1 Coding Securly 
 

One of the basic but expensive thing is to write correct code, 
a code without any error leading to buffer overflow. Making 
the developer responsible. The developers (mostly new 
ones) needs to be trained to counter these kind of attacks 
and bring in their practice the secure ways of programming. 
One should consider using safe code like use strncpy instead 
of strcpy.  

Unsafe: char buf[1024]; gets(buf); 

Safe: fgets(buf, 1024, stdin); 

We can have tools to check for bugs and static analysis of the 
code can be done to minimize the mistakes. Program fuzzy 
can be used which will give random values to the variables 
and errors can be deducted while execution of the program 
with those values but this becomes more complicated if the 
function is big an contains many branches. 

3.2 Operating system based 
 

Non Executable stack provides for defense against buffer 
overflow attacks by disabling execution of instructions from 
stack[2]. This is done by telling the CPU via page protection 
flags that it’s not allowed to execute instructions from stack. 
One has to apply a special patch to the OS. Drawback is that it 
resukts in reduced functionality as signal handling in Linux 
system is done by placing executable code on the stack and 
gcc uses executable stacks for function trampolines for 
nested functions. The attacker can place the code in the heap 
or at a remote location and just overwrite the return address 
or function pointer to point to the attack code.  

3.3 Checking Array Bound 
 

Injection of a code is not necessary for a buffer overload 
attack thus a non executable storage does not completely 
stop a buffer overload attack. It fails when the code is already 
present in the program or is at remote location and the 
attacker is able to alter the return/function pointers to that 

code. Not letting the array buffer to overflow will completely 
stop these kinds of attack. This technique is very time 
consuming. 

[2] To implement array bounds checking, then all reads and 
writes to arrays need to be checked to ensure that they are 
within range. The direct approach is to check all array 
references, but it is often possible to employ optimization 
techniques to eliminate many of these checks. There are 
several approaches to implementing array bounds checking, 
as exemplified by the following projects. 

3.3.1  Compilers 
 

The C and C++ compiler can be created or the existing ones 
can patched to check the array bounds for each array access. 
As this is a time consuming process optimization can also be 
employed. Few such examples are discussed. 

3.3.1.1 Compaq C  
 

The Compaq C compiler for the Alpha CPU supports a limited 
form of array bounds checking when the “-check_bounds” 
option is used. The bounds checks are limited in the 
following ways: 

 only explicit array references are checked, i.e. 
“a[3]” is checked, while “*(a+3)” is not 

 since all C arrays are converted to pointers when 
passed as arguments, no bounds checking is 
performed on accesses made by subroutines 

 dangerous library functions (i.e. strcpy()) are not 
normally compiled with bounds checking, and 
remain dangerous even with bounds checking 
enabled. 

Because it is so common for C programs to use pointer 
arithmetic to access arrays, and to pass arrays as arguments 
to functions, these limitations are severe. The bounds 
checking feature is of limited use for program debugging, 
and no use at all in assuring that a program’s buffer overflow 
vulnerabilities are not exploitable[1]. 

3.3.1.2 Bounds checking for C and C++ 
 

This project added code to the GNU Compiler Collection 
to provide run-time checking pointer and array accesses for 
various bounds errors in compiled code. The primary 
objectives were to handle C++, to avoid changing the ABI (so 
that checked and unchecked code can be freely mixed), and 
to avoid throwing errors on correct code[5].  

3.3.2 Hardware bounds checking 
 

The safety added by bounds checking necessarily costs 
CPU time if the checking is performed in software, however if 
the checks could be performed by hardware then the safety 
can be provided "for free" with no runtime cost. Research 
started since at least 2005 regarding methods to use x86's 



                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1142 

built-in virtual memory management unit to ensure safety of 
array and buffer accesses. In 15 Intel provided their Intel 
MPX extensions in their Skylake processor architecture 
which stores bounds in a CPU register and table in memory. 
As of early 2017 at least GCC supports MPX extensions[4]. 

3.3.3 Type-Safe Languages.  
 

The buffer overflow vulnerabilities is present in C and 
C++ because they lack type safety and provide direct 
memory access. If only type-safe operations can be 
performed on a given variable, then it is not possible to use 
creative input applied to variable foo to make arbitrary 
changes to the variable bar[1]. If new, security-sensitive code 
is to be written, it is recommended that the code be written 
in a type-safe language such as Java or ML. Unfortunately, 
there are millions of lines of code invested in existing 
operating systems and security-sensitive applications, and 
the vast majority of that code is written in C. This paper is 
primarily concerned with methods 

3.4 Detecting and Preventing the overflow 
3.4.1 Pax Address Space Layout Randomization 

(ASLR)  
 

 The attacker who want to take control of the system 
using buffer overflow needs to know the address of critical 
information like return address, saved frame pointer and 
pointer variables on the stack (among others).It depends on 
the ability of the attacker to gain this information. ASLR 
randomizes the base address of the different sections of the 
program memory (stack, heap, code, data and memory-
mapped segments) at load time thus making it difficult for 
the attacker to know the address of the target object. By 
randomizing the memory address of critical information on 
the stack, ASLR breaks down the absolute address 
assumption made by buffer overflow attack. It is the most 
widely used technique in several commercial software 
products, it is susceptible to brute force attacks and in the 
last few years several enhancements have been proposed 
[16]. 

3.4.2 Address space layout permutation (ASLP)  
 

It is similar to ASLR. PaX ASLR randomly relocates the 
stack, heap, and shared library regions with kernel support, 
but does not efficiently randomize locations of code and 
static data segments.In addition to randomization; it 
permutes the order of functions in the code segment and the 
order of data in the data segment[17][2]. This is done in two 
ways. First, we create a novel binary rewriting tool that 
randomly relocates static code and data segments, randomly 
re-orders functions within code segment, and data objects 
within data segment. Our rewriting tool operates directly on 
compiled program executable, and does not require source 
code modification.  

We only need the relocation information from the 
compile time linker to perform the randomization rewriting. 

Such information is produced by all existing C compilers. 
Second, to randomly permute stack, heap, and memory 
mapped regions, we modify the Linux kernel. Our kernel 
changes conserve as much virtual address space as possible 
to increase randomness. This allows ASLP to support 
randomization data much finer level than ASLR. ASLP 
performs randomization at compile time and is implemented 
by modifying the compiler and linker, where as in ASLR, 
randomization is done at load time and implemented by 
modifying the kernel. Unfortunately the published 
implementation randomizes only the base addresses of code 
segment and code segments.Hence, it gives no greater 
security than ASLR against derandomization attacks. 

3.4.3 Address space randomization (ASR)  
 

This is similar to ASLP. In addition to permutation of 
variables, it permutes the order of objects in code and static 
data segments. It also introduces random gaps between 
objects (randomly pad stack frames or malloc()’ed regions) 
[2]. This approach relies on source code transformation tool 
to perform the randomization. It cannot protect against 
corruption of nonpointer data as well as pointer-valued data. 

3.4.4 StackShield  
 

StackShield[7] copies the return address to a separate 
memory space thus protecting it from the overflow attack. 
The saperate memory space is called retarray which is a non-
overflowable (a write protected) area.When the function 
returns the address is restored from retarray. But there are 
methods to trick this as shown in [8], [9]. 

 
Figure 2: StackShield 

 
3.4.5 StackGuard  

 
StackGuard [1] is a compiler technique for providing code 

pointer integrity checking to the return address in function 
activation records. StackGuard is implemented as a small 
patch to gcc that enhances the code generator for emitting 
code to set up and tear down functions. It places a “canary”4 
before the return address on the stack. While returning the 
canary is verified before moving on to the return address if 
any change is found the execution or jump to return address 
is hault.The canary can be a random value (Random 
Canary)or a deterministic value(Terminator Canary). 
Bypassing of this technique is explained in [8],[9]. 

https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)


                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1143 

 
Figure 3: (a) Terminator Canary(b) Random Canary 

 
3.4.6 PointGuard  

 
PointGuard defense against pointer corruption consists of 

encrypting pointer values in memory and only decrypting 
the pointers when they are loaded into CPU registers. 
PointGuard sits between the CPU level 1 cache and registers, 
it is very important that PointGuard be fast[10]. 

 

 
(a)

 

(b) 

Figure 4: (a) Normal Pointer Attack (b) PointGuard[10] 

3.4.7 StackArmor 
 

StackArmor provides an implementation for load time 
randomization technique. StackArmor performs inter-frame 
randomization by permuting the layout of the stack frames 
in the memory. The solution while implemented into the 
compiler relies on the control flow graph of the program. The 
major drawbacks are lack of intra-frame randomization and 
dependency on the need for an accurate control flow graph 
of the program binary[6]. 

 
3.4.8 Instruction Set Randomization (ISR) 

 
Instruction Set Randomization (ISR) is a general 

approach that defeats all types of remote code-injection 
regardless of the way it was injected into a process[11]. It 
create new instruction sets for each process executing within 
the same system. Code-injection attacks against this system 
are unlikely to succeed as the attacker cannot guess the 
transformation that has been applied to the currently 
executing process[12]. For encoding the machine 
instructions of the process a key is used, encoded 
instructions are stored in the processor memory and when 
the instructions are passed to the CPU decoding is done 
using the same key. It operates by randomizing the 
instructions that the underlying system “understands”, so 
that “foreign” code such as the code injected during an attack 
will fail to execute. If the attackers had access to the machine 
and the randomized binaries through other means, they 
could easily mount a dictionary or known-plaintext attack 
against the transformation and thus “learn the language” 

3.4.9 Randomized instruction set emulation (RISE) 
  

Randomized instruction set emulation (RISE) a technique 
that deliberately obscures the standardized machine 
instruction set using a private randomized scrambling 
mechanism [13]. The scrambling function is designed so that 
it is infeasible to create code sequences to perform a desired 
function (e.g., an attack) without access to a long secret key 
that is unique to each program execution.[2] It uses the 
secret key to scramble the binary using a randomizing loader 
and the scrambled version is stored in the emulator memory. 
Then, during the instruction fetch cycle, it unscrambles the 
fetched instructions, yielding unaltered machine code 
runnable on the physical machine. It does not protect against 
attacks that depend on data only attacks. RISE aims to 
protect the system from binary code injection attacks 
(injected over the network) into an executing program. RISE 
and ISR need the support of a virtual environment and incur 
significant overhead in terms of program execution time. 

3.4.10 Data space randomization (DSR) 
 

Data space randomization (DSR) The basic idea behind 
DSR is to randomize the representation of different data 
objects. One way to modify data representation is to xor each 
data object in memory with a unique random mask 



                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1144 

(“encryption”), and to unmask it before its use 
(“decryption”).It is easy and much simpler to implement and 
does not need any virtual environment[14].  

3.4.11 Data Structure Layout Randomization(DSLR) 
 

Data Structure Layout Randomization(DSLR) [2] 
randomizes the relative distances between program data 
structures (struct, class, and stack variables declared in 
functions) and also performs permutation of data structures. 
DSLR is implemented in the compiler by adding new 
keywords (obfuscate, reorder, garbage). It provides 
flexibility by allowing the user to choose the above keywords 
in any combination. The major limitation of this technique is 
that the number of possible permutations is a function of the 
number of the data structures (represented by n) and the 
number of data elements in each data structure (represented 
by m). The total number of possible combinations is given by 
formula (m!)n. In reality this is not a large number as most 
functions take only 3-4 arguments. 

3.4.12 Function Frame Runtime Randomization 
 

FFRR technique transforms the stack by adding random 
number of words before the memory is allocated to the local 
variables in the stack. The representation of the random 
numbers is taken as function of time. The numbers are 
chosen priori by the function prologue using LFSR the most 
recent random number is retained and serves as a seed for 
next random sequence generation. 

This approach increases the cost for each function call. To 
reduce the cost the approach is applied only for buffer-type 
local variables. For each function we bring in the number of 
random variables (for each buffer in the function)  and the 
random values are used to add the random number of words 
(padding) before the each buffer-type local variables. FFRR 
does not impact the existing process for pushing software 
updates or patches as the proposed technique randomizes 
only the run time copy of the program binary[2]. 

 
Figure 5: Function Frame Runtime Randomization [2] 

3.4.13 Heap Memory Randomization 
 

Heap memory randomization is done by over-allocating 
the requested chunk of memory in the heap and then placing 
the returned chunk within the over-allocated chunk. The 
library functions for heap memory management are 
wrapped with randomization code. There is no need of 
source code change of the application as the patches are 
applied to heap memory management mechanism. 

A dual random padding strategy(appending a random 
pad below and above the pointer to the heap memory chunk) 
is  used for every memory allocation. The randomization 
ensures that each heap allocation request gets a different 
buffer during separate instances of running program. The 
internal layout of the heap chunk is different as the pad1 and 
pad1 are different on every run. This approach mitigates 
heap overflow attacks in deployed software [20]. 

 
Figure 6: Allocated heap memory chunk with dual random 

padding [20] 

4. Conclusions 
We have presented a detailed categorization and analysis 

of buffer overflow vulnerabilities, attacks, and defenses. 
Buffer overflows are worthy of this degree of analysis 
because they constitute a majority of security vulnerability 
issues, and a substantial majority of remote penetration 
security vulnerability issues. 

5. References 
 

[1]  C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. 
Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang, 
“StackGuard: automatic adaptive detection and 
prevention of buffer-overflow attacks,” Proc. 7th Conf. 
on USENIX Security Symp., 1998. 



                INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                            E-ISSN: 2395-0056 
                VOLUME: 07 ISSUE: 03 | MAR 2020                   WWW.IRJET.NET                                                                                                           P-ISSN: 2395-0072 
    

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1145 

[2] K. S. Kumar and N. R. Kisore, "Protection against Buffer 
Overflow Attacks through Runtime Memory Layout 
Randomization," 2014 International Conference on 
Information Technology, Bhubaneswar, 2014, pp. 184-
189.  

[3] A. Kundu and E. Bertino, "A New Class of Buffer Overflow 
Attacks," 2011 31st International Conference on 
Distributed Computing 
Systems,Minneapolis,MN,2011,pp.730-739.  

[4] https://en.wikipedia.org/wiki/Bounds_checking  
[5] Bounds checking for C and C++ 

http://www.imperial.ac.uk/pls/portallive/docs/1/1861
9746.PDF 

[6] Design of Experimental Test Bed to Evaluate 
Effectiveness of Software Protection Mechanisms 
Against Buffer Overflow Attacks Through Emulation.pdf 

[7]  StackShield. http://www.angelfire.com/sk/stackshield/ 
[8] G. Richarte, “Four different tricks to bypass stackshield 

and stackguard protection,” Core Security Technologies. 
[9] Kil3r Bulba, “Bypassing StackGuard and StackShield,” 

Phrack, vol. 10, no. 56, 2000.  
[10] C. Cowan, S. Beattie, J. Johansen and P. Wagle, “Point-

Guard: Protecting pointers from buffer overflow 
vulnerabilities,” Proc. 12th USENIX Security Symp., pp. 7-
17, 2003. 

[11] Fast and Practical Instruction-Set Randomization for 
Commodity Systems Georgios Portokalidis and Angelos 
D. Keromytis Network Security Lab Department of 
Computer Science Columbia University, New York, NY, 
USA {porto, angelos}@cs.columbia.edu. 

[12] S.Kc. Gaurav, A.D. Keromytis, and V. Prevelakis, 
“Countering code-injection attacks with instruction-set 
randomization,” Proc. 10th ACM Conf. on Computer and 
Comm. Security, pp. 272-280, 2003. 

[13] E.G. Barrantes, D.H. Ackley, T.S. Palmer, D. Stefanovic, 
and D.D. Zovi, “Randomized instruction set emulation to 
disrupt binary code injection attacks,” Proc. 10th ACM 
Conf. on Computer and Comm. Security, pp. 281-290, 
2003. 

[14] S. Bhatkar and R. Sekar, “Data space randomization,” 
Proc. of the 5th Int’l Conference on Detection of 
Intrusions and Malware & Vulnerability Assessment, pp. 
1-22, vol. 5137 of Springer Lecture Notes in Computer 
Science, 2008. 

[15] Z. Lin, R.D. Riley, and D. Xu, “Polymorphing Software by 
Randomizing Data Structure Layout,” Proc. 6th Intl Conf. 
on Detection of Intrusions and Malware, and 
Vulnerability Assessment, pp. 107-126, 2009. 

[16] Pax, “ASLR,” http://www.pax.grsecurity.net/, 2003. 
[17] C. Kil, J. Jun, C. Bookholt, J. Xu and P. Ning, “Address 

Space Layout Permutation (ASLP): Towards Fine-
Grained Randomization of Commodity Software,” Proc. 
Ann. Computer Security Applications Conf., pp. 339-348, 
2006. 

[18] https://en.wikipedia.org/wiki/Buffer_overflow 
[19] Aleph One, “Smashing the stack for fun and profit,” 

Phrack, vol. 7, no. 49, 1996. 
[20] V. Iyer, A. Kanitkar, P. Dasgupta and R. Srinivasan, 

"Preventing Overflow Attacks by Memory 
Randomization," 2010 IEEE 21st International 
Symposium on Software Reliability Engineering, San 
Jose, CA,2010,pp.339-347 

 

https://en.wikipedia.org/wiki/Buffer_overflow

