

On Some Minimal S-Quasinormal Subgroups of Finite Groups

Sudha Lakshmi .G, Akshaya .G (master in mathematics)

^{1,2}Thassim Beevi Abdul Kadar College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India.

***_____

Abstract: A subgroup H of a group G is permutable subgroup of G if for all subgroups S of G the following condition holds SH = HS < S, H >. A subgroup H is S-quasinormal in G if it permutes with every Sylow subgroup of G. In this article we study the influence of S-quasinormality of subgroups of some subgroups of G on the super- solvability of G.

I.INTRODUCTION:

When H and K are two subgroups of a group G, then HK is also a subgroup of G if and only if HK = KH. In such a case we say that H and K permute. Furthermore, H is a permutable subgroup of G, or H permutable in G, if H permutes with every subgroup of G. Permutable subgroups where first studied by Ore [7] in 1939, who called them quasinormal. While it is clear that a normal subgroup is permutable, Ore proved that a permutable subgroup of a finite group is sub- normal. We say, following Kegel [6], that a subgroup of G is S-quasinormal in G if it permutes with every Sylow subgroup of G. Several authors have investigated the structure of a finite group when some subgroups of prime power order of the group are well-situated in the group. Buckley [2] proved that if all maximal subgroups of an odd order group are normal, then the group is super solvable. It turns out that the group which has many S-quasinormal subgroups have well-described structure.

II.**PRELIMINARIES**

CONJECTURE 1.1.

If H_i is a permutable subgroup of G for all $i \in I$, then

 $< H_i : i \in I > is a permutable subgroup of G.$

CONJECTURE 1.2.

Let H and K be subgroups of G such that $K \le H$ and $K \approx G$. Then H is a permutable subgroup of G if and only if H/K is a permutable subgroup of G/K.

CONJECTURE 1.3.

If H is a permutable subgroup of G and S is a subgroup of G , then $H \cap S$ is a permutable subgroup of S.

CONJECTURE 1.4.

Let H be a p-subgroup of G for some prime p. Then

 $H \in Syl(G)^{\perp}$ if and only if $N_G(H) = O^p(G)$.

III.MAIN RESULT

THEOREM 2.1 Let p be the smallest prime dividing |G|. If P is a Sylow p-subgroup of G such that every minimal subgroup of P is Squasinormal in G, then G has a normal p-complement.

Proof;

Let H be a minimal subgroup of P. It follows from 1.4 that $N_G(H)$ contains $O^p(G)$. Since $P \le N_G(H)$ we have that H is normal in G. Suppose that P has at least two distinct minimal subgroups H₁ and H₂. Then H₁ H₂ = P. Hence P is normal in G. Let r be a prime different from p and R Be a Sylow r-subgroup of G. By the above and 1.4 R normalizes each minimal Subgroup of P.

Since p is a smallest prime dividing |G|, we have that R induces a trivial automorphism group on P/ $\Phi(P)$ ($\Phi(P)$ is a Frattini subgroup of P). This implies G = P × T by Schur Theorem.

Now we may assume that P has only one minimal subgroup H. Then P is cyclic and the assertion follows from Burnside's transfer theorem.

REMARK. It follows from 1.4 that if a minimal subgroup of a Sylow p-subgroup of a group G is S-quasinormal, then it is also normal in G. Moreover G is even p-decomposable, if its Sylow p-subgroup for smallest prime p is non-cyclic and every minimal subgroup of its Sylow p-subgroup is S-quasinormal.

COROLLARY 2.2. Put π (G) = {p₁, p₂, ..., p_n}. Let P_i be a Sylow p_i-subgroup of G, where i = 1, 2, ..., n. If every minimal subgroup of P_i is S-quasinormal in G for all i \in {1, 2, ..., n}, then G is supersolvable

Proof.

Let $p_1 > p_2 > \cdots > p_n$. By Theorem 2.1 G has a normal p_n -complement K. If a Sylow p_n -subgroup P_n is non-cyclic, then by Remark we have $G = K \times P_n$. By induction, K is supersolvable. Therefore, G is supersolvable too. Suppose that P_n is cyclic. Then G = K oP_n, a semidirect product of a normal subgroup K and P_n. By induction K is supersolvable. Moreover all non-cyclic Sylow subgroups of K are normal in G. Denote by H the direct product of all non-cyclic Sylow subgroups of G. Clearly, H is a nilpotent normal Hall subgroup of G. The Frattini subgroup $\Phi(H)$ is normal in G and the group $G/\Phi(H)$ by 1.2 satisfies the condition of the corollary. By induction we may assume that $G/\Phi(H)$ is a supersolvable group provided $\Phi(H) = 1$.

Since the formation U of all supersolvable groups is saturated, this implies that G is supersolvable. Hence we may assume that $\Phi(H) = 1$. we have that H is a direct product of elementary abelian p_i -subgroups for all $p_i \in \pi(H)$. By Schur-Zassenhaus theorem on existence of complements we have G = H o L where L is a Hall subgroup of G with cyclic Sylow p-subgroups for all $p \in \pi(L)$. Now it is enough to show that P o L is a supersolvable group for each Sylow p-subgroup of H. But every minimal subgroup of P is normal in G (see Remark) and the result follows.

THEOREM 2.3. If a group G has a normal p-subgroup P such that G/P is supersolvable and every minimal subgroup of P is Squasinormal in G, then G is supersolvable.

Proof.

We prove the theorem by induction on |G|. Let P₁ be a Sylow p-subgroup of G. If P = P₁, then by Remark after Theorem 2.1 we

have $G = P_1 \circ R$ where R is a Hall p^0 -subgroup of G, isomorphic to G/P. It is easy to see that the Frattini subgroup $\Phi(P)$ is in the Frattini subgroup of G. If $\Phi(G)$ is non-trivial, then $G/\Phi(G)$ is supersolvable by 1.2 and induction. Since the formation U of all supersolvable groups is saturated this implies the supersolvability of G. Hence we may assume that $\Phi(P) = 1$. P is an elementary abelian group. Now the result follows from Remark after Theorem 2.1 If $P = P_1$ is cyclic, then G is clearly supersolvable.

Suppose that $P < P_1$. We may assume that P is non-cyclic. Since G is solvable, it has a Hall p^0 -subgroup H. By Remark after Theorem 2.1 it follows that the subgroup K = HP = H × P. Clearly P is normal in P₁. Hence $Z(P_1) \cap P$ is non-trivial. Let Z be a cyclic subgroup of order p in P $\cap Z(P_1)$. Since G = P₁H, we have Z is normal in G. By induction and 1.2 we get G/Z is supersolvable. Now we obtain the required assertion from the definition of supersolvable group.

COROLLARY 2.4.

Let N be a normal subgroup of G such that G N is supersolvable and $\pi(N) = \{p_1, p_2, ..., p_s\}$. Let P_i be a Sylow p_i-subgroup of N, where i = 1, 2, ..., s. Suppose that all minimal subgroups of each P_i are S-quasinormal in G. Then G is supersolvable.

International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 03 | Mar 2020www.irjet.net

Proof.

We prove the theorem by induction on |G|. From Corollary 2.2 we have N has an ordered Sylow tower. Hence if p₁ is the largest prime in $\pi(N)$, then P₁ is normal in N. Clearly, P₁ is normal in G. Observe that (G P₁) (N P₁) ~= G N is supersolvable. Therefore we conclude that G P₁ is supersolvable by induction on |G|. Now it follows from Theorem 2.3 that G is supersolvable

THEOREM 2.5.

Let P be a Sylow p-subgroup of G where p is the smallest prime dividing |G|. Suppose that all minimal subgroups of $\Omega(P)$ are S-quasinormal in G. Then G has a normal p-complement.

Proof.

Let H be a minimal subgroup of $\Omega(P)$.Our hypothesis implies that H is S-quasinormal in G and so $O^{P}(G) \leq N_{G}(H) \leq G$ by 1.4. Clearly, HO^P(G) $\leq N_{G}(H) \leq G$. If HO^P(G) $\leq N_{G}(H) < G$, then HO^P(G) has a normal p- complement K by induction. Thus K is a normal Hall p⁰ -subgroup of G and so G has a normal p-complement. Now we may assume that $N_{G}(H) = G$, i.e. H is normal in G. If G has no normal p-complement, then by Frobenius theorem, there exists a nontrivial p-subgroup L of G such that $N_{G}(L) / C_{G}(L)$ is not a p-group. Clearly we can assume that $L \leq P$. Let r be any prime dividing $|N_{G}(L)|$ with r = p and let R be a Sylow r-subgroup of N_G (L). Then R normalizes L and so Ω (L) R is a subgroup of N_G (L). Since H is normal in G, we have H $\Omega(L)$ R is a subgroup of G. Now Theorem 2.`implies that (H $\Omega(L)$) R has a normal p-complement and so also $\Omega(L)$ R. Since $\Omega(L)$ R has a normal p-complement, R, and $\Omega(L)$ is normalized by R, then $\Omega(L) R = \Omega(L) \times R$ and so by [5, Satz 5.12, p. 437], R centralized L. Thus for each prime r dividing $|N_{G}(L)|$ with r = p, each Sylow r-subgroup R of N_G (L) centralized L and hence N_G (L) / C_G (L) is a p-group; a contradiction. Therefore G has a normal p-complement.

COROLLARY 2.6. Put π (G) = {p₁, p₂, ..., p_n} where p₁ > p₂ > ··· > p_n. Let P_i be a Sylow p_i-subgroup of G where i = 1,2,...,n. Suppose that all minimal subgroups of Ω (P_i) are S-quasinormal in G. Then G possesses an ordered Sylow tower.

LEMMA 2.7. Suppose that P is a normal p-subgroup of G such that G P is supersolvable. Suppose that all minimal subgroups of Ω (P) are S-quasinormal in G. Then G is supersolvable.

Proof.

We prove the lemma by induction on |G|. Let P₁ be a Sylow p-subgroup of G. We treat the following two cases:

Case 1. P = P₁. Then by Schur- Zassenhous theorem, G possesses a Hall p⁻- subgroup K which is a complement to P in G. The G P

 \sim = K is supersolvable. Since Ω (P) char P and P is normal in G, it follows that Ω (P) is normal in G. Then Ω (P) K is a subgroup of G. If Ω (P) K = G, then G Ω (P) is supersolvable. Therefore G is supersolvable by Theorem 2.3 Thus we may assume that Ω (P) K < G. Since Ω (P) K Ω (P) \propto = K is supersolvable, it follows by Theorem 2.3 that Ω (P) K is supersolvable. we conclude the supersolvability of G.

Case 2. $P < P_1$. Put π (G) = {p₁, p₂, ..., p_n}, where p₁ > p₂ > ··· > p_n. Since G P is supersolvable, it follows by [1] that G P possesses supersolvable subgroups H P and K P such that |G P : H P | = p₁ and |G P : K P | = p_n. Since H P and K P are supersolvable, it follows that H and K are supersolvable by induction on |G|. Since |G : H| = |G P : H P | = p₁ and |G : K| = |G P : K P | = p_n, it follows again by [1] that G is supersolvable.

THEOREM 2.8. Put π (G) = {p₁, p₂, ..., p_n} where p₁ > p₂ > ··· > p_n. Let P_i be a Sylow p_i-subgroup of G where i = 1, 2, ..., n. Suppose that all minimal subgroups of Ω (P_i) are S-quasinormal in G. Then G is supersolvable.

Proof.

We prove the theorem by induction on |G|. By Theorem 2.5 and Lemma 2.7 we have that G possesses an ordered Sylow tower. Then P₁ is normal in G. By Schur-Zassenhaus' theorem, G possesses a Hall p'-subgroup K Which is complement to P₁ in G. Hence K is supersolvable by induction. Now it follows from Lemma 2.7 that G is supersolvable.

COROLLARY 2.9

Let N be a normal subgroup of G such that G N is supersolvable. Put π (N) = {p₁, p₂, ..., p_s}, where p₁ > p₂ > ··· > p_s. Let P_i be a Sylow p_i-subgroup of N. Suppose that all minimal subgroups of Ω (P_i) are S-quasinormal in N. Then G is supersolvable.

Proof.

We prove the corollary by induction |G|. Theorem 2.8 implies that N is supersolvable and so P₁ is normal in N, where P₁ is Sylow p₁-subgroup of N and p₁ is the largest prime dividing the order of N. Clearly, P₁ is normal in G. Since $(G P_1) (N P_1) \simeq G$ N is supersolvable, it follows that G P₁ is supersolvable by induction on |G|. Therefore G is supersolvable by Lemma 2.7 The corollary is proved.

REFERENCES

[1] Buckley, J.: Finite groups whose minimal subgroups are normal. Math. Z. 116 (1970), 15–17.

[2] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter Berlin 1994

[3] Schmid, P.: Subgroups Permutable with All Sylow Subgroups. J. Algebra 207

(1998), 285–293.

[4] Gorenstein, D.: Finite groups. Harper and Row Publishers, New York- Evanston- London 1968.