

A NOVEL APPROACH FOR SOFTWARE DEFECT PREDICTION BASED ON DIMENSIONALITY REDUCTION

Bhushan Salve¹, Pivush Pokharkar², Suriva Pillai³, Rahul Kapse⁴

^{1,2,3}B.E. student, Dept. of Computer Engineering, PHCET, Maharashtra, India ⁴Assistant Professor, Dept. of Computer Engineering, PHCET, Maharashtra, India ***_____

Abstract - Software Defect Prediction is an essential aspect to ensure software quality. Deep Learning techniques can also be used for the same. In this paper, we propose to extract a set of expressive features from an initial set of necessary change measures using Artificial Neural Network (ANN), and then train a classifier based on the extracted features using Decision tree and compare it to three other methods wherein features are derived from a set of initial change measures using dimensionality reduction techniques that include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Kernel PCA. We use five open-source datasets from NASA Promise Data Repository to perform this comparative study. For evaluation, three widely used metrics: Accuracy, F1 scores and Areas under Receiver Operating Characteristic curve are used. The Artificial Neural Network is considered to be outperformed all the other dimensionality reduction techniques. Kernel PCA performed best amongst the dimensionality reduction techniques.

Key Words: Deep Learning, Artificial Neural Network, Principal Component Analysis, Linear Discriminant Analysis, Kernel PCA, Decision Tree, Area under ROC curve.

1. INTRODUCTION

To build high-quality software, defect prediction has become an essential aspect as a lot of time and effort is put in soft- ware testing, and it is debugging otherwise. Defect detection techniques are suggested to help prioritize software testing and debugging; they may suggest components of software that developers are likely to be faulty. A lot of parameters are considered while predicting whether the software is buggy or not which include the number of lines in the code, its complexity, the number of operators and operands used in the system and other factors. We have considered a set of 22 first features to predict whether the module is buggy.

Deep learning is a new area and the most promising one in the machine learning literature, and has been adopted in a lot of research areas and has proven to be very useful, particularly in image processing [10] and speech recognition.

Artificial Neural Network is a deep learning algorithm based on the working of biological neural networks. It has several nodes connected via weighted edges. We propose to

extract a set of expressive features from an initial set of necessary change measures using Artificial Neural Network (ANN) and then train a classifier based on the extracted features using Decision tree and compare it to three other methods wherein features are extracted from a set of initial change measures using dimensionality reduction techniques that include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Kernel PCA. Decision Trees fall under supervised learning method for classification and regression that can easily be visualized. It works by applying classification or regression based on a particular function (here Entropy) on a labeled training set. It splits the population or sample based on the most significant splitter by identifying the most vital variable from the dataset. They work on the principle of Greediness.

PCA, LDA and Kernel PCA are ways used for dimensionality reduction. LDA and PCA are linear transformation techniques, the difference being LDA to be supervised and PCA to be unsupervised. PCA is more of a generic dimensionality reduction technique, while LDA tends to be more specific. PCA treats dataset as a whole while LDA tries to discriminate between classes within the data. On the other hand, KPCA is a non-linear form of PCA, i.e. an extension to PCA that uses kernel methods.

For evaluation, three widely used metrics: Accuracy, F1 scores and Areas under Receiver Operating Characteristic curve have been used. Classification accuracy alone can at times mislead, and hence the other two metrics have also been considered. F1 scores are the weighted average of Precision and Recall taking into consideration both False Positives and False Negatives. The two are the harmonic standard. ROC curve analysis can be considered as a complete report of sensitivity and specificity. The Artificial Neural Network is considered to outperform all the other dimensionality reduction techniques. Kernel PCA performed best amongst the other dimensionality reduction techniques.

RQ1: How effective is a neural network over other dimensionality reduction techniques?

RO2: Can accuracy alone be used for the evaluation of a model?

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 07 Issue: 03 | Mar 2020www.irjet.netp-ISSN: 2395-0072

Fig -1: Block Diagram

2. RELATED WORKS

X. Yang, D. Lo, X. Xia, Y. Zhang and J. Sun [1] used learning algorithms to predict defects at change level. They made use of deep learning algorithm to predict the same. They first created a Deep Belief Network to extract a set of expressive features from the initial set of linear functions. They then used Logistic Regression as a classifier to predict buggy and non-buggy changes. Using F1-scores and cost-effectiveness as performance metrics, they concluded that their model gave better results as compared to a simple Logistic Regression trained model and the approach proposed by Kamei et al. [2].

T. Jiang, L. Tan, and S. Kim [3] felt that different developers have different coding styles, commit frequencies and experience levels, causing different defect patterns and hence built a separate prediction model for each developer. S. Wang, T. Liu, and L. Tan [5] leveraged a Deep Learning algorithm to extract the semantic features of programs from the source code and then applied a Deep Belief network to help the algorithm learn from the extracted features. They used three performance metrics -Precision, Recall and F1-scores to evaluate the algorithm. They concluded that the automatically learned semantic features could significantly improve both within-project and cross-project defect prediction compared to traditional elements.

Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu [7] used Convolutional Neural Network to generate useful features from the original handcrafted features. They then combined the learned elements with the handcrafted features for accurate defect prediction. They evaluated the algorithm based on F-measure and concluded that their approach improved the state-of-the-art method. P.D. Singh and A. Chugh [8] compared 5 Machine Learn- ing algorithms - Particle Swarm Optimization, Naïve Bayes, Decision Tree, Linear Classifier and Artificial Neural Network - on the data sets for Software Defect Prediction. Linear Classifiers outperformed the other algorithms in terms of defect prediction accuracy. Neural Networks, however, had the lowest error rate.

G. E. Hinton and R. R. Salakhutdinov [9] used Deep Autoencoder Network to reduce the dimensionality of data. They described a way to effectively initialize the weights for the neurons so that the Deep Auto-encoder works in a better idea as compared to Principal Component Analysis to produce low dimensionality data.

J. Ali, R. Khan, N. Ahmad, I. Maqsood [13] used the Breast Cancer data sets to compare two classification models, namely, Random Forest and Decision Trees. Using the performance measures as F-Measure, Precision, Accuracy and Recall, they concluded that having the same number of attributes, Random Forest classifier gave better results with large data sets. At the same time, Decision Trees outperformed when the number of instances was comparatively lesser.

Jindal, R. Malhotra, A. Jain [14] used text mining techniques to develop a model to predict the severity level of each defect report based on classification of existing reports using the machine learning system, namely Radial Basis Neural network algorithm. The Area under the Curve (AUC) value, the sensitivity and the correct threshold criterion is known as the cut-off point was used to analyze the Receiver Operating Characteristics (ROC) and predict the results obtained from the model. They concluded that the model gave exceptionally well results in predicting high severity defects than in predicting the faults of the other severity levels.

V. A. Kumar, N. Elavarasan [15] used different feature selection and feature extraction techniques to reduce the dimensionality of high dimensional data. Various statistical measures such as information theory, mutual information, information gain, gain ratio, symmetric uncertainty, correlation and chi-square statistics were used for feature selection. Techniques such as Principal Component Analysis, Principal Feature Analysis, Fisher Criterion and Linear Discriminant Analysis were studied as a part of feature extraction.

Mosci, L. Rosasco, A. Verri [16] use Principal Compo- nent Analysis and Kernel Principal Component

Analysis to reduce the dimensionality of data and investigate their regularisation properties. They conclude that PCA as a preprocessing step is in itself a regularisation step and does not need any separate regularization. They also provide a method to choose an optimal number of parameters for the reduced dimension data.

Varghese, V. Verghese, Gayathri. P and Dr N. Jaisankar [17] did an elaborate study of various feature selection and feature extraction techniques. These include Singular Value Decomposition, Principal Component Analysis, Independent Component Analysis, Canonical Correlation Analysis, Locally Linear Embedding, Linear Discriminant Analysis and Partial Least Squares Regression.

3. EXPERIMENTAL DESIGN AND SETUP

Open source datasets are readily available online. The Five datasets used for this project were taken from NASA Promise Dataset Repository namely pc1, cm1, jm1, kc1, kc2 each having no missing values and 22 attributes that come from McCabe and Halstead features extractors.

Fig -2: Dataset characteristics

Dataset	Language used	Total Instances	Defective Instances	Non- Defective Instances
PC1	с	1,109	77	1,032
CM1	с	498	49	449
JM1	с	10,885	2,106	8,779
KC1	C++	2,109	326	1,783
KC2	C++	522	105	415

Table 1: Characteristics of Datasets

4. APPROACHES

The dataset, used for Software Defect prediction in the project, is taken from NASA Promise Repository. All the 5 data sets have 22 attributes, though each was having a different number of instances. Decision Tree classifier is used to make the model learn from the test set, and then the model is tested on the training set and the performance measures are calculated. However, having so many attributes and instances can lead the model to overfit. Hence, we first reduced the dimensionality of the data to a set of 6 cumulated features using 4 different

techniques and then trained the model using Decision Tree classifier. A detailed comparison was then made based on the performance metrics that include Accuracy, F1- Scores and Area under the Receiver Operating Characteristics (ROC). Following are the algorithms used for Dimensionality Reduction, along with a brief description.

4.1 Artificial Neural Network (ANN)

This algorithm is somewhat based on the human brain or the human nervous system and uses a set of hidden layers with a varied number of nodes called neurons. Each neuron takes inputs from either a few or all of the previous layer neurons and processes the input using initialized weights and an activation function. It then sends the output to many neurons of the next layer. Based on the output and the cost function, the weights are updated over several epochs until the parameters best fit the model. To train our model, we use 3 hidden layers with a different number of neurons.

Fig -3: ANN Architecture

4.2 Principal Component Analysis (PCA)

The PCA is a statistical data analysis method that transforms the initial set of variables into an assorted set of linear combinations, known as the principal components (PC), with specific properties concerning variances. This condenses the dimensionality of the system while maintaining information on the variable connections [17]. The PCA algorithm is applied such that it extracts 6 new independent features that explain most the variance of the dataset, regardless of the dependent variable. Since the final class of each instance is not considered while turning the data into a low dimensional one, hence it is an Unsupervised Model.

4.3 Linear Discriminant Analysis (LDA)

In high dimensional data, it is difficult to find similarities between different data points and hence the model is challenging to analyze. The LDA algorithm maps down the high dimensional data to a low dimensional space which is then fed to the classifier to train the model. LDA aims to maximize the between-class distance and minimize the within-class distance in the dimensionality reduced space [15]. The LDA algorithm is applied such that it extracts 6 new independent features that separate most the classes of the dataset that is the buggy and no buggy instances. Since the extracted features are obtained, taking into consideration the dependent variable, hence it is a Supervised Model.

4.4 Kernel Principal Component Analysis (KPCA)

Standard PCA only allows linear dimensionality reduction. However, if the data has more complex structures that are not well defined in a linear subspace, standard PCA is not going to be of great help. Kernel PCA thus extends conventional principal component analysis (PCA) to a high dimensional feature space using the kernel algorithm. An intuitive under- standing of the Gaussian kernel PCA is that it makes use of the distances between different training data points, which is like k-nearest neighbor or clustering methods [19]. Gaussian kernel PCA reveals more complex hidden structures of the data than standard PCA. Gaussian RBF, Polynomial, Hyperbolic Tangent are some accessible Kernel functions. We leveraged the Gaussian RBF kernel function to reduce the dimensionality of our data set.

4.5 Decision Tree Algorithm

The Decision Tree algorithm that is a supervised learning algorithm and works on principles of Entropy and information gain has been used as a classifier. The entropy of a dataset measures the impurity of the dataset, i.e., how disordered the data set is. The most critical aspect of the Decision Tree algorithm is the attribute selection method employed at each node of the tree since some attributes split the data more purely than other attributes. The algorithm works on the principle of Greediness, i.e., it looks for the solution that appears to be best at the moment without looking at the picture at large. The Decision Tree algorithm uses the Information Gain, which calculates the reduction in Entropy or gains in information, to split the data set using a particular attribute. The algorithm is advantageous as it requires less data cleaning and is not influenced by outliers and missing values to a fair extent.

PERFORMANCE MEASURES

	Predicted Buggy	Predicted Clean
True Buggy	TP	FN
True Clean	FP	TN

Table 3: Confusion Matrix

A. Accuracy

This refers to the ratio of correctly predicted instances of the test set to the total number of instances of the test set.

Accuracy = (TP + TN) / (TP + FN + FP + TN)

B. F1 scores

At times, accuracy paradox can lead to misinterpretation of the results. Hence we take another performance metrics called F1 score into consideration.F1 value is the Precision and Recall harmonic mean, which is also calculated from the confusion matrix. Precision is the ratio of actual correctly predicted positive (buggy) instances to the total number of predicted positive instances (Precision= TP/TP+FN) the recall is also known as sensitivity. The recall is the ratio of actual correctly predicted positive (buggy) instances to the total number of actual positive instances (Recall= TP/TP+FN) Taking the harmonic mean, we get F1 score = 2*Recall*Precision Recall + Precision

C. Area Under the Curve (AUC):

It evaluated the performance of the projected models by plotting the Receiver Operating Characteristics (ROC) curve and evaluating the area under the curve. ROC curve, which is defined as a plot of sensitivity on the y-coordinate versus its 1-specificity (it is defined as the ratio of predicted non-faulty classes to the number of classes nonfaulty) on the x coordinate, is an effective method of evaluating the quality or performance of predicted models.

4.6 VALIDATION METHOD

We have used to hold out cross-validation method to validate the data set. Since all the data sets used had quite a large number of instances, the training set and test set were divided into the ratio 3:1. The instruction set was used to train the classifier and then the model was validated on the test set. Confusion matrix was obtained by applying various dimensional reduction techniques and training the data set by Decision Tree classifier. Accuracy and F1 score thus obtained are the following: We plotted ROC curves and found AUC to check the validity of our model. Following are the ROC curves for the respective confusion matrix.

5. RESULTS

Confusion matrix was obtained by applying various Dimensional reduction techniques and training the data set by Decision Tree classifier. Accuracy and F1 score thus obtained are the following:

DATASET	ALGORITHM			
	ANN	PCA	LDA	KPCA
PC1	0.78	0.70	0.70	0.72
CM1	0.8	0.72	0.75	0.80
KC1	0.73	0.71	0.69	0.70
KC2	0.76	0.72	0.77	0.67
JM1	0.68	0.63	0.64	0.67

Table 4: Accuracy of each technique

DATASET	ALGORITHM			
	ANN	PCA	LDA	КРСА
PC1	0.76	0.68	0.68	0.68
CM1	0.80	0.76	0.76	0.80
KC1	0.74	0.72	0.72	0.71
KC2	0.72	0.70	0.76	0.66
JM1	0.77	0.73	0.76	0.77

Table 5: F1 Scores of each technique

We plotted ROC curves and found AUC to check the validity of our model. Following are the ROC curves for the respective confusion matrix.

Fig -4: Areas under ROC curves using PCA

Fig -5: Areas under ROC curves using LDA

Fig -6: Areas under ROC curves using kernel PCA

Fig - 7: Areas under ROC curves using ANN

DATASET	ALGORITHM			
	ANN	PCA	LDA	КРСА
PC1	0.77	0.69	0.69	0.68
CM1	0.80	0.76	0.76	0.80
KC1	0.74	0.72	0.72	0.71
KC2	0.71	0.70	0.78	0.66
JM1	0.75	0.71	0.73	0.75

Table 6: AUC values of each technique

6. DISCUSSION AND INTERPRETATION

For interpretation purposes, we represent our findings graphically, as follows.

Fig -8: Graphical interpretation considering Accuracy

Fig -9: Graphical interpretation considering F1 Scores

Fig -10: Graphical interpretation considering AUC

We conclude that Artificial Neural Network outperformed the other techniques in 4 out of the 5 datasets considered for defect prediction. This thus shows that Deep Learning can prove to be beneficial when the data under consideration has quite a large number of attributes. Kernel PCA comes out to be better amongst the other dimensionality reduction techniques.

7. THREATS TO VALIDITY

In this section, we discuss the various threats to the Validity of our comparative study.

Construct Validity

We estimate the performance of the model using hold out cross-validation method. Training and test sets are constructed randomly so they may over fit the data. Using other performance estimation techniques, they might give different results. Apart from the considered attributes, there might be other factors affecting the presence of defects.

Internal Validity

The data set used contains information regarding features determined by McCabe and Halstead feature extractors, which are known to have certain limitations.

External Validity

We used only 5 open-source data sets taken NASA Promise Repository, and so our results may not generalize to all software. Replication of this comparative study taking into account other datasets may produce more generalized results.

Conclusion Validity

The datasets being used have a class imbalance problem. So, we used AUC to evaluate the performance of our model, but it can still be partial for non-buggy instances.

8. CONCLUSION AND FUTURE SCOPE

In this paper, we proposed different dimensionality reduction techniques and compared the results obtained on the basis on prediction accuracy, F1- scores and area under the curve. Artificial Neural Network outperformed all the other techniques in terms of accuracy. The best technique available hence depends on the data set and the performance metrics being considered. The research issues that emerged at the start of the paper have also been answered. RQ1: How effective is a neural network over other dimensionality reduction techniques? We conclude that Artificial Neural Network outperformed the other techniques in 4 out of the 5 datasets considered for defect prediction. This show that Deep Learning can prove to be beneficial when the data under consideration has quite a large number of attributes. Kernel PCA comes out to be better amongst the other dimensionality reduction techniques.

RQ2: Can accuracy alone be used for the evaluation of a model? At times, the class imbalance can lead to accuracy paradox. Hence we cannot say that accuracy metrics always gives the correct interpretations. Thus, alongside accuracy, we have also taken into consideration F1-scores and Area under the Receiver Operating Characteristic curve.

In future, we plan to improve the neural network model by changing various parameters which include the number of hidden layers, neurons in each layer, optimizers and the cost function. Various other techniques need to be an experiment for reducing the dimensionality of the parameters, and as per the current techniques, changing the number of components taken can also result in individual improvement. We also plan to test other classifiers such as Naive

Bayes, K-Nearest Neighbors, Kernel Support Vector Machines and ensemble techniques such as Random Forest and compare the results to those found by using Decision Tree classifier.

ACKNOWLEDGEMENTS

We are profoundly grateful to Prof. RAHUL KAPSE for his expert guidance and continuous encouragement throughout to see that this project rights its target since its commencement to its completion. We would like to express deepest appreciation to- wards Dr. MADHUMITA CHATTERJEE, Principal, Pillai's HOC College of Engineering and Technology, Dr. ASHOK KANTHE, Head of Department of Computer Engineering and Prof. RAHUL KAPSE, Project Coordinator who's valuable guidance supported us in completing this project. At last we must express our sincere heartfelt gratitude to all the staff members of Computer Engineering Department who helped us directly or indirectly during this course of work.

REFERENCES

- [1] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, "Deep learning for just-in-time defect prediction," in QRS'15: Proc. of the International Conference on Software Quality, Reliability and Security, 2015.
- [2] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, "A large-scale empirical study of just-in-time quality assurance," TSE, vol. 39, no. 6, pp. 757–773, 2013.
- [3] T. Jiang, L. Tan, and S. Kim, "Personalized defect prediction," in ASE, 2013, pp. 279–28.
- [4] M. Tan, L. Tan, S. Dara, and C. Mayeux, "Online defect prediction for imbalanced data," in ICSE'15, pages 99-108.
- [5] S. Wang, T. Liu, and L. Tan, "Automatically learning semantic features for defect prediction," in ICSE'16: Proc. of the International Conference on Software Engineering, 2016. Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto,
- [6] B. Adams, and A. E. Hassan, "Revisiting common bug prediction findings using effort- aware models," in ICSM, 2010, pp. 1–10.
- [7] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu, "Software Defect Prediction via Convolutional Neural Network".
- [8] P. D. Singh and A. Chugh, "Software Defect Prediction Analysis Using Machine Learning Algorithms," in International Conference on Cloud Computing, Data Science Engineering – Confluence, 2017.
- [9] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.

RJET Volume: 07 Issue: 03 | Mar 2020

- [10] G. E. Hinton, "Learning multiple layers of representation," Trends in cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.
- [11] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams et al., "Recent advances in deep learning for speech research at Microsoft," in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp. 8604–8608.
- [12] F. Rahman and P. Devanbu, "How, and why, process metrics are better," in ICSE, 2013, pp. 432–441.
- [13] J. Ali, R. Khan, N. Ahmad, I. Maqsood, "Random Forests and Decision Trees," in International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012.
- [14] R. Jindal, R. Malhotra, A. Jain, "Software Defect Prediction Using Neural Networks," IEEE Conference 2014.
- [15] V. A. Kumar, N. Elavarasan, " A Survey on Dimensionality Reduction Technique," in International Journal of Emerging Trends Technology in Computer Science, Volume 3, Issue 6, November-December 2014.
- [16] S. Mosci, L. Rosasco, A. Verri, "Dimensionality Reduction and Gener- alization," in the 24th International Conference on Machine Learning, Corvallis, OR, 2007.
- [17] N. Varghese, V. Verghese, Gayathri. P and Dr N. Jaisankar, "A Survey Of Dimensionality Reduction And Classification Methods," in International Journal of Computer Science Engineering Survey, Vol.3, No.3, June 2012.
- [18] Q. Wang, "Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models," Rpi, Troy, NY, USA, 2011. Copyright 2011.
- [19] J. Hanley, BJ. McNeil, "The meaning and use of the area under a Receiver Operating Characteristic ROC curve", Radiology, 143, 1982, pp. 29-36.