
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5306

Server Firmware Management using DMTF Redfish REST API’s

Muteeb Akram Nawaz1, Veena Gadad2

1Student, Dept. of Computer Science and Engineering, R V College of Engineering, Karnataka, India
2Professor, Dept. of Computer Science and Engineering, R V College of Engineering, Karnataka, India

---***---

Abstract - Periodic firmware updates are needed to
improve the functionality of servers, fix any existing software
deficiency, and to provide security from vulnerabilities. This
paper shows a simple and best approach for firmware
upgrades of server components with an industry-standard
protocol Distributed Management Task Force (DMTF) Redfish
and REST API. DMTF is a non-profit organization that
provides industry standards for emerging infrastructures such
as servers, network, cloud, storage, and virtualization. Redfish
is one of the standard technologies offered by DMTF for server
management which leverages common web services and
Internet standards such as HTTP to expose information
directly to the modern tool chain such as REST APIs. API is a
set of functions and procedures that allow one application to
access the features of other applications whereas
REpresentational State Transfer (REST) is a software
architectural style that defines a similar set of rules or
guidelines to build a client-server API for web services

Key Words: Firmware, Server, BMC, REST APIs and
DMTF’s Redfish

1.INTRODUCTION

Data centers are the location where huge computational
power, networking devices are equipped for processing,
sharing, storing large amounts of data. These data centers
play a critical role in running government organizations,
telecommunication industries, businesses, enterprises, and
many more. Data centers consist of several generations of
components from legacy main-frame systems to advanced
rack-based, modular blade servers. Thousands of such
servers make up a data center. Servers have complex
hardware and software structures. Managing such a
diversity of servers and components is a serious problem for
the server industry. To solve this problem, the Distributed
Management Task Force (DMTF) has come up with Redfish.

Redfish is a set of standards that deliver an industry-
standard protocol by using RESTful API architecture for easy
management of server systems such as storage, networking,
and firmware management. Many server industries and their
customers are pushing this technology as it provides a
standard common platform server management. It aims to
provide server vendors and customers a uniform platform
for easy management of servers.

Firmware is a set of instructions or software program that is
programmed on hardware components of a server. It
provides the necessary instructions for how the component

communicates with the other components in the server.
Firmware is typically stored in the flash ROM of a
component. Because flash ROM can be erased and rewritten
since it is a type of flash memory. Firmware updates bring
some changes in the instruction or program, which are
essential for corresponding component performance and
feature improvements as well as to fix the software
deficiency for better security.

The following are the main objectives of this paper:

1. To promote industry standard technologies in the
domain of Server Management by using DMTF’s
Redfish.

2. To provide a simple, efficient, and common platform
for server vendors and their customers for server
management.

3. To enhance the current Firmware Management in
Server by providing modern tool chains such as
REST API that adheres to Redfish Standard.

1.2 Organization of the paper

The initial part of the paper gives a brief introduction and
explanation of Servers in the Data center and diversity of
components present in the server, an industry standard
protocol called Redfish provided by DMTF organization, and
an open source REST APIs to create Redfish APIs for
firmware management. The rest of the paper provides a
detailed explanation of designing APIs for discovering
firmware components, updating firmware components and
monitoring status of firmware components.

1.2 Literature Review

At its simplest, a data center is a physical building used by
companies to store sensitive software and records. The
architecture of a data center is focused on a network of
computing and storage resources that enables the delivery of
shared applications and data[1]. The rapid growth of cloud
computing, both in terms of the spectrum and volume of
cloud workloads, necessitates re-visiting the traditional
rack-mountable servers based datacenter design.

The paper provides a set of modification to be made on
existing rack server for making it ready for current cloud
industry[2]. A client-server architecture for creating,
managing API’s for managing components of the server. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5307

Rest API’s provides security, robust, flexible to user and
more [3].

Data center managers, standardization bodies and

hardware / software manufacturers are joining forces to
develop and promote Redfish as the main hardware
management standard for data centers and beyond. The
authors hope that this article will be used as a starting point
for understanding how Redfish and its extensions are being
pursued as the central management framework for next
generation data centers. The white paper on Redfish gives a
brief about all the API’s provided by the organization[4 - 5].

Dell Computer Company used Redfish Schema and

developed RESTful API’s and deploy them on Dell
PowerEdge Server. A end-to-end implementation and
deployment of Redfish on Server was proposed[6]. A set of
standard API design rules, drawn primarily from best
practices that stick close to the Web’s REST architectural
style. Along with rules for URI design and HTTP use, one will
learn guidelines for media types and representational forms.
The steps needed to be followed for designing, implementing
and deploying firmware for hardware components of the
server[8]. The Baseboard Management Controller (BMC) is a
specialized software processor that controls the physical
state of a computer, network server or other hardware unit
using a sensor and interacts with the system administrator
via an independent interface[9].

2. Methodology

2.1 System Setup

Each server has a dedicated component that can monitor the
host and other components present in the server called
Baseboard Management Controller (BMC). It is usually an
ASIC – Application Specific Integrated Controller (aka SoC)
that sits on the motherboard of the server. BMC has its own
processing power, and one can run an operating system,
applications and more on it. Original Equipment
Manufacturer (OEM) vendors provide a dashboard/console
to monitor the server and its components from the console
itself. The motherboard of the server is designed such that
BMC has multiple connections to the host system and other
firmware components of the server. OEM vendors leverage
these connections to monitor the status of components
present in that server. BMC can also control the power cycle
of the server, that is it can shut down and reboot the host
system. It also provides remote access to host’s via virtual
Kernel-based Virtual Machine (KVM) so
engineers/administrators need not visit the server. In short,
BMC is a small computer that sits on the main computer
(host) which can monitor components of the main computer.

 It has a dedicated network connection to host via Network
Interface Card (NIC) most vendors mainly use USB - NIC as
shown in Fig 1. USB - NIC is a high speed wireless network

card that uses the USB port of the host system to provide a
network connectivity to BMC.

Fig – 1: BMC connected to Host via dedicated USB-NIC

2.2 System Design

To provide a REST APIs support for firmware management
the system starts a lightweight python web server at the host
system such as flask. Flask is a micro web framework written
in Python. This micro web framework is perfect for building
REST APIs. Once the host operating system boots up the web
server can run like a demon process in the background. The
web server needs to run on the USB-NIC interface IP of the
host system.

Therefore, BMC will become the client to this web server
called BMC Agent as shown in Fig 2. BMC can make an API
request to the web server and the web server can return the
response back to BMC. Now, for firmware upgrades of the
component present in the server this project designs API that
adheres to Redfish standard.

This paper proposes the following APIs for firmware
management of the server.

1. To provide an API to discover components, present in
the server.

2. To provide an API that pulls the new firmware image
and flash it on the component.

3. To provide an API to monitor the status firmware
flash.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5308

Fig – 2: System design

2.2.1 Discover Firmware Components

 Many server vendors provide a BMC console for the
server through which one can mount an Operating System
(OS) to host usually it is virtual KVM mapping of OS to host.
For Firmware management of components, the system first
needs to discover the components present in the server. The
most common approach for discovering firmware
components is while booting an OS. OS needs to know all the
components/resources present in the server to be functional.
One can run a python script while booting the host to collect
the information about the component, its current running
version, health and etc. from the SMBIOS table and cache the
results into a database called firmware inventory in the host
system. Therefore, the system has a full firmware inventory
that is the system is aware of installed hardware components
and also has information about every component present in
that server. The Firmware Inventory database is passed to
the web server.

 When a client makes a Redfish firmware inventory API
request to the web server. The web server can use the
inventory database generated during the boot-up process and
send a response to the client request. Client can also request
the information about a particular component by calling
Redfish firmware component API web server pulls the
information of the requested component from the firmware
inventory database and sends the Redfish response back to
the client as shown in Figure 3.

Fig – 3: Sequence diagram for the discovery of
components in Server

2.2.2 Firmware Update Components

Firmware upgrade is a two-step process. First, update the
component with a new firmware image and second is to
activate the component by flashing the new firmware image
and reboot the component. Most of the server vendors bundle
the new firmware image with the operating system or they
place the firmware image in a remote server and the image is
pulled from the remote server by an HTTP request or so
during firmware update. Server vendors can design the
parameters of the API as per the needs of their customers to
facilitate firmware upgrade. To make firmware updates
seamless the upgrade process needs to be done in the
background as firmware upgrades take time. Redfish
provides an Update Service API which is an asynchronous
HTTP POST request to run firmware upgrades in the
background.

 When the client makes a Redfish update API request to
the web server, the API parameters are verified, new
firmware image is pulled and new Redfish task is started with
a unique Task ID and the firmware upgraded of the
component is started in the background like a daemon
process by calling the corresponding component hook for
firmware upgrade. This hook is responsible for updating the
status database as shown in Fig 4. It is up to server vendors
how they upgrade the firmware internally when the client
sends an update request.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5309

Fig – 4: Sequence diagram for the firmware update of
components

2.2.3 Monitor Firmware Upgrade

As mentioned in section 2.3, the firmware upgrade is a
background process in order to view the status of the
upgrade Redfish provides another API called Task Service.
When the client makes Redfish Task Service API for a
particular task with its Task ID. The status of that task is
read from the status database and a JSON response is sent to
the client as shown in Fig 5.

Fig – 5: Sequence diagram for monitoring firmware
upgrade of components

3. CONCLUSIONS

This paper shows a simple yet an easy way for firmware
management using Redfish REST APIs. The proposed system
successfully provides firmware inventory of the server that
is all the components present in the server. After firmware
inventory, the client can select the firmware to upgrade or
upgrade all the components by making a valid request to the
web server. As the firmware upgrade is a background
process the system provides another API to monitor the

status of the firmware upgrade. To any system, there is
always room for improvisation. The proposed system mainly
focuses on firmware management of the standalone server.
The system needs to be extended to provide firmware
management of the entire chassis.

ACKNOWLEDGEMENT

Any accomplishment, whether scholastic or otherwise, is not
based solely on individual actions, but on scholars, elders
and friends' support, encouragement and cooperation. A
variety of personalities have helped us in carrying out this
project work within their own capacities. I want to take this
opportunity to thank every one of them. I express our
sincere gratitude to our mentor Prof. Veena Gadad, Professor
at the Department of Computer Science and Engineering,
R.V.C.E, Bengaluru for his skillful guidance, frequent source
of motivation and support during this project. We would also
like to commend Dr. Ramakanth, Head of Department,
Computer Science and Engineering, R.V.C.E, Bengaluru, for
his valuable suggestions and expert advice.

REFERENCES

[1] D. H. Georgios Karagiannis, “Cloud Central Office

Reference Architectural Framework”, 2018

[2] C.-S. Li et al., “Composable Architecture for Rack Scale
Big Data Computing”, Future Generation Computer
Systems, vol. 67, pp. 180-93, 2017.

[3] J. Baker, S. Savino, ‘The role of client/server computing
technology in the management of global enterprises’,
2002, Innovation in Technology Management – IEEE

[4] Glauco Gonçalves, Daniel Rosendo, Leylane Ferreira,
Guto Leoni Santos, ‘A Standard to Rule Them All:
Redfish’, 04 September 2019, IEEE Communications
Standards Magazine.

[5] ‘Redfish Composability White Paper’, 2018, DMTF
Redfish DSP2086,

[6] S. S. A. Jonas Werner, P. S. S. E. P. Raveendra Reddy and
S. P. M. Paul Rubin, ‘Implementation of the DMTF
Redfish API on Dell PowerEdge Servers’, 2016,

[7] Mark Masse, ‘REST API Design Rulebook: Designing
Consistent RESTful Web Service’, "O'Reilly Media, Inc.",
18-Oct-2011

[8] Veit B. Kleeberger, Stefan Rutkowski, Ruth Coppens,
‘Design & verification of automotive SoC firmware’, 2015
52nd ACM/EDAC/IEEE Design Automation Conference
(DAC)

[9] Jing Lin, BO Xie, Jian Xu, Binqi Zhang, ‘Server
management using a baseboard management controller
to establish a wireless network’

