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Abstract - Microgrids have gained popularity as an efficient 
means of integrating distributed energy resources; a case 
bolstered by the modularity and autonomous operation. 
However, a microgrid is still a relatively new area in the 
research domain and there are numerous issues to be 
addressed for their wide scale integration into the existing 
power systems. This review paper discusses the recent trends 
and applications of two fascinating areas of research, machine 
learning and game theory, in dealing with finding autonomous 
solutions to microgrids. Broadly, the applications of machine 
learning in microgrid research have been studied based on few 
of the key aspects microgrid: detection, system design and 
prediction. Moreover, game-theoretic applications in 
microgrids have been summarized. The research area of 
microgrid being relatively untapped, machine learning can 
play a significant role in streamlining the operation of 
microgrid towards building the self-sustaining smart grid 
system.  
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1. INTRODUCTION 
 
In a simplistic view, machine learning is about doing a 
predictive analysis with available data using the smartest 
possible learning algorithms. Although there is already a 
host of machine learning algorithms, and it is being 
continually improved upon. The three fundamental building 
blocks for any machine learning algorithm can be identified 
as representation, evaluation, and optimization [1]. The 
representation offers the core logical structure of the 
algorithm that is designed to validly process the input to 
predict the output in the form of classification or regression. 
The evaluation functions or objective functions score the 
representations to distinguish the good classifiers from the 
bad ones; and based on the model, the evaluation functions 
may be internally used by the algorithm and can be different 
from the external evaluation that is set to obtain the output 
layer decision. Lastly, the optimizer gets the learning 
algorithm to efficiently converge to its highest-scoring 
classifier or predictor. The overall idea of machine learning 
well captured in Table 1 [1] for a guiding reference 
throughout this paper. Although the list is not exhaustive, as 
we explore machine learning applications in microgrid 
research, we shall mostly refer to the machine learning 
algorithms by their representation identities skipping the 
details of the internal evaluation and optimization 

techniques under the hood of the machine learning models. 
It is ought to be mentioned that whereas the table represents 
the algorithms by their independent identities, in a modern 
system-based approach, often several of those algorithms 
are combined to form ensemble models which significantly 
enhances the performance. The idea of applying machine 
learning for power grids is in focus for some time now. 
Machine learning had been proposed for the New York City 
power grid a few years back [2]. In this work, current trends 
and applications of machine learning have been studied for 
microgrid, which is a fundamental component of future 
smart grids. As we explore the body of knowledge, we shall 
see that microgrid research employs the machine learning 
techniques ranging from simplest of representations like 
linear regression or naïve Bayes to far more complex 
ensemble models consisting of multiple neural networks. 
 

Table-1: Components of machine learning algorithms 

Representation Evaluation Optimization 
   

Instance-based   

K-nearest neighbor  
Combinational 
optimization 

Support vector 
machines 

Accuracy/Error rate 
Greedy search 

Hyperplanes Beam search 
Precision and recall 

Naive Bayes Branch-and-bound 
Squared error 

Logistic regression 
Continuous 
optimization 

Likelihood 
Decision trees Unconstrained Posterior 

probability 
Set of rules Gradient descent 

Information gain 
Propositional rules Conjugate gradient 

K-L divergence 
Logic programs Quasi-newton methods 

Cost/utility 
Neural networks Constrained 

Margin 
Graphical models Linear programming  

Bayesian networks  
Quadratic 
programming 

Conditional random 
fields   
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Based on the type of applications, the machine learning 
applications can be broadly divided into three categories: 
event detection, system design and prediction. These three 
areas of application are detailed in section 2, 3 and 4, 
respectively. Game-theoretic applications for microgrid are 
discussed in section 5. Finally, the conclusion and possible 
future researches are explained in section 6.  
 

2. EVENT DETECTION 
 
Microgrid is seen to be the obvious route for integration of 
distributed generation (DG). However, the integrated 
microgrid into the existing power grid infrastructure is 
occasionally prone to islanding. Islanding occurs when some 
portion of microgrid is active despite not being connected to 
the main grid. Islanding happens because microgrid 
continues to be connected to the DGs. According to [3], 
detection of islanding and subsequent separation of the 
distributed generators should be completed within 2 seconds 
to maintain power quality and ensure safety. In [4], 
performances of five machine learning techniques have been 
compared using the Waikato Environment for Knowledge 
Analysis (WEKA) toolbox for timely detection of islanding. 
Four different features are measured at the point of common 
coupling (PCC) to detect events and they are: (a) voltage, (b) 
frequency, (c) rate of change of voltage, and (d) rate of change 
of frequency. This work is based on the IEEE 13 bus system 
depicted in fig.1. 
 

 
Fig-1: IEEE 13 bus system 

The five algorithms that have been compared are: (1) 
Nearest Neighbor (NN), (2) Bagging Classifier (BC), (3) Lazy-
K, (4) Naïve Bayesian (NB), and (5) Random Forest. Three 
types of generation scenarios were analyzed: (a) inverter-
based solar generation (IDG), (b) synchronous generator-
based generation (SDG), and (c) a combination of both 
(CDG). A ten-fold cross validation process was utilized to 
assess the results. Among all the classifiers, RF performed 
best in terms of accuracy, with lazy-K being the worst, across 
all three generation scenarios in general. The performance of 
the classifiers degrades if one time train test split is used 
instead of the above mentioned cross validation. In terms of 
features used, the classifiers work better when all the 
features are used. The absence of the rate of changes 
features significantly reduces the accuracy of the classifiers. 

In terms of detection time, random forest fares better than 
the other classifiers to attain a certain accuracy, with lazy-K 
again providing the least satisfactory result. The results have 
been summarized in table 2 [4]. 

Table-2: Performance summary from [4] 

  

 Classifier IDG SDG CDG 
 

 N.N 98% 99% 94% 
     

 R. Forest 99% 96% 100% 
     

10-fold cross validation Bagging 99% 93% 99% 
     

 Lazy K* 81% 71% 84% 
     

 Naive Bayes 99% 97% 86% 
     

 N.N 92% 90% 88% 
     

 R. Forest 88% 90% 96% 
     

Split data segments Bagging 64% 86% 96% 
     

 Lazy K* 64% 54% 66% 
     

 Naive Bayes 64% 96% 84% 
     

 N.N 81% 81% 83% 
     

 R. Forest 81% 81% 88% 
     

Voltage Bagging 80% 81% 87% 
     

 Lazy K* 81% 83% 87% 
     

 Naive Bayes 77% 80% 82% 
     

 N.N 87% 82% 83% 
     

 R. Forest 87% 83% 85% 
     

Frequency Bagging 81% 81% 85% 
     

 Lazy K* 87% 71% 77% 
     

 Naive Bayes 77% 76% 77% 
     

 N.N 75% 92% 85% 
     

 R. Forest 75% 92% 87% 
     

Voltage and Frequency Bagging 78% 81% 83% 
     

 Lazy K* 75% 92% 83% 
     

 Naive Bayes 80% 77% 76% 
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Article [5], as its background, voices a case for local hybrid 
techniques that combine passive techniques and artificial 
intelligence for islanding detection. Whereas they eliminate 
the need for the communication expenses and complexities 
associated with active methods; they offer significant 
efficiency in terms of early detection and accuracy over 
passive-only methods. In different methods proposed in the 
literature, the feature extraction was done through discrete 
wavelet transform (DWT), Parsevals theorem and other data 
mining approaches which then were fed to different 
classification models ranging from probabilistic neural 
network (PNN) to classification and regression tree (CART). 
In most cases, the goal is to obtain an optimal threshold 
setting for the passive islanding detection by the two-step 
process of extracting appropriate features and then applying 
the extracted features into the machine learning models. The 
good performance of intelligent methods combining DWT 
and decision tree [6]; and in another case, the combination of 
estimation of signal parameters via rotational invariance 
technique (ESPRIT) with a Naïve Bayes classifier [7] inspired 
another method combining phase-space technique with PNN 
as classifier [8, 9]. This also emphasizes the promise of 
emerging extreme learning machine (ELM) technique that 
was successfully deployed for real time assessment of 
system stability [10, 11] and goes on to explore the ELM 
technique for microgrid islanding. As the work uses phase-
space model for feature extraction, it refers to the methods 
with which phase-space can be reconstructed from a time 
series through embedding theorem [8, 9]. The embedded 
signal is extracted from Euclidian norm of phase A, B and C. 
The embedded signal information is then used as the voltage 
trajectory. The paper then goes onto describe the ELM with 
the single hidden later architecture and 3-step learning 
process. Which it argues to favor ELM as a classification 
technique over back-propagation artificial neural network, 
support vector machine (SVM) and DT [10-12], it points to 
the inconsistency and lack of robustness of the technique 
due to randomly selected input weights. That weakness, 
however, is overcome in this work with tailored ELM 
ensemble classifier [10, 11]. In the ensemble scheme, the 
single learners tend to compensate each other and improve 
the overall accuracy. The ELM based adaptive classifier is 
then represented as following pipeline with each task 
described in terms of their sequential sub-steps: Model 
Structure → Learning Process → Classification Process → 
Parameter Optimization → Adaptive Decision-Making 
Mechanism. While these steps reflect the standard machine 
learning sequence, the parameter optimization techniques 
involving evolutionary computation (EC) approach as 
genetic algorithm (GA), particle swarm optimization (PSO) 
or differential evolution (DE) deserves distinct mention. For 
the adaptive decision making mechanism, the events of 
islanding and non-islanding are classified by a series of 
ensemble ELM classifiers with different decision speed. For 
evolutionary computing (EC), if decision cycle T cannot give 
a credible classification, it will continue up to next decision 
cycle T+1, thus offering adaptive decision and increased 

accuracy with increased number of cycles. Unlike the 
conventional classifier, the proposed adaptive classifier 
evolves with more incoming data; which leads to statistical 
performance indices like accumulative accuracy, average 
decision speed, and average islanding detection accuracy 
[11]. As the system setup, this experiment simulated two 
identical synchronous DG as well as power-electronics 
interfaced DG to showcase that the methods can universally 
work for all DG settings. The test results showed that for all 
the test systems, the method performed with better accuracy 
in comparison to random forest.  

Re-emphasizing the importance of islanding detection for 
microgrids with distributed generation from power quality 
and safety perspective, [13] approaches the issue from a 
well-drafted background. Besides listing the passive and 
active techniques of islanding detection prevailing in 
research and literature, it draws a high level comparison 
between the passive and active techniques primarily in the 
light of non-detection zone (NDZ). While arguing that the 
passive methods, which are based on pre-setting the 
threshold values of parameters like voltage and frequency, 
operate at a large NDZ resulting in misidentified islanding or 
premature cut-off from the grid. The article proposes a 
machine learning based islanding detection technique which 
offers an artificial neural network (ANN) as the classifier 
where the features for the neural network model is extracted 
from the rate of change of frequency (ROCOF) measurement 
in consecutive cycles of transient state signal. The machine 
learning model is applied to 80kW DG setup simulated in 
Simulink with PQ control implemented through necessary 
Phase-Locked-Loop (PLL) and dq-abc transformations. 
Complying with the basics of supervised machine learning, 
the ANN is trained with real examples of islanding and non-
islanding scenarios with respect to statistical features that 
are obtained from the differential transient ROCOF signal in 
two consecutive cycles. The non-islanding event examples 
include one, two or three phase faults, connection or 
disconnection of the motor loads, capacitor banks, 
unbalanced and non-linear load. Upon training and testing, 
the best ANN model was then used for real time islanding 
detection. For the evaluation of ANN structure, multi-layer 
perception (MLP) and radial basis function (RBF) were both 
tried and compared to achieve the least mean squared error 
(MSE). One of the key takeaways for this experiment was 
that an MLP structure of three neurons in the hidden layer 
yielded 99.9% accuracy in classification. On the other hand, 
RBF structure needed 150 neurons in the hidden layer to 
attain the same level of accuracy. The simulation results 
convincingly illustrated that the proposed technique 
minimizes the NDZ as compared to passive techniques. The 
real time islanding detection is also expected to enable 
dynamic changes in inverter control structure as an inverter 
has slightly different role in a grid-connected scenario as 
opposed to an islanded scenario. 

As we discuss the detection issues related to the microgrid, 
fault detection is as important as the islanding event 
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detection. A microgrid can be more resilient and automated 
if self-healing capability can be incorporated. A microgrid 
with self-healing capability can perform fault detection, fault 
clearing and restoration on its own. A distributed machine 
learning based fault detection method in a self-healing 
microgrid is proposed in [14]. The proposed method is 
distributed as the decisions are made at the device level and 
no centralized control is applied. So, the distributed 
approach is cost effective and faster than centralized 
approaches. The system that has been used for analysis in 
this work  contains both dispatchable and non-dispatchable 
generators. Dispatchable generation include synchronous 
generator based hydro and diesel generators. On the other 
hand, non-dispatchable generation include solar and wind 
power. Series compensators with two modes of operations 
are used near the generators. When a fault occurs in an area, 
the series compensator in that area would operate in bypass 
mode instead of blocking mode. Four attributes and three 
features for each of the attributes were used for training 
purpose. The attributes are: (a) rotor speed, (b) deviation of 
rotor angle, (c) generated reactive power, and (d) terminal 
voltage. The first two features are based on the sharpness 
and width of the local maxima and the final feature is the 
frequencies available from the time series data. Finally, three 
factors are derived, with each factor corresponding to a 
specific feature. The factors are defined as prominence, 
width and frequency factor. A few events are simulated for 
the training purpose and each event has distinct values for 
all three features. Finally, a bootstrap aggregation classifier 
was used to train. A bootstrapping classifier divides the 
training dataset into several smaller base classifiers and the 
final decision is made by aggregating the decision of all the 
base classifiers. As this technique can also correct previous 
errors, this can be termed as a bagging and boosting 
technique. As compared to other machine learning 
algorithms like ANN, CART and K-nearest neighbors (KNN), 
this proposed algorithm shows significant increase in 
accurately detecting an event. 

An approach which combines machine learning algorithms 
along with signal processing techniques is proposed in 
[15]to develop a microgrid protection scheme (MPS) that 
would detect and classify a significant range of faults in a 
microgrid. This work considers a microgrid with distributed 
generation based on both synchronous generator and 
inverter. Both the grid-connected and islanded microgrid 
with radial and mesh structure have been studied in this 
work. Currents in all three phases at the target are the initial 
inputs. Initial mode functions (IMFs) are generated by 
applying empirical mode decomposition to these current 
signals. Afterwards, the features needed for the machine 
learning techniques are derived by using Hilbert-Huang 
transformation to the IMFs. Finally, these features are used 
as inputs for the machine learning methods to detect and 
classify the faults. In the machine learning portion, 70% of 
the total data are used for training purpose. In this work, the 
following three machine learning algorithms are utilized for 
testing and comparison purposes: Naïve Bayesian classifier 

(NBC), extreme learning machine (ELM), and support vector 
machine (SVM). All the machine learning techniques 
demonstrate significantly better detection performance than 
conventional overcurrent and differential relays. Among the 
machine learning techniques, the best accuracy is obtained 
while using ELM, with NBC coming in second. Irrespective of 
the machine learning method, the overall accuracy is more 
than 96%. 

Power transformers are integral parts of a power grid and 
any fault associated to the transformers can lead to power 
outage and huge economic loss. So, accurate prediction of 
impending faults in the transformers is of utmost 
importance. Traditionally the dissolved gas analysis (DGA) is 
used to diagnose the working state of a transformer and 
detect potential faults. DGA is quite effective for common 
faults. However, the effectiveness decreases for subtle faults 
as it does not consider additional parameters like oil 
temperature and load current, outside the states of certain 
gases. In [16], the authors have developed a novel scheme, 
termed PCA_IR, to detect potential faults in transformers by 
combining three techniques. These techniques are: Pearson 
correlation coefficient (PCC) to find additional relevant 
parameter correlated to the dissolved gases, principal 
component analysis (PCA) to reduce the dimensionality of 
the dataset, and finally back propagation neural network 
(BPNN) to classify faults. The first part of this work attempts 
to find out correlation between dissolved gases and other 
parameters by calculating the PCC. In this paper, oil 
temperature is found to have a PCC of 0.81 with the sum of 
concentrations of all hydrocarbon gases. Therefore, oil 
temperature is considered as the eighth feature besides the 
seven dissolved gases. As new features are added, the 
accuracy increases but the computational speed decreases 
because of an increase in the dimension of the dataset. The 
second part of this work takes care of computational speed 
issue by reducing the dimensionality using PCA. Finally, the 
principal components are fed into the BPNN to classify the 
faults. The results demonstrate that the accuracy of 
classification goes from 61.30% to 91.57% with the addition 
of additional feature and application of PCA. Moreover, 
PCA_IR is faster than regular BPNN when the number of 
features is greater than 6. Even with smaller number of 
features (<6), PCA_IR is better suited to handle larger data 
sets because of its scalability.   

3. SYSTEM DESIGN 

Ensuring power quality (PQ) is of utmost importance for 
maintaining the reliability of the grid. Power quality also 
plays an important role in extending the lifetime of 
equipment and saving energy costs. Power quality in a grid 
can be monitored by installing PQ meters. However, PQ 
meters are expensive which makes the choice of optimum 
number of PQ meters in a grid an interesting challenge. [17], 
using a machine learning approach, addresses this issue. 
Placement problem with phasor measurement units has 
been analyzed in [18]. The first part of this work models the 
latent features of a device; in other words, behavior of the 
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equipment in the grid; using historical data and then uses k-
fold cross-validation technique to test the accuracy of these 
features. In the next part, the microgrid is designed as a data 
network where the equipment, power links and flow of 
power are analogous to nodes, data links and data flow, 
respectively. The final part of the work deals with the 
application of a machine learning algorithm for the optimal 
placement of PQ meters. The core idea is to install a PQ 
meter in the segment where PQ is the most unpredictable. 
Two separate approaches have been proposed and 
compared in this work. The first approach is based on a 
Bayesian-network approach and applies the belief 
propagation (BP) algorithm to place the meter in the most 
unpredictable network segments. The second method is 
based on conditional entropy and it tries to place meters in 
such a way that would reduce the overall entropy of the 
system. This second approach is called MinEntropy method. 
Both the methods are evaluated for networks with different 
topologies (Both homogeneous and heterogeneous line and 
tree topologies, and IEEE 13 node test feeder) in terms of 
mean error rate and execution. Both the methods are quite 
efficient in minimizing error. However, the MinEntropy is 
significantly faster in its execution than the BP algorithm. 
Finally, both the methods are tested for cost effectiveness 
against a random method where the meters are placed 
randomly. Both the proposed methods require a smaller 
number of PQ meters to achieve a mean error rate of 5%.  

Battery or energy storage is another important component 
of microgrid system design, especially since microgrids are 
extremely lucrative solutions for places with low penetration 
of electricity and off-grid locations. However, batteries are 
vulnerable and normally the first components to fail. That is 
why it is very important to keep track of the state of charge 
(SoC) and state of health (SoH) of batteries. The traditional 
method, which considers the chemical processes inside the 
battery, is complex and time consuming. Estimating the 
condition of a lithium ion battery has been tackled using 
machine learning method in [19]. In this work, the authors 
have proposed a regression technique based on extreme 
learning machine (ELM) in estimating the condition of a Li-
ion battery and the results are very encouraging. The 
minimum RMS error is found to be 3.1% and 2.4% for SOC 
and SOH estimation, respectively. 

Despite energy storage systems' importance in microgrid, 
the cost effectiveness of a microgrid without energy storage 
systems makes it an exciting proposition. However, the 
control scheme of such a microgrid is quite challenging. 
There would be situations, where primary control scheme 
like droop control mechanism cannot maintain a stable 
voltage when the load changes suddenly. This is a significant 
issue for microgrid as loads are relatively more volatile than 
a utility grid. Under these circumstances, microgrids need 
provisions for secondary voltage control scheme which 
would work in case the primary scheme fails. The authors 
have developed a decentralized secondary control scheme in 
[20], using machine learning techniques. The system model 

that has been used here (fig 2) as microgrid has both 
synchronous generators based thermal generation and 
renewable generation [21]. The secondary control scheme is 
applied at the synchronous generators and the renewable 
energy sources act as data sources to initiate the operation 
of the control scheme. The secondary control will always act 
after the primary scheme fails to stabilize the voltage. Using 
fifty test cases, an unsupervised K-means cluster is prepared, 
and five categories are defined for the clusters.  After that, a 
classifier is established using bagged decision trees. The 
classifier is binary as it would only decide whether an event 
makes the system stable or unstable whenever it processes a 
new set of data. Finally, if the classifier invokes instability, a 
suitable neural network would be chosen which would 
predict the required rotor speed and field voltage of the 
synchronous generator for stable operation of the microgrid. 
Finally, the primary controller would change its course of 
action based on the neural network’s predicted values. The 
simulations demonstrate the effectiveness of the proposed 
method, as the microgrid would become unstable without 
the secondary control mechanism. However, the results 
differ from cluster to cluster because of the frequency of 
clusters in the fifty test cases. Moreover, the overall accuracy 
of the proposed method can be enhanced if the training can 
be done with more test events. 

 

Fig- 2: Modified microgrid system model [21] 

Demand-supply management is a key design aspect for any 
power system. As previously discussed, the supply side of a 
microgrid is inherently uncertain because of the intermittent 
nature of distributed renewable energy resources. Moreover, 
the demand side of a microgrid has more uncertainties than 
a regular grid because of the small scale of the operation and 
the weaker smoothing effect that results from it. 
Furthermore, the distribution of both the uncertainties can 
be different and non-Gaussian. The uncertainties of the loads 
follow a Gaussian distribution. On the other hand, the 
uncertainties associated with wind energy generation follow 
a non-Gaussian distribution [22-24]. An AC Microgrid model 
and its uncertainties are demonstrated in fig.3 and fig.4, 
respectively. The scheduling problem under all these 
circumstances have been tried to solve in [25], using a 
stochastic model predictive control (SMPC) method. First, 
the Gaussian distribution of the microgrid load uncertainty is 
modeled and forecasted using Gaussian process (GP) 
regression. Afterwards, the uncertainties related to wind 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 5814 
 

energy conversion system (WECS) is modeled using SOWGP, 
which is an online probabilistic forecasting model for non-
Gaussian distributions. The joint distribution of these 
uncertainties follows a non-Gaussian pattern. This work 
utilizes support vector regression (SVR) to derive the joint 
statistics, which in turn transform the original stochastic 
optimizing problem into a deterministic one and can thus be 
solved using traditional algorithms. This proposed method 
demonstrates its ability to do a better job of tracking the 
predefined trajectory for power exchange between 
microgrid and main grid, as compared to some traditional 
techniques. This proposed method also displays faster 
computation speed as it avoids the use of time-consuming 
Markov chain Monte Carlo (MCMC) sampling. 

 

Fig-3: AC microgrid system model used in [25] 

 

Fig:4- Uncertainties in AC microgrid of [25] 

The local energy management system (EMS) of a microgrid is 
mostly associated with the distributed generators’ operation. 
Battery energy storage (BES) system is an integral part of 
renewable distributed generators as they regulate the 
intermittent nature of the renewable resources. So, BES 
system is very important for the stability of a microgrid.  
Photovoltaic (PV) power generation is preferred for small DC 
distribution networks because of their ability to generate DC 
power directly from solar irradiation. PV generation needs to 
be constantly forecasted for planning purposes. However, 
this forecasting needs to be accurate from the stability 
perspective as any kind of prediction error influences the 
energy storage device directly. However, PV power 
forecasting comes with the challenges of natural variation in 
solar irradiation and volatility during dawn and dusk. 
Extreme learning machine (ELM) has gained popularity for 
PV power prediction recently [26]. However, ELM is 
computationally complex because of the batch mode 
operation. As PV power generation in predicted over a short 
period of time, any prediction scheme needs to satisfy the 

two criteria: computational time and online operation. 
Keeping this in mind, a kernel-based online sequential ELM 
(OSELM) algorithm has been developed in [27]. This 
algorithm which is computationally fast and reduces 
prediction error robustly is termed fast reduced Morlet 
kernel-based OSELM (FR-MKOSELM). The effectiveness of 
the proposed scheme is measured in terms of root mean 
square error (RMSE), mean absolute error (MAE), symmetric 
mean absolute percentage error (SMAPE), execution time 
and the square of correlation coefficient (CC2). When 
compared to other ELM methods, the proposed method 
performs the best in all aspects except execution time. In 
terms of execution time, its slower than only the regular 
OSELM. Overall, the FR-MKOSELM method proves to be 
better than the other comparable ELM techniques. This FR-
MKOSELM method, coupled with improved secondary 
control, ensures better performance of the battery 
management system (BMS) is terms of temperature control, 
battery life, power loss and state of charge (SoC). 

4. PREDICTIVE APPLICATIONS 

United States have faced some serious natural disasters in 
recent years. Any severe weather-related incident is a huge 
detriment to the society in general and power grid is not 
outside the scope of it. Components of the power grid 
become damaged and system outage occurs. If the outage of 
the components can be predicted prior to any severe 
weather events, a lot of damage can be mitigated by 
developing efficient prevention and recovery techniques  
[28]. So, accurate prediction of outages before an imminent 
natural hazard can make the grid more robust, saving a lot of 
money in the process. In [29], the authors have proposed a 
machine learning based solution to this problem, especially 
in the case of hurricanes. The proposed algorithm is based 
on logistic regression. In this approach, a decision boundary 
is drawn using the logistic regression to classify every 
component of the grid in one of the following two categories: 
operational and damaged. The regression line is a second 
order polynomial with two variables: wind speed and 
distance from the center. The probability of a component 
being damaged increases with higher wind speed and lower 
distance. The coefficients of the regression line are 
calculated by minimizing the cost function. Once the decision 
boundary has been formed, all the components can be 
classified as either operational or damaged. Finally, after the 
occurrence of the extreme weather event, the efficacy of the 
proposed algorithm is calculated using a F1 score between 0 
and 1, which is based on precision and recall metrics 
calculated from the confusion matrix. A higher F1 score 
represents a better prediction. The presented case study in 
this work demonstrated the proposed algorithm to have 
acceptable level of performance (F1 score of .9027). 
However, this method has not been found to be tested for 
any real-life scenario so far, as known. 

Quality of the collected raw data is a very important factor 
for accurate prediction. The work in [30] devises a method 
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for predicting missing data from power transformers in a 
power grid. The frequency of missing data is quite high 
because of severe working conditions. The content of 
representative hydrocarbon gases is indicative of the state of 
a power transformer and this paper deals with predicting 
the state of these gases from missing data. Two cases of 
missing data are discussed in this paper: single missing data 
and consecutive missing data. This developed framework, 
termed OR_MLF, is a combination of preprocessing of 
collected data, optimized support vector machine (OSVM), 
and refined support vector machine (RSVM). At first, the 
collected data is preprocessed, and a basic predictor is 
developed using traditional support vector machine (SVM). 
After that, a new training dataset is extracted from the basic 
predictor and it is used to develop OSVM predictor. Finally, 
the output from the OSVM is used to obtain the RSVM 
predictor. This OR_MLF framework is finally tested and 
compared against traditional machine learning techniques 
like nearest neighbor (NN), regular SVM, and least square 
support vector machine (LSSVM). OR_MLF outperforms the 
other traditional methods in minimizing the mean square 
error (MSE) in predicting the contents of the representative 
hydrocarbon gases in a power transformer, for both single 
missing data and three consecutive missing data. The result 
also proves the obvious: OR_MLF with RSVM is a better 
predictor than OR_MLF with just OSVM. 

Renewable energy resources are inherently volatile. So, 
accurate prediction of renewable energy generation augurs 
well for the system. Machine learning based nowcasting and 
forecasting methods for photovoltaic power generation are 
developed and compared in [31], the main difference 
between nowcasting and forecasting being the time frame of 
the prediction. In this work, nowcasting is done 1 hour ahead 
for real time control and forecasting is done 1 to 7 days 
ahead for operational management. All the methods are 
based on data generated by energy management system 
(EMS) of the smart polygeneration microgrid (SPM) 
deployed in University of Genova, Savona campus. In this 
work, three methods: kernelized regularized least squares, 
extreme learning machine (ELM), and random forest (RF) 
are compared in terms of their performance. These three 
methods are representatives of three broad categories of 
machine learning techniques: kernel methods, neural 
network, and ensemble methods, respectively. All these 
methods, along with the traditional method of prediction, are 
compared in terms of mean absolute error (MAE), mean 
square error (MSE), normalized mean square error (NMSE), 
relative error percentage (REP), and Pearson product-
moment correlation coefficient (PPMCC). All the data-driven 
machine learning based methods show significant 
improvement over traditional method of generation 
prediction, based on the meteorological data and physical 
model of the microgrid. The nowcasting results are always 
more accurate than forecasting results, because of the time 
frame and associated less randomness. Machine learning 
methods demonstrate better performance in all the possible 
scenarios. However, the performance gets better with larger 

amount of data and smaller prediction time span. Among the 
machine learning based methods, random forest performs 
best in terms of reducing the prediction error. Last but not 
the least, machine learning based methods show significant 
improvement over the actual method (AM) in terms of 
predicted savings and carbon di-oxide emission. Time series 
forecasting of energy generation and consumption is gaining 
popularity because of the availability of data and 
advancements made in computational power of machines 
and they are explored in [32-37].  

5. GAME THEORY APPLICATIONS 

In [38], the authors have proposed a game-theoretic novel 
demand side management technique to integrate 
intermittent wind energy efficiently. This proposed method 
aims to adjust controllable loads to match supply and 
demand, so that the dependence on fast responding thermal 
generators can be minimized and total energy cost can be 
reduced. An isolated microgrid with several end users, one 
wind turbine and one conventional generator has been used 
for analysis and it is demonstrated in fig.5.  

 

Figure 5 Isolated microgrid model in [32] 

A dynamic potential game model has been developed where 
all the end users act as players. All the players are rational, 
and their strategy is to establish the optimum load profile for 
each time slot. The payoff for each player is their electricity 
bill, which they aim to minimize. Scenarios with single user, 
two users and generalized case have been analyzed to find 
out optimum load scheduling strategy. In the single user 
case, backward induction technique has been used to find 
out the optimum load scheduling. The two-users case was 
modeled as an ordinal potential game, Nash equilibrium 
(NE) was derived and it proved to be the optimum strategy. 
NE represents the best strategy for the generalized case also. 
As the wind power generation is a stochastic process, it is 
modeled as a Markov chain with six states and the transition 
probability matrix is developed by collecting data for six 
months in west Texas. With the help of numerical simulation, 
it is demonstrated that this proposed demand side 
management technique saves 38% of the total generation 
cost. If the wind power generation could be predicted 
perfectly, a further 21% can be saved. Moreover, this 
proposed method reduces the electricity bills of the end 
users. One drawback of this work is that the cost sharing 
model for each user does not depend on instantaneous load 
of each user, rather the total load over all time slots. This 
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makes the game-theoretic formulation less complex, 
however it does not capture the load fluctuations properly. 

Another alternative to tackle the intermittency of renewable 
energy resources is trading of energy among microgrids, 
which has been studied in [39]. In a multi-microgrid system, 
every microgrid acts as a player and they can trade energy 
depending on whether they have surplus or deficit. Also, this 
trading mechanism needs to be fair and microgrids need to 
have incentives for trading energy. All these issues have 
been incorporated in this work, where a game-theoretic 
solution is proposed. This work stands out from the previous 
related works as it introduces a seller level game and 
proposes a simple pricing mechanism which helps to 
decrease the communication overhead. Two aggregator 
agents, buyer aggregator agent (BAA) and seller aggregator 
agent (SAA), operate on behalf of buyers and sellers, 
respectively. Microgrids with energy deficiency register with 
BAA. In case any deficient microgrid cannot satisfy demand 
by trading with neighboring microgrids, then the remaining 
demand must be satisfied by buying energy from the main 
grid. Based on the deficit and price of buying and selling 
from the main grid, BAA fixes the optimal bid value to 
purchase from the seller microgrids. Based on the bid value, 
seller microgrids might adjust its own demand and inform 
the SAA about the amount available for selling. SAA the 
aggregates the information from all the sellers and relays the 
information to BAA. Upon receiving this information from 
BAA, the buyer microgrids choose the optimum strategy, 
which is normally the Nash equilibrium, and send the 
request to energy market operator (EMO). Upon further 
verification, EMO allocates the available energy to 
prospective buyers based on their priority factor. The 
priority factor ensures that trading is incentivized. When 
compared to the multi leader multi follower (MLMF) and 
baseline distribution mechanisms, the numerical results 
demonstrate the superiority of the proposed method in 
generating revenue for sellers  and minimizing the difference 
between required and allocated energy for the buyers. This 
proposed method also eliminates selfish behavior of buyer 
microgrids. 

A cooperative game-theoretic method has been developed in 
[40] to distribute the operational benefits to different 
components of a microgrid that would ensure global 
efficiency and individual rationality. Different coalitions can 
be formed among the components of a microgrid and all the 
coalitions would strive to maximize its characteristic 
function. The characteristic function is the value assigned to 
a coalition to represent the benefits. Shapley value is used to 
indicate the importance of a member in a coalition and 
benefit is distributed according to Shapley values. Numerical 
simulations indicate that forming larger coalitions increases 
overall benefits, as opposed to forming smaller coalitions. 
Decreased volatility of renewable power sources, increased 
energy storage capacity and increased amount of 
transferable loads impact the total benefit positively. 

However, energy storage and transferable loads have a 
reciprocating relationship with the importance of 
conventional generators. 

Microgrid is a great solution for integrating distributed 
renewable energy sources. Renewable energy sources are 
clean; however, their installation is expensive. That is why 
their integration needs to incorporate a balance between 
higher cost and lower pollution. This problem can be 
formulated as a dual objective optimizing problem, with the 
objective functions being exhaust gas and fuel cost. This line 
of inquiry has been performed in [41, 42] using a game 
theory-based approach. This method can find out the 
equilibrium point of optimum strategies with the help of 
impact factor and clustering. The numerical simulation 
demonstrates that the equilibrium point would reduce the 
pollution by 3.47% in exchange of increasing the fuel cost 
0.47%, which is very reasonable. This method is less 
subjective, as compared to other related techniques. 
However, the biggest drawback of this method is large 
amount of calculation. Consequently, it can be applied only in 
small scale microgrids. 

Modern grids are prone to cyber-attacks and they need to be 
equipped with several security mechanisms like Virtual 
Private Network (VPN), firewall etc. Optimal heterogeneous 
allocation of the security mechanisms to improve the grid 
tolerance against the cyber-attacks using a graph coloring 
method has been proposed in [43]. In [44], authors have 
developed a game theoretic framework to model the various 
attack paths and how they can affect grid contingency 
scenarios. This framework can also identify the most critical 
substation and help the operator to select the most 
appropriate defense mechanism. 

6. CONCLUSION AND FUTURE WORK 
 
To summarize the application of machine learning and game 
theory in microgrid research, a dual perspective may be 
exercised from the angles of addressing the challenges 
associated with microgrid and the use of various machine 
learning algorithms in systematic pipelines that comply with 
the domain knowledge of power systems, microgrid and 
distributed generation. This review gleefully finds that 
various major machine learning algorithms including some 
advanced ones are used to address well-recognized 
microgrid issues even though both microgrid and machine 
learning are relatively new research areas. It is noticed that 
for different purposes or applications, different machine 
learning techniques out-perform the competing algorithms; 
however, it remains to be a vastly open research area given 
the fact that feature extraction and feature engineering itself 
leaves plenty of room for optimization for different power 
systems and microgrid scenarios before the extracted 
features are fed to respective machine learning algorithms 
for highest accuracy, optimal response time and economic 
computation. While some of the proposed models promote 
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dynamic decision-making at the edge device or equipment 
through machine learning algorithms, an end-to-end system 
approach with hardware-software integration for real-time 
control and response of microgrid and grid equipment are 
yet to be explored. As far as machine learning algorithms are 
concerned, the ensemble methods-especially, random forest 
(RF), seem to have offered significantly better performance 
in many of the microgrid scenarios; but more recent and 
advanced deep learning techniques like generative adaptive 
network (GAN) and reinforced learning are yet to be 
exercised and apparently will need the aforementioned 
cohesion between software-hardware measurement, control 
and real-time response. Based upon the established 
phenomenon of microgrid and power systems, some transfer 
learning techniques may be explored for various 
applications. This review also includes a brief survey of game 
theoretic applications in microgrid. Game theory is an 
interesting option to tackle various issues related to 
microgrid. However, machine learning is likely to prevail as 
the more wholesome alternative. 
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