
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5884

SINGLE LINE LICENSE PLATE DETECTION USING OPENCV AND

TESSERACT

Tushar Goel1, Dr. K.C. Tripathi2, Dr. M.L. Sharma3

1Student, Dept. of Information Technology, Maharaja Agrasen Institute of Technology, Delhi, India
2Associate Professor, Dept. of Information Technology, Maharaja Agrasen Institute of Technology, Delhi, India

3Head of Department, Dept. of Information Technology, Maharaja Agrasen Institute of Technology, Delhi, India
---***---
Abstract – License plate detection is an image processing
technology that uses a license (number) plate for vehicle
identification. The objective is to design and implement an
efficient vehicle identification system that identifies the vehicle
using the vehicle’s license plate. The system can be
implemented on the entrance of parking lots, toll booths, or
any private premises like college, etc. to keep the records of
ongoing and outgoing vehicles. It can be used to allow access
to only permitted vehicles inside the premises. The developed
system first captures the image of the vehicle’s front, then
detects the license plate and then reads the license plate. The
vehicle license plate is extracted using the image processing of
the image. Optical character recognition (OCR) is used for
character recognition. The system is implemented using
OpenCV and its performance is tested on various images. It is
observed that the developed system successfully detects and
recognizes the vehicle license plate

Key Words: OpenCV, license plate recognition, image
processing, optical character recognition, ALPR.

1. INTRODUCTION

License plate detection also considered and automatic
license plate recognition (ALPR) has various applications
such as parking lot management, stolen vehicle
identification, traffic flow monitoring, electronic toll
collection, etc. This topic has been extensively researched by
researchers worldwide to improve the performance of the
ALPR in real-world scenarios [1]. License-plate detection or
number plate detection uses optical character recognition
(OCR) on the license plate image to recognize and extract the
characters of a vehicle number plate. It is usually aided by
cameras designed specifically for such a task, since the
license-plate recognition may be especially difficult under
poor images [2]. The use of automated and intelligent license
plate recognition system is needed in today’s real-time
processing age. The growing number of vehicles demands a
reliable and robust system which along with license plate
detection from a vehicle provides the text output of the
characters printed on the plate. Although a number of
systems have already been devised for this function, only a
handful of them has been able to implement Optical
Character Recognition [3]. The system proposed in this
paper has been implemented using the OpenCV library using
Python language is used for image processing and using

PyTesseract for optical character recognition (OCR).
Pytessaract is used for text extraction from the processed
license plate image. This system has been implemented
keeping in mind that the characters are in a single line. After
the image processing step and the plate detection step is
employed the output text is formatted by filtering out
semicolons, commas, colons, apostrophes, and other such
special characters using ASCII filtering as these characters
are not part of any standard license plate [4].

2. METHODOLOGY

License plate of the vehicle is detected using various features
of image processing library openCV and recognizing the text
on the license plate using python tool named as tesseract. To
recognize the license plate we are using the fact that License
plate of any vehicle has rectangular shape. So, after all the
processing of an image we will find the contour having four
points inside the list and consider it as the License Plate of
the vehicle.

1.1 Import Libraries and Image

To implement the project first various python tools and
libraries are imported. I had imported four libraries OpenCV
for image processing, Numpy for mathematics, Matplotlib for
plotting an image and Pytesseract for optical character
recognition (OCR).
After the libraries are imported I import the image using its
path and store the image in variable named as image.

Fig -1: Original Image

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5885

1.2 Preprocessing

A colored image is an image in which each pixel is specified
by three values one each for the red, blue, and green
components of the pixel scalar. M*N*3 array of class. To
store a single color pixel of an RGB color image we will need
m*n*3 bits, but when we convert an RGB image to a
grayscale image, only m*n bits are required for storage of a
single-pixel of an image. So we will need 33 percent memory
for the storage of grayscale images than to store an RGB
image. Grayscale images are much easier to work within a
variety of tasks like In many morphological operations and
image segmentation problems, it is easier to work with the
single-layered image (Grayscale image) than a three-layered
image (RGB color image). It is also easier to distinguish
features of an image when we deal with a single-layered [5].

Fig-2: Grayscale Image

After gray scaling we will blur the gray image to reduce the

background noise. Image blurring is done by passing an

image with the low-pass filter kernel. It is very useful for

removing noise. It removes high-frequency content from the

image. So edges are blurred in this operation but there are

also blurring techniques that don't blur the edges. There are

different blurring methods that can be used to blur the gray

image [6]. Averaging (first method) is done by convolving an

image with a normalized box filter. This method takes an

average of all the pixels under the kernel area and assigns

the central element. In the Gaussian Blurring method

(second method), instead of a box filter, a Gaussian kernel is

used. We specify the height and width of the kernel which

should be odd and positive. We also specify the standard

deviation in the Y and X directions, sigma X, and sigma Y

respectively. Median Blurring (third method) takes the

median of all the pixels under the kernel area and the central

element is assigned with this median value. This is highly

effective against pepper-and-salt noise in the image. Its

kernel size should be an odd and positive integer. Bilateral

Filtering (fourth method) is highly effective in noise removal

and keeping edges sharp. This operation is slower as

compared to other filters. Bilateral filtering takes a Gaussian

filter, but one more Gaussian filter which is a function of

pixel difference so it does not affect the edges [7]. I had used

the bilateral filter to blur the image because it actually

preserves all strength, it removes noise quite well and

strengthens the edges in the image when we deal with a

single-layered image.

Fig-3: Blurred Image

After blurring we will do edge detection. It is a very
important part of computer vision, especially when we are
dealing with contours. Edges are defined as sudden changes
in an image. They can encode just as much information as
pixels. Edges are also defined as the boundaries of the
images. There are three main types of Edge Detection. Sobel
Edge Detection (first method) is a way to avoid the gradient
calculated about an interpolated point between the pixels
which uses 3 x 3 neighborhoods for the calculations of the
gradient. It finds vertical or horizontal edges. Laplacian Edge
Detection (Second method) builds a morphing algorithm that
operates on features extracted from target images. It is a
good method to find the edges in the target images. Canny
Edge Detection (Third method) follows the series of steps
and is a very powerful edge detection method. First it
smoothens an image with the Gaussian filter. Then it
computes the gradient magnitude and orientation using
finite-difference approximations for the partial derivatives.
Then it applies non-maxima suppression to the gradient
magnitude. After this in the next step uses the double
threshold algorithm to link and detect edges. Canny edge
detector approximates the operator that optimizes the
product of localization and signal-to-noise ratio. It is
generally the first derivative of a Gaussian [7][8]. We will use
the Canny edge detection to extract the edges from the
blurred image because of its optimal result, well-defined
edges, and accurate detection.

Fig-4: Edged Image

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5886

After finding edges we will find the contours from and edged
image. Contours are the continuous curves or lines that
cover or bound the full boundary of the object in the image.
Contours play a very important role in object detection
shape identification. There are mainly two important types
of contours Retrieval Modes. The first one is the
cv2.RETER_LIST which retrieves all the contours from an
image and second is cv2.RETER_EXTERNAL which retrieves
external or outer contours from an image. There are two
types of Approximation Methods. The first method is the
cv2.CHAIN_APPROX_NONE stores all the boundary points.
But we don't necessarily need all bounding points. If the
points form a straight line, we only need the start and ending
points of that line. The second method is the
cv2.CHAIN_APPROX_SIMPLE instead only provides these
start and endpoints of bounding contours, thus resulting in
much more efficient storage of contour information.

Fig-5: Image with Contours

After finding contours we will sort the contours. Sorting

contours is quite useful when doing image processing. We

will sort contours by area which will help us to eliminate

some small and useless contours made by noise and extract

the large contours which contain the number plate of a

vehicle. We will take the top 10 contours to find our number

plate as we are only using the frontal image of the car and we

can expect the area of number plate covers most of the

region in an image.

1.3 Detecting Plate

After we sort the contours we will now take a variable plate
and store a value none in the variable recognizing that we
did not find number plate till now. Now we iterate through
all the contours we get after sorting from the largest to the
smallest having our number plate in there so we should be
able to segment it out. Now to that, we will look through all
the contours and going to calculate the perimeter for the
each contour. Then we will use cv2.approxPolyDP() function
to count the number of sides [9]. The cv2.approxPolyDP()
takes three parameters. First one is the individual contour
which we wish to approximate. Second parameter is
Approximation Accuracy Important parameter is
determining the accuracy of the approximation. Small values
give precise- approximations, large values give more generic
approximation. A good rule of thumb is less than 5% of the
contour perimeter. Third parameter is a Boolean value that

states whether the approximate contour should be open or
closed. I had used contour approximation and it approximate
a contour shape to another shape with less number of that is
dependent on the position I specify so the 0.02 is the
precision that worked. After that we will compare if edges
count is equal to 4 so we found our number plate.
After that we will find the coordinates of the rectangle
formed using cv2.boundingRect(c) and store the one
coordinate in x, y and store width and height of the contour
in another. After that we put the image of detected rectangle
in the plate variable.

Fig-6: Detected License Plate

1.4 Text Recognition

After detecting the license plate of the vehicle we will
recognize the characters on the license plate using tesseract.
Python-tesseract is an (OCR) optical character recognition
tool for python. That is, it will recognize and read‖ the text
embedded in images. It is a wrapper for Google’s Tesseract-
OCR Engine. It is also useful as a stand-alone invocation
script to tesseract, as it can read all image types supported
by the Leptonica imaging and Pillow libraries, including png,
jpeg, gif, BMP, tiff, and others [10]. If Python-tesseract is
used as a script it will print the recognized text instead of
writing it to a file. Optical character recognition (OCR) is a
conversion of printed text images or handwritten text
scanned copy, into editable text for further processing. This
technology gives an ability to the machine to recognize the
text automatically. It is like a combination of the mind and
eyes of the human body. An eye can only view the text from
an image but the brain actually processes as well as
interprets that extracted text read by eye.

Fig-7: Output Text

3. SHORTCOMINGS

Although paper detects the license plate efficiently but
method can be further improved using deep learning models
and algorithms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5887

This method has been implemented keeping in mind that the
characters are in a single line but there are number plates
which contains more than one line.

Implemented method can give errors when an image
contains multiple license plates or license plate occupying
very small area in an image.

4. CONCLUSIONS & FUTURE SCOPE

Thus, an efficient and accurate, less time consuming method
has been devised through this paper which can help in
extraction and detection of license plate of vehicle. It
promises to be less prone to errors if implemented in
suitable conditions.

Further improvements can be done by using more advanced
deep learning algorithms so it can work in every possible
condition and can be implements in real-time monitoring,
multiple license plate detection at a time, etc.

REFERENCES

[1] C. Henry, S. Y. Ahn and S. Lee, "Multinational License

Plate Recognition Using Generalized Character Sequence
Detection," in IEEE Access, vol. 8, pp. 35185-35199,
2020.

[2] H. Seibel, S. Goldenstein and A. Rocha, "Eyes on the
Target: Super-Resolution and License-Plate Recognition
in Low-Quality Surveillance Videos," in IEEE Access, vol.
5, pp. 20020-20035, 2017.

[3] P. S. Sharma, P. K. Roy, N. Ahmad, J. Ahuja and N. Kumar,
"Localisation of License Plate and Character Recognition
Using Haar Cascade," 2019 6th International Conference
on Computing for Sustainable Global Development, New
Delhi, India, 2019.

[4] R. R. Palekar, S. U. Parab, D. P. Parikh and V. N. Kamble,
"Real time license plate detection using openCV and
tesseract," 2017 International Conference on
Communication and Signal Processing (ICCSP), Chennai,
2017.

[5] J. Chong, C. Tianhua and J. Linhao, "License Plate
Recognition Based on Edge Detection Algorithm," 2013
Ninth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing,
Beijing, 2013.

[6] R. Huang, M. Fan, Y. Xing and Y. Zou, "Image Blur
Classification and Unintentional Blur Removal," in IEEE
Access, vol. 7, pp. 106327-106335, 2019.

[7] C. Xiong, L. Chen and Y. Pang, "An Adaptive Bilateral
Filtering Algorithm and its Application in Edge
Detection," 2010 International Conference on Measuring
Technology and Mechatronics Automation, Changsha
City, 2010.

[8] M. Kalbasi and H. Nikmehr, "Noise-Robust,
Reconfigurable Canny Edge Detection and its Hardware

Realization," in IEEE Access, vol. 8, pp. 39934-39945,
2020.

[9] R. Baran and A. Kleszcz, "The efficient spatial methods of
contour approximation," 2014 Signal Processing:
Algorithms, Architectures, Arrangements, and
Applications (SPA), Poznan, 2014.

[10] K. Deb, M. I. Khan, M. R. Alam and K. Jo, "Optical
recognition of vehicle license plates," Proceedings of
2011 6th International Forum on Strategic Technology,
Harbin, Heilongjiang, 2011.

